• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    骨髓間充質(zhì)干細(xì)胞在低氧共培養(yǎng)條件下對(duì)髓核細(xì)胞保護(hù)作用的實(shí)驗(yàn)研究

    2017-09-15 08:44:22季偉李海峰程實(shí)陳佳海徐成劉玥何勍阮狄克
    關(guān)鍵詞:共培養(yǎng)充質(zhì)低氧

    季偉李海峰程實(shí)陳佳海徐成劉玥何勍阮狄克*

    (1.第四軍醫(yī)大學(xué)西京醫(yī)院骨科,西安710032;2.海軍總醫(yī)院骨科,北京100048)

    ?基礎(chǔ)研究?

    骨髓間充質(zhì)干細(xì)胞在低氧共培養(yǎng)條件下對(duì)髓核細(xì)胞保護(hù)作用的實(shí)驗(yàn)研究

    季偉1,2李海峰2程實(shí)2陳佳海2徐成2劉玥2何勍2阮狄克2*

    (1.第四軍醫(yī)大學(xué)西京醫(yī)院骨科,西安710032;2.海軍總醫(yī)院骨科,北京100048)

    背景:對(duì)于骨髓間充質(zhì)干細(xì)胞(BMSCs)與髓核(NP)細(xì)胞共培養(yǎng)的研究主要集中在不同條件下的干細(xì)胞向NP細(xì)胞表型的分化。一些研究表明,在動(dòng)物試驗(yàn)中干細(xì)胞影響退變的NP細(xì)胞。少有研究人BMSCs對(duì)NP細(xì)胞的影響,特別是在低氧條件下。目的:建立同一患者的BMSCs和NP細(xì)胞的共培養(yǎng)模型,探討在低氧環(huán)境下BMSCs對(duì)NP細(xì)胞的生物學(xué)影響。方法:分離培養(yǎng)患者的NP細(xì)胞和BMSCs。并將其分為兩組。A組為NP細(xì)胞單獨(dú)培養(yǎng)組,B組為NP細(xì)胞與BMSCs共培養(yǎng)組。兩組細(xì)胞均連續(xù)培養(yǎng)14 d。通過光學(xué)顯微鏡觀察兩組細(xì)胞形態(tài)及數(shù)量,用流式細(xì)胞儀和掃描電子顯微鏡(SEM)觀察細(xì)胞死亡。用細(xì)胞計(jì)數(shù)kit-8試劑盒(CCK8)評(píng)估細(xì)胞增殖,進(jìn)一步采用實(shí)時(shí)/逆轉(zhuǎn)錄-聚合酶鏈反應(yīng)(RT-PCR)檢測(cè)細(xì)胞外基質(zhì)(ECM)和NP細(xì)胞特殊表型的標(biāo)記的表達(dá)。結(jié)果:培養(yǎng)14 d后,光學(xué)顯微鏡下觀察,單獨(dú)培養(yǎng)組可見NP細(xì)胞貼壁和延伸,NP細(xì)胞的數(shù)量比培養(yǎng)前多。在共培養(yǎng)組,NP細(xì)胞形態(tài)是紡錘形,貼壁、延伸比單培養(yǎng)組好,NP細(xì)胞的數(shù)量遠(yuǎn)遠(yuǎn)超過培養(yǎng)前,并且多于單獨(dú)培養(yǎng)組。CCK8檢測(cè)表明,培養(yǎng)14 d后,與單獨(dú)培養(yǎng)組相比,共培養(yǎng)組的NP細(xì)胞更多(P<0.05),單獨(dú)培養(yǎng)組細(xì)胞凋亡率高于共培養(yǎng)組(P<0.05)。在低氧和與BMSCs共同培養(yǎng)條件下,蛋白多糖(AGG)、膠原Ⅱ(COL2),SOX-9,角蛋白19(KRT19),碳酸酐酶Ⅻ(CA12)和低氧誘導(dǎo)因子(HIF)表達(dá)增加。RT-PCR檢測(cè)表明這些基因和蛋白的合成、分泌在與BMSCs共培養(yǎng)的NP細(xì)胞組中明顯高于NP細(xì)胞單獨(dú)培養(yǎng)組。結(jié)論:在體外更接近體內(nèi)條件的低氧直接共同培養(yǎng)條件下,BMSCs可能會(huì)通過調(diào)節(jié)ECM和調(diào)節(jié)基因來(lái)保護(hù)或激活退化的NP細(xì)胞。為BMSCs治療椎間盤退變提供了一個(gè)重要的新思路。

    共培養(yǎng);低氧;骨髓間充質(zhì)干細(xì)胞;髓核細(xì)胞;椎間盤;細(xì)胞治療

    退行性椎間盤疾?。―DD)在腰痛患者中比較常見,嚴(yán)重影響生活和工作。研究表明其發(fā)病機(jī)制是中央膠狀髓核(NP)細(xì)胞減少[1]。退變過程的特點(diǎn)是細(xì)胞總數(shù)減少,細(xì)胞功能障礙,細(xì)胞外基質(zhì)蛋白聚糖產(chǎn)生下降[2]。在這方面,許多研究都指出,異常載荷可能導(dǎo)致椎間盤細(xì)胞合成和膠原基因表達(dá)的變化,蛋白聚糖和蛋白酶的激活,以及細(xì)胞凋亡[3-5]。目前,治療DDD大多數(shù)是緩解癥狀,并有諸多限制和并發(fā)癥。因此,新的治療椎間盤退變的方法越來(lái)越受到關(guān)注。

