• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations

    2016-11-23 01:12:53SONGMiRong
    關(guān)鍵詞:北極海覆蓋范圍海冰

    SONG Mi-Rong

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China

    Change of Arctic sea-ice volume and its relationship with sea-ice extent in CMIP5 simulations

    SONG Mi-Rong

    State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing, China

    The future change of September Arctic sea-ice volume, simulated by 30 state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), is examined, which depends on both ice extent and ice thickness. In comparison with the September sea-ice extent,the September sea-ice volume has larger spread in the historical simulation but faster convergence in the projection simulation, especially in the context of increasing greenhouse gas emissions. This indicates that the ice volume might be more sensitive to external forcings than the ice extent. Using the averaged projection of those climate models from the 30 CMIP5 models that can better reflect the ‘observed' sea-ice volume climatology and variability, it is shown that the September sea ice volume will decrease to ~3000 km3in the early 2060s, and then level off under a medium-mitigation scenario. However, it will drop to ~3000 km3in the early 2040s and reach a near-zero ice volume in the mid-2070s under a high-emission scenario. With respect to the historical condition, the reduction of the ice volume, associated with increasing greenhouse gas emissions, is more rapid than that of the ice extent during the twenty-first century.

    ARTICLE HISTORY

    Accepted 11 August 2015

    Sea-ice volume; sea-ice extent; sea-ice thickness;CMIP5

    由于對(duì)未來(lái)北極海冰體積的變化研究相對(duì)較少,本文利用多模式比較計(jì)劃模擬的海冰結(jié)果,對(duì)北極9月海冰體積及其與海冰覆蓋范圍的關(guān)系進(jìn)行了分析。結(jié)果發(fā)現(xiàn),相對(duì)于海冰覆蓋范圍,多模式模擬得到的北極海冰體積的差異跨度更大,但這種差異跨度隨著時(shí)間的演變迅速減小,表明海冰體積可能是比海冰覆蓋范圍更為敏感的因子。同時(shí)少數(shù)幾個(gè)能夠更加合理反映觀測(cè)的海冰特征與變化的模式的模擬結(jié)果顯示,在高排放情景下,北極海冰在本世紀(jì)70年代時(shí),基本達(dá)到了無(wú)冰的狀態(tài)。

    Introduction

    The Arctic sea-ice volume (area multiplied by thickness)is an important indicator of climate change. In general,sea-ice volume is less susceptible to particular weather events (i.e. storms) than sea-ice extent (Schweiger et al. 2011; Zygmuntowska et al. 2014). Moreover, sea-ice volume might be more closely tied to climate forcings than sea-ice extent, i.e. sea-ice extent may still have considerable variability even when the Arctic Ocean reaches near ice-free conditions, whereas sea-ice volume variability is small. Associated with the rapid decline of summer Arctic sea-ice extent in the past three decades (Serreze,Holland, and Stroeve 2007; Comiso et al. 2008), the combined records from submarine measurements and the Ice, Cloud, and land Elevation Satellite (ICESat) show that mean summer Arctic sea-ice thickness has decreased by about 1.65 m (from 2.80 m in 1980 to 1.15 m in 2007)(Rothrock, Yu, and Maykut 1999; Kwok and Rothrock 2009;Kwok and Untersteiner 2011). Moreover, the abrupt seaice reductions since 2007 have further contributed to the overall dramatic decrease in the ice thickness. This is reflected by the pronounced decrease of the perennial(multi-year) sea ice and the increasing coverage of seasonal (first-year) sea ice in the Arctic Ocean (Maslanik et al. 2007, 2011; Giles et al. 2008). Decline in sea-ice extent and thickness leads to a reduction of sea-ice volume. Arctic sea-ice volume estimated from the Pan Arctic Ice Modeling and Assimilation System (PIOMAS, Schweiger et al. 2011) shows that the September ice volume has decreased by ~75% from 1979 to 2011 (thick black line in Figure 1), which outpaces the decrease of September ice extent (~36% from 1979 to 2011). This indicates that seaice volume may be a more sensitive indicator of climate change than sea-ice extent.

