劉博軒
摘要:在高中數(shù)學的學習過程中,三角函數(shù)知識在其中占著舉足輕重的地位。作為其他諸多章節(jié)的基礎,三角函數(shù)與高中數(shù)學其他章節(jié)之間具有緊密的聯(lián)系,并且在往年的高考數(shù)學中,三角函數(shù)作為考試的重點,占有較大的比重,故,學習和掌握三角函數(shù)知識,對于學生打好高考數(shù)學的基礎,以及對考試的把握,至關重要。然而,對于高中生來講,三角函數(shù)的4~/7,的學習并非一件易事,相反,很多學生覺得他們學習過程中感到吃力。為了解決高中生難以靈活掌握三角函數(shù)這門知識的難題,本文結合實踐,在此初步總結了學習三角函數(shù)的心得和方法,以便給予在這方面知識掌握存在問題的同學以幫助。
關鍵詞:三角函數(shù);高中階段;學習方法
中圖分類號:G633.6 文獻識別碼:A 文章編號:1001-828X(2018)021-0456-01
一、三角函數(shù)的知識體系概述
作為基本初等函數(shù)之一,三角函數(shù)的學習,首先應當按照學習函數(shù)的流程來做,即也應經(jīng)歷解析、分析圖像、明晰性質,最后應用解題等過程。學習三角函數(shù),實際上是進一步對于函數(shù)概念的鞏固和把握。然而,三角函數(shù)一定程度上,又是一門比較復雜的基本初等函數(shù)。它包含了很多子課程內容,這些子課程內容包括解三角形、三角恒等變換等等內容。
在高中階段的數(shù)學教材中,有六個常見的三角函數(shù),其中,必須要掌握和學習的有正弦(sinx)、余弦(COSX)和正切(tanx)這三個函數(shù)。我們不僅要把握和理解這些函數(shù)的圖像和性質,還必須要深入分析和探究它們彼此之間的關系是什么,且是如何轉化的。通過與其他初等函數(shù)比較,我們可以發(fā)現(xiàn)三角函數(shù)涉及到的需要儲備和學習的知識量是比較大的。新課標要求高中生們必須在短時間內掌握并學會準確應用三角函數(shù)這門知識,對于學生們來講,確實帶給他們學習上時間緊任務重的困難。
二、高中生學習三角函數(shù)的現(xiàn)狀及原因
現(xiàn)如今高中生在對于掌握三角函數(shù)這部分知識方面,普遍感到吃力和困難。經(jīng)筆者調查和分析,發(fā)現(xiàn)造成這一現(xiàn)狀存在如下原因以供參考。
1.三角函數(shù)本身復雜性使得學生學習存在一定的難度。相較于初中階段的學習,高中階段三角函數(shù)擁有嚴格的概念和定義,理解上難度比較大,符號抽象,運用圖像也比較困難,無形之中增大了高中生學習的難度。
2.三角函數(shù)的課程單元也包含更多的子課程,如三角恒等變換、解三角形等?!叭呛愕茸儞Q”一章中,兩角和與差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,其本質是初等超越運算。
顯而易見,這些知識相較于初中階段的初等代數(shù)運算知識而言,高中階段三角函數(shù)知識體系的把控和運算應用規(guī)則的掌握更需要高中生花費大量的時間和精力去消化。
3.三角函數(shù)的學習,是對函數(shù)知識的把控和學習進階,它的學習流程經(jīng)歷了解析、圖像、性質,然后再在具體的實踐中進行運用。故,三角函數(shù)的學習不僅要求高中生對于知識的理解和記憶,其考驗的往往是學生們對于知識的運用能力。
三、高中階段學習三角函數(shù)的過程和學習方法
1.理論知識
三角函數(shù)的理論知識內容主要涵蓋公式、性質等方面的內容。鑒于三角函數(shù)限制條件較多,數(shù)量之大,難以記憶等特質,高中生在學習三角函數(shù)的過程中常常會混淆限制條件或者混淆公式,而使得解題錯誤。故,考慮到這種情況,筆者建議,在高中生學習過程中,應先在掌握知識的基礎上進行深入分析和思考,循序漸進地推進解題思路和過程,進而將新的三角函數(shù)解答出來。鑒于此,學生在學習過程中,加深了對于新的解答的三角函數(shù)的印象,且可以熟練掌握其特點并準確運用。理論知識的把握和記憶,高中生應注意有意識的在自己的腦海中形成較為系統(tǒng)、整體并緊密聯(lián)系的完整的知識體系,有利于學生在今后的學習過程中充分運用所掌握的知識準確解題。
2.訓練習題
在解答習題過程中,很多學生因為其理解的偏差或者不恰當運用理論知識等原因,使得解答錯誤。故,為了有效地解答習題,筆者建議學生在平時日常的習題訓練中,應有意識地積極地去總結習題中的解答規(guī)律和技巧,并對其進行歸納整理。學習本身是一個不斷試錯,不斷修正和不斷積累的過程。掌握這些習題規(guī)律和解答技巧之后,學生再解答這些習題時,充分運用解題思路和技巧,就可以準確地避免錯誤解答情形的發(fā)生。
3.課后及時復習
課堂上老師的講解只是幫助學生理解三角函數(shù),真正準確地掌握和運用該門知識,還需要學生們課后及時鞏固和復習。若學生想要提高自己對于知識的掌握和熟練、準確運用,必須加強日常的課后反復練習和總結,并且整理錯題,歸納到自己的錯題本上,時刻提醒自己查漏補缺。只有在反復中不斷地鞏固、思考、糾錯,學生對于知識的運用和把握能力才會呈螺旋式上升的水平。
四、結語
盡管三角函數(shù)的學習對于大多數(shù)學生來講,是一門比較困難的學科。但是,若掌握正確的學習方法和技巧,并且有效地進行訓練和學習,我們就會發(fā)現(xiàn)其中的樂趣。作為老師,有義務引導和訓練學生學會自主學習,使其充分領會解題思想和解題思路;作為學生,應勇于糾正自己的錯誤,根除對于老師的依賴,學會培養(yǎng)自身自主學習能力,并養(yǎng)成預習和復習的良好習慣,自我反思和自主檢查,避免失誤情況發(fā)生,這樣的話,他們就會發(fā)現(xiàn)三角函數(shù)的學習并沒有想象中困難,可以克服,其對于學習方法的掌握一定程度上有利于他們提高自身的數(shù)學成績。