    一種可能性是利用組織工程和細(xì)胞移植技術(shù)將活細(xì)胞植入NP,扭轉(zhuǎn)退化過程,活細(xì)胞能夠在椎間盤內(nèi)生存,類似產(chǎn)生椎間盤細(xì)胞外基質(zhì)或改變生物力學(xué)性能[6,7]。1998年Nishimura首次嘗試在椎間盤內(nèi)植入NP細(xì)胞會(huì)減緩椎間盤退變[8]。Ganey等[9]將自體椎間盤軟骨細(xì)胞植入退化的椎間盤后可以存活并產(chǎn)生細(xì)胞外基質(zhì)成分,類似正常椎間盤組織。通過Mochida等[10]的臨床研究證實(shí)了活化NP細(xì)胞移植的安全性,研究結(jié)果表明這種治療方法減緩了椎間盤的進(jìn)一步退化。然而,這些方法在實(shí)際臨床應(yīng)用有一定的局限性,因?yàn)閺淖甸g盤收集患者自身細(xì)胞或NP細(xì)胞會(huì)加速椎間盤退化,而從相鄰的正常椎間盤獲得細(xì)胞則會(huì)減緩椎間盤退變。因此,合適的活細(xì)胞來(lái)源是細(xì)胞生物修復(fù)策略的關(guān)鍵因素之一。

    間充質(zhì)干細(xì)胞(MSCs)的增殖能力和多向分化能力優(yōu)異,故其成為治療椎間盤退變的選擇。在成人中,有大量干細(xì)胞的潛在來(lái)源[11]。已有研究證明,體外MSCs,如BMSCs[12]和脂肪干細(xì)胞(ADSCs)[13]可以定向分化為具有NP表型的細(xì)胞。在低氧和轉(zhuǎn)化生長(zhǎng)因子-β1(TGF-β1)條件下,BMSCs分化的表型與NP細(xì)胞是一致的[14]。Richardson的研究表明,NP細(xì)胞和BMSCs間接觸共培養(yǎng),將上調(diào)NP細(xì)胞標(biāo)記基因的表達(dá),并分化為NP細(xì)胞樣表型3。BMSCs移植到NP后,能夠100%存活并有增殖活性[15],椎間盤的蛋白多糖也會(huì)增加[16],特別是,BMSC分化成表達(dá)NP細(xì)胞主要的表型特征的細(xì)胞[17]。

    大量的研究都集中在不同條件下的干細(xì)胞向NP細(xì)胞表型的分化。有些報(bào)告稱,干細(xì)胞對(duì)退化的NP細(xì)胞有營(yíng)養(yǎng)影響。在直接共培養(yǎng)系統(tǒng)中BMSCs可上調(diào)NP細(xì)胞活力[18,19]。Gruber等[20]一直致力于自體椎間盤細(xì)胞移植治療砂大鼠模型椎間盤退變的效果。Nishimura等[21]報(bào)道,自體NP細(xì)胞的恢復(fù)會(huì)減緩椎間盤退變。Yukihiro等[19]發(fā)現(xiàn)NP細(xì)胞和BMSCs共培養(yǎng)會(huì)顯著上調(diào)NP細(xì)胞活力。盡管BMSCs對(duì)NP細(xì)胞具有保護(hù)作用,但很少有研究集中在低氧環(huán)境下來(lái)自于同一個(gè)人的BMSCs對(duì)NP細(xì)胞的影響。因此,本研究旨在建立同一患者的BMSCs和NP細(xì)胞的共培養(yǎng)模型,探討在低氧環(huán)境下BMSCs對(duì)NP細(xì)胞的生物學(xué)影響。

    1 材料與方法

    1.1 組織收集

    本研究經(jīng)由海軍總醫(yī)院倫理審查委員會(huì)批準(zhǔn)。實(shí)驗(yàn)用髓核和骨髓血來(lái)自椎間盤突出癥后路椎間盤切除減壓融合患者。共培養(yǎng)兩種細(xì)胞來(lái)自同一組患者(n=10;年齡30~50歲,平均41.5歲)。通過分析MRI數(shù)據(jù),我們選擇患者椎間盤Pfirrmann分級(jí)為Ⅱ~Ⅲ級(jí)。

    1.2 人NP細(xì)胞的分離與培養(yǎng)

    為了分離人類的NP細(xì)胞,在手術(shù)后2 h內(nèi),從10例患者獲取NP組織。患者NP組織被切斷,用尼龍網(wǎng)過濾(100 μm),然后用0.025%膠原酶Ⅱ溶液消化(Sigma,美國(guó)),在無(wú)血清培養(yǎng)基中,37℃,5%CO2的培養(yǎng)箱中過夜。1000×g離心5 min,分離的細(xì)胞以密度為1×103/cm2培養(yǎng)在DMEM培養(yǎng)基和F12(DMEM/ F12,Hyclone)培養(yǎng)基含10%胎牛血清(FBS;Gibco)、2 mmol/L谷氨酰胺,100 U/ml青霉素,100 mg/ml鏈霉素在37°C含5%的CO2的環(huán)境下。每3天換1次培養(yǎng)基。凍存細(xì)胞用胰蛋白酶/乙二胺四乙酸(0.05%/ 0.02%;Gibco),傳代比例為1:3。最后,第3代NP細(xì)胞用于實(shí)驗(yàn)。

