張芳 夏振偉
【摘要】 心房顫動(dòng)是臨床上最常見的心律失常,其發(fā)生和發(fā)展需要兩大因素:觸發(fā)因素和易感基質(zhì),其機(jī)制十分復(fù)雜。本文介紹了近來有關(guān)易感基質(zhì)臨床研究的成果:RAAS系統(tǒng)、CT和釓延長(zhǎng)增強(qiáng)心肌核磁成像、自主神經(jīng)系統(tǒng)、心內(nèi)標(biāo)測(cè),為指導(dǎo)心房顫動(dòng)的臨床治療提供新的思路。
【關(guān)鍵詞】 心房顫動(dòng); 易感基質(zhì); 臨床研究
【Abstract】 Atrial fibrillation(AF) is the most common cardiac arrhythmia in clinical practice.Occurrence and development of AF need two factors:trigger and susceptible substrate.Their mechanism is not understood utterly.This paper reviews achievement of susceptible substrate for AF,and provides new sight of treatment of AF.
【Key words】 Atrial fibrillation; Susceptible substrate; Clinical research
First-authors address:Dalian Municipal Central Hospital,Dalian 116033,China
doi:10.3969/j.issn.1674-4985.2017.07.042
心房顫動(dòng)是臨床上最常見的心律失常。心房顫動(dòng)患者的心力衰竭、卒中、死亡的風(fēng)險(xiǎn)增加,并且生活質(zhì)量顯著下降、經(jīng)濟(jì)負(fù)擔(dān)持續(xù)增加。此外,心房顫動(dòng)的發(fā)生率與年齡成正相關(guān)。我國(guó)正逐步進(jìn)入老齡化社會(huì),因此,心房顫動(dòng)治療的意義重大。心房顫動(dòng)的發(fā)生和發(fā)展需要兩個(gè)因素:觸發(fā)因素和易感基質(zhì)。心房肌細(xì)胞退行性變、心房間質(zhì)纖維化、心房擴(kuò)張、肥厚、心肌缺血等心房結(jié)構(gòu)重構(gòu)可導(dǎo)致子波在空間結(jié)構(gòu)上的分離,易發(fā)生折返性心動(dòng)過速,以上述為特征的易感性心房基質(zhì)在心房顫動(dòng)的發(fā)生和發(fā)展中起著重要作用[1]。本文試將近來有關(guān)心房顫動(dòng)易感基質(zhì)方面的臨床研究成果進(jìn)行綜述。
1 細(xì)胞因子
多數(shù)研究提示:腎素-血管緊張素-醛固酮系統(tǒng)(renin-angiotensin-aldosterone system,RAAS)參與了心房顫動(dòng)的發(fā)生發(fā)展過程。血管緊張素Ⅱ能引起血管收縮、增加后負(fù)荷、促進(jìn)左心室肥厚,間接增加心房壓力;能激活還原型輔酶Ⅱ氧化劑,啟動(dòng)氧化應(yīng)激通路,引起炎癥性膠原纖維沉積。新近研究發(fā)現(xiàn)血管緊張素轉(zhuǎn)化酶-2過表達(dá)可能促進(jìn)心房結(jié)構(gòu)重構(gòu),而血管緊張素受體抑制劑可改善心房纖維化[2-3]。另一方面,動(dòng)物實(shí)驗(yàn)和臨床研究也證實(shí)血管緊張素Ⅱ可介導(dǎo)連接組織生長(zhǎng)因子(connective tissus growth factor CTGF)表達(dá)增加,后者可能加重心房基質(zhì)重構(gòu)[4-5]。此外,新近的系列研究及meta分析顯示RAAS基因中M235T的多態(tài)性可能與心房顫動(dòng)的發(fā)生及導(dǎo)管消融術(shù)后復(fù)發(fā)的風(fēng)險(xiǎn)相關(guān)[6-8]。
既往研究發(fā)現(xiàn)細(xì)胞外膠原含量增加可導(dǎo)致心房間質(zhì)纖維化,這與心房顫動(dòng)的維持相關(guān)。細(xì)胞外膠原的合成和降解受金屬基質(zhì)蛋白酶(matrix metalloproteinase MMP)調(diào)節(jié),基質(zhì)金屬蛋白酶抑制物(tissue inhibitor of metalloproteinase TIMP)表達(dá)下降可加重心房纖維化[9-10]。在一個(gè)動(dòng)脈粥樣硬化風(fēng)險(xiǎn)的公眾研究中發(fā)現(xiàn)MMP-9表達(dá)增加與心房顫動(dòng)事件的風(fēng)險(xiǎn)升高獨(dú)立相關(guān)[11]。新近的一項(xiàng)Meta分析顯示:MMP-1信使RNA水平顯著升高與心房顫動(dòng)相關(guān),有統(tǒng)計(jì)學(xué)意義。循環(huán)中TIMP-2水平減少與心房顫動(dòng)的風(fēng)險(xiǎn)增加顯著相關(guān)。這提示特定MMP和TIMP可能是心房顫動(dòng)風(fēng)險(xiǎn)增加的標(biāo)記物[12]。