    Figure 1.Time series of the observed (thick black line) and simulated (colored lines) September sea-ice volume of 30 CMIP5 models from 1979 to 2005 in the historical simulation and from 2006 to 2099 under the (a) RCP4.5 and (b) RCP8.5 scenarios (the thick brown line is the multi-model ensemble mean).

    Several studies have been conducted recently describing the future change of Arctic sea-ice extent during the twenty-first century using the recent available simulations from Coupled Model Intercomparison Project Phase 5(CMIP5) (e.g. Massonnet et al. 2012; Stroeve et al. 2012;Wang and Overland 2012; Liu et al. 2013). A few studies have looked into Arctic sea-ice thickness; for instance,Langehaug et al. (2013) evaluated the Fram Strait ice area export and its influence on Arctic sea-ice area and thickness using historical simulations of six CMIP5 models. However,relatively little attention has been paid to the simulated ice volume in CMIP5. The present study focuses mainly on the future change of Arctic sea-ice volume and its relationship with Arctic sea-ice extent, providing insights to further our understanding of sea-ice simulations and projections in CMIP5.

    Data

    Figure 2.Evolution of 30 CMIP5 models' spread for the September Arctic sea-ice volume and extent during 1979-2005.

    This study focuses on September sea ice (all the grid cells covered by sea ice in the Northern Hemisphere are included), given that the seasonal minimum of Arctic sea ice is in September, and Arctic shipping has increased as sea ice has decreased dramatically. The coordinated CMIP5 climate change experiments (Taylor, Stouffer, and Meehl 2012; Knutti and Sedlá?ek 2013; Sillmann et al. 2013) provide new perspectives that aid understanding and studies of present and future climate. Here, 30 CMIP5 models are analyzed (the first ensemble member for each model achieved on the Program for Climate Model Diagnosis and Intercomparison (PCMDI) data portal), including both historical simulations that end in 2005 and projection simulations under the +4.5 and +8.5 W m-2Representative Concentration Pathway (RCP4.5 and RCP8.5, respectively)scenarios from 2006 to 2099. The reanalysis of sea-ice volume during 1979-2011 from the recently updated PIOMAS is used in this study as the ‘observation', since there are no long-term and spatially homogenous sea-ice thickness observations, which improves on prior versions by assimilating sea surface temperatures for ice-free areas and by using a different parameterization for the strength of the ice (Schweiger et al. 2011). Note that the PIOMAS ice volume has uncertainty (a coupled sea-ice-ocean model constrained by the assimilation of sea-ice concentration and sea surface temperature), even though the spatial pattern of the PIOMAS ice thickness resembles the ICESat observation (Schweiger et al. 2011), and the seasonal cycle of the PIOMAS ice volume is largely consistent with the recent CryoSat2 observation (Laxon et al. 2013). Seaice extent data are from the National Snow and Ice Data Center (NSIDC) (Fetterer et al. 2009). Since most of the historical simulations end in 2005, the data for 2006-11 from the RCP4.5 runs are used to extend the time series where necessary.

    Results and discussion

    Figure 1 shows the evolution of September sea-ice volume from 1979 to 2099 simulated by 30 CMIP5 models. The inter-model spread in the simulated September sea-ice volume is very large (i.e. from 2.42 × 103to 36.21 × 103km3in 1979). Some individual models (e.g. ACCESS1.3, CESM1-BGC) capture the rapid decline of the Arctic September sea-ice volume after 2007. The September sea-ice volume trend of the multi-model mean during 1979-2011 is -7.22 × 103km3, and the corresponding observed ice volume trend is -10.28 × 103km3. Since the multi-model mean primarily represents the external forcing effect (Kay et al. 2011), it gives a rough estimate of 70% of the anthropogenic contribution to the September ice volume decline rate from 1979 to 2011. This forced contribution factor is close to 97% for the September sea-ice volume from 1979 to 2005, which is much stronger than the forced contribution of 56% for the September sea-ice extent during 1979-2005 (Kay, Holland, and Jahn 2011).