    1.3 人BMSC s s的分離鑒定

    用10~20ml肝素抗凝骨髓血,在手術(shù)過程取自于椎弓根的骨髓血在正常的生理鹽水中使用5%右旋糖酐,固定1 h。將上層血清離心3000 r/m,20 min,用生理鹽水洗兩次,1500×g離心5 min。選擇中間部分培養(yǎng)在10c m2的培養(yǎng)瓶中含有相同的培養(yǎng)基。認(rèn)為貼壁細(xì)胞是BMSCs。傳代兩次后,細(xì)胞染色,用熒光素標(biāo)記的單克隆抗體CD14、CD29、CD34、CD44、CD45、CD80、CD86、CD106、HLA-ABC和HLA-DR(BD Pharmingen,San Diego,CA,USA)、CD90和CD105(Serotec,Oxford,UK)染色后用流式細(xì)胞儀分析(FACSort;BD,San Jose,CA,USA)。

    1.4 BMSC s s和NP細(xì)胞共培養(yǎng)

    本試驗(yàn)使用六孔共培養(yǎng)板(康寧公司,美國(guó)),transwell膜所帶孔洞直徑1.0 μm,第三代BMSCs和NP細(xì)胞用于本實(shí)驗(yàn),培養(yǎng)方式為接觸式共培養(yǎng)[19]。

    1.5 細(xì)胞數(shù)量和形態(tài)

    共培養(yǎng)前觀察兩種細(xì)胞的形態(tài)。共培養(yǎng)2周后,用光學(xué)顯微鏡(Olympus,Tokyo,Japan)觀察NP細(xì)胞的形態(tài)和數(shù)目變化。

    1.6 測(cè)量細(xì)胞增殖

    采用細(xì)胞計(jì)數(shù)kit-8試劑盒(CCK-8,Dojindo,日本)評(píng)估細(xì)胞增殖。按每孔1×104NP細(xì)胞接種于24孔培養(yǎng)板中,與BMSCs共培養(yǎng),沒有共培養(yǎng)組作為對(duì)照組。使用酶標(biāo)儀(Elx800,Bio-Tek,美國(guó))測(cè)量450 nm處的吸光度以間接反映細(xì)胞數(shù)。實(shí)驗(yàn)重復(fù)3次,結(jié)果取平均值分析。最后,換新培養(yǎng)基添加CCK-8溶液(10 μl)孵育30 min,然后移到96孔板。

    1.7 流式細(xì)胞術(shù)測(cè)細(xì)胞凋亡

    用Annexin V-FITC/PI(BD Biosciences,San Diego,CA,USA)將細(xì)胞染色進(jìn)行流式細(xì)胞術(shù)檢測(cè)。用PBS洗滌后將1×105細(xì)胞重新懸浮在結(jié)合緩沖液中。在室溫下,用Annexin V-FITC和PI將細(xì)胞孵育5 min,進(jìn)行樣品分析。每個(gè)實(shí)驗(yàn)重復(fù)3次。

    1.8 掃描電子顯微鏡

    用SEM測(cè)定在各組中NP細(xì)胞的黏附性。用4%多聚甲醛將NP細(xì)胞在室溫下固定30 min。樣品用蒸餾水和連續(xù)乙醇溶液脫水洗滌3次。在室溫下真空干燥,樣品鍍膜,然后用掃描電子顯微鏡(Hitachi S-3400N,日本)觀察。

    1.9 實(shí)時(shí)//逆轉(zhuǎn)錄--聚合酶鏈反應(yīng)分析

    經(jīng)過14 d的培養(yǎng),采用Trizol試劑提取總RNA。然后,使用逆轉(zhuǎn)錄試劑獲得總RNA的cDNA。1μl RNA混合2 μl 5×PrimeScript?RT MasterMix和10μl RNase dH2O。混合溶液在37℃下孵育15 min,然后85℃、5s,并存儲(chǔ)在-80°C。β-actin作為對(duì)照。分析ECM相關(guān)基因(COL2,SOX-9,AGG)的mRNA表達(dá)水平和NP細(xì)胞的表型相關(guān)基因(CA12,HIF-1, KRT19)。用于擴(kuò)增的引物,由生工生物技術(shù)有限公司合成(上海,中國(guó))。95℃、20 s,在95℃、5 s和60℃、20 s反應(yīng)循環(huán)40次。得到每個(gè)樣本的閾值(Ct),取三個(gè)值得平均值。用2?△△CT評(píng)估基因的相對(duì)表達(dá)水平。

    1.10 統(tǒng)計(jì)分析

    采用SPSS統(tǒng)計(jì)軟件包(SPSS,Chicago,IL,美國(guó))的統(tǒng)計(jì)分析方法。兩組參數(shù)分析中使用雙尾t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

    2 結(jié)果

    2.1 細(xì)胞數(shù)量和形態(tài)