總的來說,因?yàn)檫@些細(xì)胞因子難以對(duì)心房顫動(dòng)易感基質(zhì)進(jìn)行無創(chuàng)的組織學(xué)定量分析,因而難以在臨床廣泛開展,但是上述研究打開了心房顫動(dòng)風(fēng)險(xiǎn)評(píng)估和治療策略的新視野。
2 影像學(xué)
近年來,有研究顯示釓延遲增強(qiáng)心肌核磁成像可用于定量評(píng)估心房纖維化,其原理是正常心肌和纖維化組織對(duì)釓對(duì)比劑的吸收和排泄動(dòng)力學(xué)不同,最終在影像上形成的信號(hào)強(qiáng)度也不同[13]。對(duì)心房顫動(dòng)患者進(jìn)行釓延遲增強(qiáng)心肌核磁掃描,利用左心房纖維化定量/左心房壁體積百分比將心房纖維化嚴(yán)重程度分期,并對(duì)分期不同的心房顫動(dòng)患者比較心房顫動(dòng)的持續(xù)時(shí)間、導(dǎo)管消融后的復(fù)發(fā)率。結(jié)果發(fā)現(xiàn),心房纖維化程度越高的患者,心房顫動(dòng)持續(xù)時(shí)間越長(zhǎng)、導(dǎo)管消融的復(fù)發(fā)率越高[14-15]。DECAAF研究也得出了相似的結(jié)果,并以此提出:根據(jù)纖維化的特點(diǎn)制定消融策略,對(duì)纖維化嚴(yán)重的患者建議僅采取藥物治療[16]。但是由于釓延遲增強(qiáng)心肌核磁成像自身的特點(diǎn),也使它的廣泛應(yīng)用受到限制,如腎功能不全、心臟電子植入裝置的患者不能耐受這種檢查。圖形的變異程度、成像質(zhì)量及圖像重建的算法等問題也制約這項(xiàng)檢查[17-19]。
早期的研究顯示可能由于脂肪細(xì)胞的浸潤(rùn),破壞了細(xì)胞間的正常傳導(dǎo),導(dǎo)致傳導(dǎo)的多樣性,增加了折返、電學(xué)連接的紊亂性而導(dǎo)致心房顫動(dòng)。新近,在大型動(dòng)物和人的心房組織中發(fā)現(xiàn),心外膜脂肪侵入心肌層下[20-21]。相關(guān)臨床研究也顯示,通過CT成像,發(fā)現(xiàn)心外膜脂肪可預(yù)測(cè)心房顫動(dòng)風(fēng)險(xiǎn);通過心臟核磁成像,發(fā)現(xiàn)了心外膜脂肪和心房顫動(dòng)的嚴(yán)重性及導(dǎo)管消融術(shù)后的復(fù)發(fā)率相關(guān)[22-23]。因而,有研究試圖通過心肌核磁檢查對(duì)心外膜脂肪進(jìn)行定量,更好地評(píng)估心外膜脂肪與心房顫動(dòng)的關(guān)系[24]。
上述研究均試圖通過無創(chuàng)的方法對(duì)心房纖維化和心外膜脂肪進(jìn)行定量分析,而且,由于CT和核磁檢查在臨床的廣泛應(yīng)用,使得這些方法易于在臨床大范圍推廣,所以這些可能是未來研究的方向之一。
3 自主神經(jīng)系統(tǒng)
多數(shù)研究證實(shí),心臟的自主神經(jīng)系統(tǒng)與心房顫動(dòng)觸發(fā)和維持的關(guān)系復(fù)雜。心臟的自主神經(jīng)系統(tǒng)定位于特定的心外膜脂肪墊和Marshall韌帶中。因其解剖學(xué)位置的特殊性,心內(nèi)膜刺激法不能對(duì)所有自主神經(jīng)叢定位,所以單獨(dú)消融自主神經(jīng)叢的效果不理想。新近的一項(xiàng)研究中,對(duì)難治性高血壓和交感興奮型心房顫動(dòng)患者,行腎交感神經(jīng)切除和肺靜脈隔離術(shù),可大幅降低血壓和術(shù)后1年內(nèi)心房顫動(dòng)的復(fù)發(fā)率[25]。這一結(jié)果提示對(duì)特殊類型的心房顫動(dòng)患者聯(lián)合腎交感神經(jīng)治療和肺靜脈隔離術(shù),可能收到意外的效果。因其樣本量小,還需多中心研究結(jié)果來證實(shí)。
4 基質(zhì)標(biāo)測(cè)