    For each year in the historical simulation (1979-2005;CMIP5 historical simulation ends in 2005), the absolute bias is calculated for the September sea-ice volume between the simulation of each individual CMIP5 model and the observation, and the 30 biases are averaged. The standard deviation of the observed sea-ice volume during 1979-2005 is also calculated. Then, the averaged bias is divided by the observed standard deviation, which represents the modeled ice volume spread in CMIP5. The calculation is also repeated for the simulated and observed September sea-ice extent. Note that the spreads of the simulated ice volume and extent are normalized so that they can be compared directly.

    Figure 3.Evolution of the standard deviation of the simulated September sea-ice volume (SepSIV, red) and extent (SepSIE, blue) for 30 models during 1979-2099 with respect to PIOMAS SepSIV and NSIDC SepSIE standard deviation of 1979-2005, respectively, under (a)RCP4.5 and (b) RCP8.5.

    As shown in Figure 2, the averaged difference between the simulated September ice volume and observed September ice volume is four times the interannual variability of the volume observation at the beginning (the late 1970s). By contrast, the averaged difference between the simulated September ice extent and observed September sea-ice extent is two times the interannual variability of the extent observation at the beginning. Compared with the September sea-ice extent, the September sea-ice volume has larger spread in the historical simulations of the 30 CMIP5 models, which is mainly attributed to the large spread of simulated sea-ice thickness. With time, the averaged difference of the ice volume gradually decreases and,in 2005, the difference is ~2.8 times the observed interannual variability, but no obvious change is found for the averaged difference of the ice extent during 1979-2005. This implies that the thinning of sea-ice thickness during 1979-2005 tends to reduce the spread in the simulated sea-ice thickness, which is not the case for sea-ice extent. Given that the models could not capture the observed year-to-year variability in an uninitialized long-term simulation, the simulated September ice volume standard deviation of the 30 CMIP5 models is also calculated for each year (i.e. 1979, 1980, 1981, … , 2099), and divided by the standard deviation of PIOMAS September sea-ice volume during 1979-2005, as illustrated in Figure 3. The calculation is also repeated for the simulated and observed September ice extent. It almost reproduces the evolution in Figure 2 when using a different definition to quantify the model spread, which certifies a robust result for evaluating the model spread.

    Additionally, the simulated September ice volume shows a faster convergence towards the late twenty-first century than that of the September ice extent for both RCP4.5 and RCP8.5 (Figure 3). The anthropogenic forcing steadily increases from 2005 to 2069 and then becomes stabilized for the RCP4.5 runs, while it shows a sustained increase for the RCP8.5 runs (also Hezel et al. (2014), Figure 1). As shown in Figure 3, from the late 1970s to 2040s, the model spread of the projected September sea-ice extent expands gradually as the Arctic sea ice declines, which shows good agreement with the anthropogenic forcing change for both emissions scenarios, while the modeledSeptember sea-ice volume spread continues to shrink rapidly. By contrast, from the 2050s, the ice extent spread tends to oscillate around 3.5 for RCP4.5, and turns to converge for RCP8.5, while the ice volume spread continues to decrease until ~2070 (~2080) under the RCP4.5 (RCP8.5) scenario, and then oscillates slightly toward the end of the twenty-first century. Thus, the decrease of the ice volume spread is a consequence of both the declining ice extent spread and ice thickness spread. Meanwhile, the consistent signal of shrinking spread under both the RCP4.5 andRCP8.5 scenarios indicates that the September ice volume is a more robust sensor to the forcings.

    Figure 4.(a) Climatology (average) and (b) linear trend of September sea-ice volume for the ‘observation' (black bar on left) and each CMIP5 model (gray bars) during 1979-2011 (the second to last black bar on right-hand side is the ensemble mean of the four selected models, while the right-most bar is the ensemble mean of all 30 models).