    兩組培養(yǎng)14 d后,共培養(yǎng)髓核細(xì)胞的形態(tài)優(yōu)于單獨(dú)培養(yǎng)組,細(xì)胞數(shù)量多于單獨(dú)培養(yǎng)組(圖1)。

    2.2 BMSC對(duì)NP細(xì)胞凋亡的影響

    NP細(xì)胞用AV和PI標(biāo)記,流式細(xì)胞儀通過識(shí)別AV和PI標(biāo)記確定活細(xì)胞數(shù)目(Q3:AV-PI-),早期凋亡細(xì)胞數(shù)(Q4:AV+PI)和壞死細(xì)胞數(shù)(Q2:AV-PI+)。用流式細(xì)胞儀測(cè)定早期凋亡和壞死細(xì)胞的百分比。如圖2所示,與BMSCs共培養(yǎng)導(dǎo)致細(xì)胞凋亡明顯減少(AV+PI,P<0.05)。壞死細(xì)胞的百分比(AV-PI+)無(wú)顯著差異。此外,通過掃描電鏡觀察各組細(xì)胞的形態(tài)特征:NP細(xì)胞每一組貼壁、延伸,并開始分裂(圖3)。非共培養(yǎng)組NP細(xì)胞收縮,細(xì)胞膜破裂,顆粒物減少。相反,在共培養(yǎng)的NP細(xì)胞組形態(tài)向兩極或多級(jí)延伸,無(wú)明顯凋亡表現(xiàn)。電鏡結(jié)果與細(xì)胞凋亡檢測(cè)結(jié)果一致。

    2.3 NP細(xì)胞的增殖

    CCK-8分析,共培養(yǎng)組較非共培養(yǎng)組最佳密度值在7 d增加40%(P<0.05)和在14 d增加58%(P<0.01,圖4)。

    圖1 A.共培養(yǎng)前髓核細(xì)胞,B.單獨(dú)培養(yǎng)14 d后髓核細(xì)胞的形態(tài)及數(shù)量,C.共培養(yǎng)14 d后髓核細(xì)胞的形態(tài)及數(shù)量

    圖2 流式細(xì)胞儀分析NP細(xì)胞凋亡

    圖3 掃描電子顯微鏡下的兩組NP細(xì)胞

    圖4 兩組NP細(xì)胞的CCK-8值

    圖5 培養(yǎng)14 d后,NP細(xì)胞的SOX-9,COL2,AGG,CA12,KRT19和HIF-1的mRNA表達(dá)水平

    2.4 培養(yǎng)后的基因表達(dá)檢測(cè)

    ECM(SOX-9、COL2、AGG)是由定量逆轉(zhuǎn)錄聚合酶鏈反應(yīng)分析,培養(yǎng)2周后,這三個(gè)基因的表達(dá)顯著增加(P<0.05)。NP細(xì)胞的特征標(biāo)記物(CA12、KRT19、HIF-1)的表達(dá)由定量逆轉(zhuǎn)錄-聚合酶鏈反應(yīng)分析,培養(yǎng)2周后,3種標(biāo)記物的表達(dá)均顯著增加(P< 0.05,圖5)。退化的NP細(xì)胞與BMSCs直接共培養(yǎng)后,NP細(xì)胞的SOX-9,COL2,AGG,CA12,KRT19和HIF-1明顯增加。

    在NP細(xì)胞和BMSCs接觸共培養(yǎng)系統(tǒng)中,NP細(xì)胞可以刺激BMSCs向NP細(xì)胞表型分化。另一方面,我們的結(jié)果表明,BMSCs可以保護(hù)或激活NP細(xì)胞當(dāng)細(xì)胞處在凋亡和退化的狀態(tài)下,在低氧環(huán)境通過不同的分子機(jī)制:上調(diào)ECM,NP特異性標(biāo)記的高表達(dá)來(lái)上調(diào)NP細(xì)胞的增殖。在這項(xiàng)研究中兩種類型細(xì)胞的相互影響的發(fā)現(xiàn),擴(kuò)大我們對(duì)BMSCs治療椎間盤再生了解與應(yīng)用。

    3 討論

    間充質(zhì)干細(xì)胞廣泛分布于不同的成體組織中,如脂肪組織、骨、肺和外周血[22]。近年來(lái),許多研究表明,從人骨髓中分離出間充質(zhì)干細(xì)胞具有多向分化潛能。骨髓間充質(zhì)干細(xì)胞因其可分化為成骨細(xì)胞、軟骨細(xì)胞、脂肪細(xì)胞、骨骼肌纖維、心肌細(xì)胞、肝細(xì)胞、上皮細(xì)胞而眾所周知[23]。根據(jù)此獨(dú)特的多向分化能力方面,諸多報(bào)道集中在BMSCs的可塑性方面[24,25]。據(jù)報(bào)道,在椎間盤再生治療方案中,骨髓間充質(zhì)干細(xì)胞是一種很有前景的選擇。大量研究表明,將干細(xì)胞注射到NP組織是一種治療椎間盤退行性疾病有效的生物學(xué)治療方式[26-30]。實(shí)際上,在將骨髓間充質(zhì)干細(xì)胞注射治療之前,椎間盤退行性疾病患者的NP細(xì)胞可能都已經(jīng)退化殆盡了[11]。椎間盤的發(fā)展與NP細(xì)胞死亡有關(guān)。在大多數(shù)的椎間盤病理學(xué)中都發(fā)現(xiàn)了NP細(xì)胞的減少[31]。BMSCs分化是一個(gè)重要的問題。在干細(xì)胞治療椎間盤中我們需要全面清楚的了解BMSCs對(duì)剩余的已退化的NP細(xì)胞的影響[32]。在這項(xiàng)研究中,我們發(fā)現(xiàn),在低氧條件下,BMSCs可以防止細(xì)胞凋亡,增加細(xì)胞外基質(zhì)和NP細(xì)胞特定的標(biāo)記物的表達(dá),這可能會(huì)揭示干細(xì)胞治療對(duì)椎間盤再生的影響。