Haissaguerre等在1998年發(fā)現(xiàn)了肺靜脈的局部病灶可誘發(fā)心房顫動(dòng),這就是著名的局灶觸發(fā)理論的基礎(chǔ)。此后出現(xiàn)了大規(guī)模針對(duì)心房顫動(dòng)易感基質(zhì)的研究,從最初的導(dǎo)管探查到現(xiàn)在的三維標(biāo)測(cè),正逐漸提高持續(xù)性心房顫動(dòng)導(dǎo)管消融的成功率。環(huán)肺靜脈隔離是在三維電解剖標(biāo)測(cè)系統(tǒng)指導(dǎo)下,建立肺靜脈和左心房的模擬三維圖像,分別于兩側(cè)肺靜脈外口1~2 cm處做環(huán)狀消融。它不僅隔離了來源于肺靜脈的觸發(fā)灶,而且改良了位于肺靜脈外口的左心房易感基質(zhì),即破壞了心房顫動(dòng)的維持機(jī)制。左房線性消融是借鑒心房顫動(dòng)外科迷宮術(shù),在左心房增加線性消融,將心房分為不同部分,即可終止左心房?jī)?nèi)折返。目前,多數(shù)研究也證實(shí),左房線性消融術(shù)可以明顯降低持續(xù)性心房顫動(dòng)術(shù)后大折返性房速的發(fā)生。碎裂電圖(complex fractionated atrial electrograms,CFAEs)可能是心房顫動(dòng)維持的易感基質(zhì)之一,對(duì)其消融可提高持續(xù)性心房顫動(dòng)消融治療的成功率。因各電生理中心對(duì)CFAEs的定義不同,記錄及分析的方法有差異,術(shù)者的經(jīng)驗(yàn)也時(shí)刻影響標(biāo)測(cè)的結(jié)果,消融終點(diǎn)缺乏統(tǒng)一標(biāo)準(zhǔn),消融造成的心房損傷更大,術(shù)后“醫(yī)源性”心律失常發(fā)生率更高等多個(gè)問題,使CFAEs多作為消融的輔助措施。新近的一項(xiàng)多中心研究顯示:對(duì)于持續(xù)性心房顫動(dòng)的導(dǎo)管消融,單純的環(huán)肺靜脈隔離與環(huán)肺靜脈隔離+左房線性消融及環(huán)肺靜脈隔離+碎裂電位消融相比,三者的復(fù)發(fā)率無差異[26]。今后還需要更多的臨床數(shù)據(jù)來評(píng)估各種導(dǎo)管消融術(shù)式的效果。
轉(zhuǎn)子是指規(guī)則的功能性折返激動(dòng),可能是快速性心律失常和顫動(dòng)的驅(qū)動(dòng)灶。有研究顯示心房重構(gòu)增加心房傳導(dǎo)的各向異性和心內(nèi)膜與心外膜之間電學(xué)分離,而心內(nèi)膜與心外膜之間的電學(xué)分離與轉(zhuǎn)子相關(guān)[27-28]。有的電生理學(xué)者認(rèn)為轉(zhuǎn)子保持高度的穩(wěn)定性[29],而另一些專家則提出在導(dǎo)管探查的時(shí)候,轉(zhuǎn)子非常不穩(wěn)定[30-31]。近期,文獻(xiàn)[32-33]先后用多項(xiàng)觀察結(jié)果驗(yàn)證了:通過特殊的高密度籃狀電極標(biāo)測(cè)出心房轉(zhuǎn)子后對(duì)其進(jìn)行消融,對(duì)心房損傷小、消融時(shí)間短;聯(lián)合肺靜脈隔離,可減少消融術(shù)后的晚期復(fù)發(fā)。但因該標(biāo)測(cè)電極技術(shù)專利,而未能在臨床廣泛開展,所以缺乏大規(guī)模的臨床對(duì)照結(jié)果。Haissaguerre等[31]利于體表252電極和胸廓CT掃描等無創(chuàng)方法,進(jìn)行轉(zhuǎn)子標(biāo)測(cè)和消融,可以使75%早期的持續(xù)性心房顫動(dòng)的患者轉(zhuǎn)為竇性心律。隨著新的探測(cè)設(shè)備及技術(shù)的不斷研發(fā),轉(zhuǎn)子消融有可能成為一種新的心房顫動(dòng)導(dǎo)管消融策略。
5 問題與展望
心房顫動(dòng)是一種緩慢進(jìn)展性的疾病,在疾病的發(fā)展過程中,可能有多種機(jī)制觸發(fā)和維持心房顫動(dòng)的發(fā)生和發(fā)展。結(jié)合多種評(píng)估方法,依據(jù)機(jī)制對(duì)各個(gè)心房顫動(dòng)的內(nèi)在特點(diǎn)進(jìn)行分類,并在心房顫動(dòng)發(fā)生發(fā)展的各個(gè)環(huán)節(jié),去除危險(xiǎn)因素、消除觸發(fā)機(jī)制,阻止易感基質(zhì)的進(jìn)展,才能達(dá)到治愈心房顫動(dòng)。
參考文獻(xiàn)
[1] January C T,Wann L S,Alpert J S,et al.2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J].Journal of the American College of Cardiology,2014,64(21):e1-e76.