    椎間盤是一種幾乎無(wú)血管的組織,它由軟骨板、纖維環(huán)、髓核組成[33]。在缺血的IVD,O2濃度是梯度下降的,在一個(gè)大椎間盤中心,O2的濃度低至1%[34]。因此,NP細(xì)胞能夠在低氧環(huán)境下存活和發(fā)揮功能。有推測(cè),氧濃度影響B(tài)MSCs向NP樣細(xì)胞分化。事實(shí)上,以前的研究報(bào)告說,2%的氧濃度就可以促進(jìn)BMSCs分化為NP樣細(xì)胞[14,35]。最近Dahia等[36]報(bào)道,椎間盤分化需要Sonic hedgehog信號(hào)通路,這個(gè)信號(hào)可以由缺氧來(lái)誘導(dǎo)[37]。NP細(xì)胞特征標(biāo)記FOXF1可以由其激活和調(diào)節(jié)[38]。

    此外,在缺血、低氧、酸性的成人椎間盤環(huán)境,要保持CA12平衡[39],通過HIF-1在低氧條件下調(diào)節(jié)[40]。因此,含氧量低,在NP細(xì)胞發(fā)展中是一個(gè)重要因素,可以通過Sonic hedgehog信號(hào)或HIF-1[41]調(diào)節(jié)NP細(xì)胞特征性標(biāo)記的表達(dá)。NP細(xì)胞合成典型軟骨成分如SOX9、Ⅱ型和Ⅳ型膠原、蛋白多糖和多能聚糖,是ECM重要組成成分。以往的研究表明,沒有明確的NP細(xì)胞的標(biāo)志,NP細(xì)胞經(jīng)常被視為軟骨樣細(xì)胞,在NP組織時(shí)期,認(rèn)為與透明軟骨具有相似的生物大分子。目前,在2014年度ORS會(huì)議上,科學(xué)家們定義和推薦了年輕健康的髓核細(xì)胞表型:HIF-1,GLUT-1,AGG、COL2比值>20,Shh,Brachyury,KRT18/19、CA12,CD24的穩(wěn)定表達(dá)。

    在體外實(shí)驗(yàn)中,Yamamoto等[19]發(fā)現(xiàn),當(dāng)BMSCs和NP細(xì)胞直接接觸共培養(yǎng)后,NP細(xì)胞的增殖、DNA合成、蛋白多糖明顯升高;維持NP細(xì)胞生物力學(xué)特性的;不同生長(zhǎng)因子的表達(dá)均顯著增加。這種新共培養(yǎng)體系的另一個(gè)優(yōu)點(diǎn)是在較早的階段增強(qiáng)細(xì)胞的粘附性,增殖速度顯著加快,NP細(xì)胞可以在4天就達(dá)到充分融合。這些結(jié)果表明共培養(yǎng)體系中細(xì)胞與細(xì)胞直接接觸的重要性。因此,目前的研究采用細(xì)胞與細(xì)胞直接接觸共培養(yǎng)系統(tǒng)。本研究首次建立同源的NP細(xì)胞和BMSCs的體外共培養(yǎng)模型,探討低氧環(huán)境下BMSCs對(duì)NP細(xì)胞的生物學(xué)效應(yīng)。

    本研究顯示,與BMSCs共培養(yǎng)后,ECM基因的表達(dá)(SOX-9、COL2、AGG)顯著增加,增殖增強(qiáng),凋亡被抑制,這表明對(duì)NP細(xì)胞有保護(hù)作用。與BMSCs共培養(yǎng)后,NP細(xì)胞特異性標(biāo)志基因的表達(dá)(CA12、KRT19、HIF-1)也明顯增加,這表明NP細(xì)胞變得更健康。特別是AGG和NP細(xì)胞特異性標(biāo)志基因的表達(dá)與其他相比更為突出,維持ECM功能和使NP細(xì)胞適應(yīng)環(huán)境。我們的研究結(jié)果表明,在治療退行性椎間盤疾病中,BMSCs發(fā)揮恢復(fù)的作用,不但可以向NP細(xì)胞分化而且有利于現(xiàn)有的NP細(xì)胞在不利環(huán)境提高功能,這種提高是通過細(xì)胞因子和細(xì)胞與細(xì)胞間的直接接觸實(shí)現(xiàn)的。

    目前的研究有幾個(gè)局限性。首先,雖然目前共培養(yǎng)系統(tǒng)具有許多優(yōu)點(diǎn),它不能實(shí)現(xiàn)更好維持NP細(xì)胞表型的3D培養(yǎng)。單層培養(yǎng)與體內(nèi)研究相比,細(xì)胞基質(zhì)合成和信號(hào)轉(zhuǎn)導(dǎo)將受到干擾。第二,我們只研究了細(xì)胞外基質(zhì)和NP細(xì)胞特異性標(biāo)記基因的表達(dá),進(jìn)一步的實(shí)驗(yàn)應(yīng)該做如信號(hào)轉(zhuǎn)導(dǎo)通路和分子機(jī)制。第三,雖然我們保持了兩種細(xì)胞在自然條件下,但椎間盤源性環(huán)境的特點(diǎn),如酸性、高滲是復(fù)雜的,難以完全在體外模擬[42]。最后,這項(xiàng)研究只是提供了探討B(tài)MSCs可能有助于DDD基礎(chǔ)細(xì)胞治療的第一步。然而,在臨床上應(yīng)用需要進(jìn)一步了解NP細(xì)胞的生物學(xué)的上調(diào)和代謝活性。

    本研究建立了同一患者的BMSCs和NP細(xì)胞的體外共培養(yǎng)模型,探討低氧環(huán)境下BMSCs對(duì)NP細(xì)胞的生物學(xué)效應(yīng)。結(jié)果表明,BMSCs對(duì)NP細(xì)胞的凋亡有抑制作用,對(duì)NP細(xì)胞的增殖有很好的保護(hù)作用。此外,BMSCs通過增加ECM的功能和NP細(xì)胞標(biāo)記的表達(dá)對(duì)NP細(xì)胞有激活影響。

    本研究結(jié)果提供了更合理的證據(jù),BMSCs對(duì)NP細(xì)胞提供了關(guān)鍵的保護(hù)和活化作用。需要進(jìn)一步的研究,闡明分子信號(hào)中的分子機(jī)制。因此,這兩種類型的細(xì)胞的相互影響的發(fā)現(xiàn)可能對(duì)我們理解和應(yīng)用BMSCs用于椎間盤再生有一個(gè)進(jìn)一步的認(rèn)識(shí)。

    總之,目前的研究進(jìn)一步闡明MSCs和退化的NP細(xì)胞之間的相互作用的機(jī)制。我們的研究發(fā)現(xiàn),在低氧條件下的BMSCs和NP細(xì)胞共同培養(yǎng)時(shí),BMSCs可以保護(hù)和激活NP細(xì)胞。因此,BMSCs可能能夠刺激退化的NP細(xì)胞自我修復(fù)。這為種治療IVD提供了新的思路。BMSCs和NP細(xì)胞共培養(yǎng)可以保護(hù)NP細(xì)胞。然而,我們還需要進(jìn)一步研究BMSCs在共培養(yǎng)過程中保護(hù)和激活NP細(xì)胞的分子機(jī)制。

    [1]Freemont AJ,Watkins A,Le Maitre C,et al.Current understanding of cellular and molecular events in intervertebral disc degeneration:implications for therapy.J Pathol,2002, 196(4):374-379.

    [2]Chung SA,Khan SN,Diwan AD.The molecular basis of intervertebral disk degeneration.Orthop Clin North Am, 2003,34(2):209-219.

    [3]Hutton WC,Toribatake Y,Elmer WA,et al.The effect of compressive force applied to the intervertebral disc in vivo. A study of proteoglycans and collagen.Spine(Phila Pa 1976),1998,23(23):2524-2537.

    [4]Lotz JC,Chin JR.Intervertebral disc cell death is dependent on the magnitude and duration of spinal loading.Spine (Phila Pa 1976),2000,25(12):1477-1483.

    [5]Kuo YJ,Wu LC,Sun JS,et al.Mechanical stress-induced apoptosis of nucleus pulposus cells:an in vitro and in vivorat model.J Orthop Sci,2014,19(2):313-322.

    [6]Richardson SM,Walker RV,Parker S,et al.Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells,2006,24(3):707-716.

    [7]Brisby H,Tao H,Ma DD,et al.Cell therapy for disc degeneration--potentials and pitfalls.Orthop Clin North Am, 2004,35(1):85-93.

    [8]Nishimura K,Mochida J.Percutaneous reinsertion of the nucleus pulposus.An experimental study.Spine(Phila Pa 1976),1998,23(14):1531-1538.

    [9]Ganey T,Libera J,Moos V,et al.Disc chondrocyte transplantation in a canine model:a treatment for degenerated or damaged intervertebral disc.Spine(Phila Pa 1976),2003, 28(23):2609-2620.

    [10]Mochida J,Sakai D,Nakamura Y,et al.Intervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year,prospective clinical study of its safety.Eur Cell Mater,2015,29:202-212.

    [11]Sun Z,Luo B,Liu ZH,et al.Adipose-derived stromal cells protect intervertebral disc cells in compression:implications for stem cell regenerative disc therapy.Int J Biol Sci, 2015,11(2):133-143.

    [12]Steck E,Bertram H,Abel R,et al.Induction of intervertebral disc-like cells from adult mesenchymal stem cells. Stem Cells,2005,23(3):403-411.

    [13]Lu ZF,Zandieh Doulabi B,Wuisman PI,et al.Differentiation of adipose stem cells by nucleus pulposus cells:configuration effect.Biochem Biophys Res Commun,2007,359 (4):991-996.