[2] Tingquan Zhou,Zhenglong Wang,Jinqi Fan,et al.Angiotensin-Converting enzyme-2 overexpression improves atrial remodeling and function in a canine model of atrial fibrillation[J].J Am Heart Assoc,2015,4(3):e001 530.
[3] Dongfang Yang,Jia Yuan,Gan Liu,et al.Angiotensin receptor blockers and statins could alleviate atrial fibrosis via regulating platelet-derived growth factor/rac1/nuclear factor-kappa B axis[J].Int J Med Sci,2013,10(7):812-824.
[4] Wen-Chin Ko,Chuang-Ye Hong,Shaw-Min Hou,et al.
Elevated expression of connective tissue growth factor in human atrial fibrillation and angiotensin Ⅱ-treated cardiomyocytes[J].Circ J,2011,75(7):1592-1600.
[5] Kiryu M,Niwano S,Niwano H,et al.Angiotensin Ⅱ-mediated up-regulation of connective tissue growth factor promotes atrial tissue fibrosis in the canine atrial fibrillation model[J].Europace,2012,14(8):1206-1214.
[6] Topal N P,Ozben B,Hancer V S,et al.Polymorphisms of the angiotensin-converting enzyme and angiotensinogen gene in patients with atrial fibrillation[J].JRAAS,2011,12(4):549-556.
[7] Qunshan Wang,Xiaofeng Hu,Shuyuan Li,et al.Association of the angiotensinogen M235T polymorphism with recurrence after catheter ablation of acquired atrial fibrillation[J].JRAAS,2015,16(4):888-897.
[8] HuiXuan Wang,Yi Teng,Ke Wang,et al.The M235T polymorphism in the angiotensinogen gene and atrial fibrillation:a meta-analysis[J].JRAAS,2014,15(16):647-652.
[9] Spinale F C.Myocardial matrix remodeling and the matrix metalloproteinases:influence on cardiac form and function[J].Physiol Rev,2007,87(4):1285-1342.
[10] Kourliouros A,Savelieva I,Kiotsekoglou A,et al.Current concepts in the pathogenesis of atrial fibrillation[J].Am Heart J,2009,157(2):243-252.
[11] Huxley R R,Lopez F L,Maclehose R F,et al.Novel association between plasma matrix metalloproteinases-9 and risk of incident atrial fibrillation in a Case-Cohort Study:the atherosclerosis risk in communities study[J].PLoS one,2013,8(3):e59 052.
[12] Yuan Liu,Bin Xu,Na Wu,et al.Association of MMPs and TIMPs with the occurrence of atrial fibrillation:a systematic review and meta-analysis[J].Canadian Journal of Cardiology,2016,32(6):803-813.
[13] Seitz J,Horvilleur J,Lacotte J,et al.Correlation between AF substrate ablation difficulty and left atrial fibrosis quantified by delayed-enhancement cardiac magnetic resonance[J].Pacing Clin Electrophysiol,2011,34(10):1267-1277.
[14] Akoum N,Daccarett M,Mcgann C,et al.Atrial fibrosis helps select the appropriate patient and strategy in catheter ablation of atrial fibrillation:a DE-MRI guided approach[J].J Cardiovasc Electrophysiol,2011,22(1):16-12.