    [14]Risbud MV,Albert TJ,Guttapalli A,et al.Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro:implications for cell-based transplantation therapy.Spine(Phila Pa 1976),2004,29(23):2627-2632.

    [15]Crevensten G,Walsh AJ,Ananthakrishnan D,et al.Intervertebral disc cell therapy for regeneration:mesenchymal stem cell implantation in rat intervertebral discs.Ann Biomed Eng,2004,32(3):430-434.

    [16]Zhang YG,Guo X,Xu P,et al.Bone mesenchymal stem cells transplanted into rabbit intervertebral discs can increase proteoglycans.Clin Orthop Relat Res,2005,(430): 219-226.

    [17]Sakai D,Mochida J,Iwashina T,et al.Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model:potential and limitations for stem cell therapy in disc regeneration.Spine(Phila Pa 1976),2005,30 (21):2379-2387.

    [18]Vadalà G,Studer RK,Sowa G,et al.Coculture of bone marrow mesenchymal stem cells and nucleus pulposus cells modulate gene expression profile without cell fusion.Spine (Phila Pa 1976),2008,33(8):870-876.

    [19]Yamamoto Y,Mochida J,Sakai D,et al.Upregulation of the viability of nucleus pulposus cells by bone marrow-derived stromal cells:significance of direct cell-to-cell contact in coculture system.Spine(Phila Pa 1976),2004,29(14): 1508-1514.

    [20]Gruber HE,Johnson TL,Leslie K,et al.Autologous intervertebral disc cell implantation:a model using Psammomys obesus,the sand rat.Spine(Phila Pa 1976),2002,27(15): 1626-1633.

    [21]Nishimura K,Mochida J.Percutaneous reinsertion of the nucleus pulposus.An experimental study.Spine(Phila Pa 1976),1998,23(14):1531-1538.

    [22]Fukuchi Y,Nakajima H,Sugiyama D,et al.Human placenta-derived cells have mesenchymal stem/progenitor cell potential.Stem Cells,2004,22(5):649-658.

    [23]Ferrari G,Cusella-De Angelis G,Coletta M,et al.Muscle regeneration by bone marrow-derived myogenic progenitors.Science,1998,279(5356):1528-1530.

    [24]Wu S,Suzuki Y,Ejiri Y,et al.Bone marrow stromal cells enhance differentiation of cocultured neurosphere cells and promote regeneration of injured spinal cord.J Neurosci Res,2003,72(3):343-351.

    [25]Mwale F,Roughley P,Antoniou J.Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage:a requisite for tissue engineering of intervertebral disc.Eur Cell Mater,2004,8:58-63.

    [26]Yang F,Leung VY,Luk KD,et al.Mesenchymal stem cells arrest intervertebral disc degeneration through chondrocytic differentiation and stimulation of endogenous cells.Mol Ther,2009,17(11):1959-1966.

    [27]Chun HJ,Kim YS,Kim BK,et al.Transplantation of human adipose-derived stem cells in a rabbit model of traumatic degeneration of lumbar discs.World Neurosurg, 2012,78(3-4):364-371.

    [28]Yang X,Li X.Nucleus pulposus tissue engineering:a brief review.Eur Spine J,2009,18(11):1564-1572.

    [29]Yi Z,Guanjun T,Lin C,et al.Effects of transplantation of hTIMP1-expressing bone marrow mesenchymal stem cells on the extracellular matrix of degenerative intervertebral discs in an in vivo rabbit model.Spine(Phila Pa 1976), 2014 Apr 8.[Epub ahead of print]

    [30]Leung VY,Aladin DM,Lv F,et al.Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair.Stem Cells,2014,32(8):2164-2177.

    [31]Prockop DJ.Marrow stromal cells as stem cells for nonhematopoietic tissues.Science,1997,276(5309):71-74.

    [32]Kermani HR,Hoboubati H,Esmaeili-Mahani S,et al.Induction of intervertebral disc cell apoptosis and degeneration by chronic unpredictable stress.J Neurosurg Spine, 2014,20(5):578-584.

    [33]Sakai D.Stem cell regeneration of the intervertebral disk. Orthop Clin North Am,2011,42(4):555-562.

    [34]Mwale F,Ciobanu I,Giannitsios D,et al.Effect of oxygen levels on proteoglycan synthesis by intervertebral disc cells.Spine(Phila Pa 1976),2011,36(2):E131-E138.

    [35]Stoyanov JV,Gantenbein-Ritter B,Bertolo A,et al.Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells.Eur Cell Mater,2011, 21:533-547.

    [36]Dahia CL,Mahoney E,Wylie C.Shh signaling from the nucleus pulposus is required for the postnatal growth and differentiation of the mouse intervertebral disc.PLoS One, 2012,7(4):e35944.

    [37]Bijlsma MF,Groot AP,Oduro JP,et al.Hypoxia induces a hedgehog response mediated by HIF-1alpha.J Cell Mol Med,2009,13(8B):2053-2060.

    [38]Pattappa G,Li Z,Peroglio M,et al.Diversity of intervertebral disc cells:phenotype and function.J Anat,2012,221 (6):480-496.

    [39]Minogue BM,Richardson SM,Zeef LA,et al.Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation.Arthritis Rheum,2010,62(12):3695-3705.

    [40]Wykoff CC,Beasley NJ,Watson PH,et al.Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res,2000,60(24):7075-7083.

    [41]Hu X,Zhou Y,Zheng X,et al.Differentiation of menstrual blood-derived stem cells toward nucleus pulposus-like cells in a coculture system with nucleus pulposus cells.Spine (Phila Pa 1976),2014,39(9):754-670.

    [42]Han B,Wang HC,Li H,et al.Nucleus pulposus mesenchymal stem cells in acidic conditions mimicking degenerative intervertebral discs give better performance than adipose tissue-derived mesenchymal stem cells.Cells Tissues Organs, 2014,199(5-6):342-352.

    Human bone mesenchymal stem cells protect nucleus pulposus cells by co-culture under hypoxia environment:an experimental study

    JI Wei1,2,LI Haifeng2,CHENG Shi2,CHEN Jiahai2,XU Cheng2,LIU Yue2,HE Qing2,RUAN Dike2*
    (1.Department of Orthopedic Surgery,Xijing Hospital,Fourth Military Medical University,Xi'an,710032;2.Department of Orthopedic Surgery,Navy General Hospital,Beijing 100048,China)

    Background:Numerous studies about the co-culture of bone marrow mesenchymal stem cells(BMSCs)with nucleus pulposus(NP)cells have focused on the differentiation of stem cells towards NP cell phenotypes in various conditions.There are few studies on the effects of human BMSCs on the NP cells which are homologous,especially under hypoxia environment.Objec:tive:To establish a co-cultured model of human NP cells with human BMSCs which come from the same patient,so as to explore the biological effect of BMSCs on NP cells under hypoxic environment.Methods:Human NP cells and BMSCs from one patient were isolated and cultured.Then they were divided into two groups.There were only NP cells in group A,and NP cells were co-cultured with BMSCs in group B.All the cells were cultured for 14 d.The NP cells morphology of both groups was observed under optical microscope.Cell apoptosis was evaluated by flow cytometry and scanning electron microscope(SEM).Cell proliferation was assessed by cell counting kit 8(CCK8).Real-time PCR(RTPCR),western blot and immunofluorescent staining were used to determine the expression of the extracellular matrix (ECM)and NP cells special phenotype markers.Results:After cultures 14 d,NP cell adherence and elongation were found in group A under optical microscope,and the amount of the NP cells increased.The NP cells were spindle-shaped in group B.The NP cell adherence and elongation in group B were superior to that in group A,and the amount of the NP cells in group B were significantly greater than that in group A.The rate of cell apoptosis in group A was significantly higher than that in group B(P<0.05).The expression of proteoglycan(AGG),collagenⅡ(COL2),SOX-9,keratin 19(KRT19)and carbonic anhydraseⅫ(CA12)and hypoxia-inducible factor(HIF)increased under co-culture and hypoxic environment.RTPCR showed that the synthesis and secretion of these genes and proteins in group B were significantly higher than those in group A.Conclusions:BMSCs might protect or activate NP cells from apoptosis and degradation by regulating ECM and modulator genes.The protective effect of BMSCs provides an essential understanding and expands our knowledge of BM-SC therapy for intervertebral disc regeneration in the future.

    Co-culture;Hypoxia;Bone Marrow Mesenchymal Stem Cells;Nucleus Pulposus Cells;Intervertebral Discs; Cell Therapy

    2095-9958(2017)04-0148-06

    10.3969/j.issn.2095-9958.2017.02-14

    *通信作者:阮狄克,E-mail:ruandikengh@163.com

    猜你喜歡
    共培養(yǎng)充質(zhì)低氧
    miR-490-3p調(diào)控SW1990胰腺癌細(xì)胞上皮間充質(zhì)轉(zhuǎn)化
    間充質(zhì)干細(xì)胞外泌體在口腔組織再生中的研究進(jìn)展
    間歇性低氧干預(yù)對(duì)腦缺血大鼠神經(jīng)功能恢復(fù)的影響
    間充質(zhì)干細(xì)胞治療老年衰弱研究進(jìn)展
    三七總皂苷對(duì)A549細(xì)胞上皮-間充質(zhì)轉(zhuǎn)化的影響
    BMSCs-SCs共培養(yǎng)體系聯(lián)合異種神經(jīng)支架修復(fù)大鼠坐骨神經(jīng)缺損的研究
    紫錐菊不定根懸浮共培養(yǎng)中咖啡酸衍生物積累研究
    Wnt/β-catenin信號(hào)通路在低氧促進(jìn)hBMSCs體外增殖中的作用
    角質(zhì)形成細(xì)胞和黑素細(xì)胞體外共培養(yǎng)體系的建立
    裸鼴鼠不同組織中低氧相關(guān)基因的表達(dá)
    阳信县| 辽源市| 阳朔县| 冀州市| 新化县| 彝良县| 重庆市| 广平县| 昌宁县| 新巴尔虎右旗| 东城区| 阳谷县| 汝阳县| 闵行区| 二手房| 九寨沟县| 彩票| 汤原县| 蒙阴县| 海阳市| 弥渡县| 长子县| 嫩江县| 凤庆县| 清新县| 延吉市| 金山区| 含山县| 保定市| 登封市| 津南区| 大洼县| 武清区| 望城县| 宜阳县| 迁西县| 米泉市| 寿光市| 高碑店市| 建阳市| 北安市|