[15] McGann C,Akoum N,Patel A,et al.Atrial fibrillation ablation outcome is predicted by left atrial remodeling on MRI[J].Circ Arrhythm Electrophysiol,2014,7(1):23-30.
[16] Marrouche N F,Wilber D,Hindricks G,et al.Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation:the DECAAF study[J].Jama,2014,311(5):498-506.
[17] Kellaman P,Arai A E.Cardiac imaging techniques for physicians:late enhancement[J].Journal J Magn Reson Imaging,2012,36(3):529-542.
[18] Karim R,Housden R J,Balasubramaniam M,et al.Evaluation of current algorithms of segmentation of scar tissue from late gadolinium enhancement cardiovascular magnetic resonance of the left atrium:an open-access grand challenge[J].J Cardiovasc Magn Reson,2013,15(1):105.
[19] Harriosn J L,Sohns C,Linton N W,et al.Repeat left atrial catheter ablation:cardiac magnetic resonance prediction of endocardial voltage and gaps in ablation lesion sets[J].Circ Arrhythm Electrophysiol,2015,8(2):270-278.
[20] Hatem S N,Sanders P.Epicardial adipose tissue and atrial fibrillation[J].Cardiovasc Res,2014,102(2):205-213.
[21] Mahajan R,Lau D H,Brooks A G,et al.Electrophysiological,electroanatomical,and structural remodeling of the atrial as consequences of sustained obesity[J].J Am Coll Cardiol,2015,66(1):1-11.
[22] Thanassoulis G,Massaro M,ODonnell C J,et al.Pericardial fat is associated with prevalent atrial fibrillation;the Framingham Heart Study[J].Circ Arrhythm Electrophysiol,2010,3(4):345-350.
[23] Wong C X,Abed H S,Molaee P,et al.Pericardial fat is associated wwith atrial fibrillation severity and ablation outcome[J].J Am Coll Cardiol,2011,57(11):1745-1751.
[24] Mahajan R,Kuklik P,Grover S,et al.Cardiovascular magnetic resonance of total and atrial pericardial adipose tissue:a validation study and development of a 3 dimensional pericardial adipose tissue model[J].J Cardiovasc Moge Reson,2013,15(1):73.
[25] Pokushalov E,Romanov A,Corbucci G,et al.A randomized comparison of pulmonary vein isolation with versus without concomitant renal artery denervation in patients with refractory symptomatic atrial fibrillation and resistant hypertension[J].J Am Coll Cardiol,2012,60(13):1163-1170.
[26] Atul Verma,Chen-yang Jiang,Timothy R,et al.Approaches to Catheter Ablation for Persistent Atrial Fibrillation[J].N Engl J Med,2015,372(19):1812-1822.
[27] Eckstein J,Zeemering S,Linz D,et al.Transmural conduction is the predominant mechanism of breakthrough during atrial fibrillation:evidence from simultaneous endo-epicardial high-density activation mapping[J].Circ Arrhythm Electrophysiol,2013,6(2):334-341.
[28] Maesen B,Zeemering S,Afonso C,et al.Rearrangement of atrial bundle architecture and consequent changes in anisotropy of conduction constitute the 3-dimensional substrate for atrial fibrillation[J].Cir Arrhythm Electrophysiol,2013,6(5):967-975.
[29] Swarup V,Baykaner T,Rostamian A,et al.Stability of rotors and focal sources of human atrial fibrillation:focal impulse and rotor mapping(FIRM) of AF source and fibrillation conduction[J].J Cardiovasc Electrophysiol,2014,25(12):1284-1292.
[30] Lee G,Kumar S,Teh A,et al.Epicardial wave mapping in human long-lasting persistent atrial fibrillation:transient rotational circuits,complex wave fronts,and disorganized activity[J].Eur Heart J,2014,35(2):86-97.
[31] Haissaguerre M,Hocini M,Denis A,et al.Driver domains in persistent atrial fibrillation[J].Circulation,2014,130(7):530-538.
[32] Narayan S M,Krummen D E,Shivkumar K,et al.Treatment of atrial fibrillation by the ablation of localized sources:CONFIRM(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation Trial)[J].J Am Coll Cardiol,2012,60(7):628-636.
[33] Narayan S M,Baykaner T,Clopton P,et al.Ablation of rotor and focal sources reduces late recurrence of atrial fibrillation compared with trigger ablation alone:extended follow-up of the CONFIRM trial(Conventional Ablation for Atrial Fibrillation With or Without Focal Impulse and Rotor Modulation)[J].J Am Coll Cardiol,2014,63(17):1761-1768.
(收稿日期:2017-01-12) (本文編輯:程旭然)