    Figure 5.Time series of the observed (thick black line) and simulated (colored lines) September sea-ice volume of four selected CMIP5 models from 1979 to 2005 in the historical simulation and from 2006 to 2099 under the (a) RCP4.5 and (b) RCP8.5 scenarios (the thick brown line is the four-model ensemble mean).

    Figure 6.Evolution of the ratio between the proportional reduction in the simulated September sea-ice volume and extent (averaged for the sliding five-year windows) with respect to 1979 for the four selected models under the RCP4.5 (solid line) and RCP8.5 (dashed line)scenarios. The black dot is the ratio for the present state (2007-11) with respect to 1979.

    Nonetheless, large spread exists regarding the simulation of September Arctic sea-ice volume. Credible projection of future change in Arctic sea-ice volume is strongly built on the CMIP5 models' abilities to reproduce the observed climatology and variability of sea-ice volume. Using similar methods to those proposed by Liu et al. (2013), the models with the simulated September sea ice volume falling within one standard deviation of the observed September ice volume during 1979-2011 (two gray lines in Figure 4a) are first selected. The corresponding time range is the combination of 1979-2005 for the historical simulation and 2006-11 under the medium-mitigation scenario. Eight of the 30 CMIP5 models satisfy that requirement (ACCESS1.3, BNU-ESM, CCSM4, CESM1-BGC, FIO-ESM, GFDL-CM3, HADGEM2-CC and HADGEM2-ES; Figure 4a). Furthermore, those models with the simulated trend of September sea-ice volume falling within one standard deviation of the observed September ice volume during 1979-2011 are retained and superimposed on the observed trend (two gray lines in Figure 4b). Nine of the 30 CMIP5 models satisfy that requirement (ACCESS1.3, CCSM4,CESM1-BGC, CESM1-CAM5, FGOALS-G2, HADGEM2-CC,IPSL-CM5A.LR, IPSL-CM5A.MR, and NORESM1-M; Figure 4b). The four models that meet both the climatology and trend criteria are ultimately retained. They are: ACCESS1.3,CCSM4, CESM1-BGC, and HADGEM2-CC. The climatology and trend of September sea-ice volume for the ensemble mean of the four models during 1979-2011 are in good agreement with the observation. Compared with the result from the 30-model ensemble mean, an obvious improvement based on the four selected models is reflected in the simulated Arctic sea-ice volume trend in September. Note that, using similar methods to those proposed by Liu et al. (2013), three models (ACCESS1.3, CESM1-BGC, and HADGEM2-CC) of the four selected models in this study based on the ice volume are the same as those in Liu et al.(2013) based on the ice extent. This suggests that the ice volume and extent reflect different ice state evolutions,although they are interrelated.

    The ensemble mean of the four models shows that,under the RCP4.5 scenario, the simulated September seaice volume decreases to ~3000 km3(~25% of the observed September ice volume averaged during 1979-2011) in the early 2060s, and then tends to level off towards the end of the twenty-first century after the forcing stabilizes. By contrast, under RCP8.5, the simulated September seaice volume drops to ~3000 km3in the early 2040s, which is almost two decades earlier than under RCP4.5, and approaches zero in the mid-2070s (Figure 5). This is consistent with recent studies showing that the Arctic may reach an ice-free state in the middle of the twenty-first century under RCP8.5 (Massonnet et al. 2012; Liu et al. 2013), while under RCP4.5 the September Arctic sea ice decreases until early in the 2060s when it starts to level off.

    Since 2007, the observed September Arctic sea-ice volume has decreased much faster (thick black line in Figure 1) than that of 1979-2006. The PIOMAS estimate shows that the averaged September sea-ice volume for the new low ice-cover state (2007-2011) has decreased by~65.1% with respect to 1979, which is double the speed of decrease of the September sea-ice extent (the averaged September ice extent for 2007-2011 has decreased by~33.4% with respect to 1979). As shown in Figure 6, the relationship between the proportional reduction in simulated September sea-ice volume and extent throughout the twenty-first century is not linear. Here, the proportional reduction is defined as follows: (1) Compute the mean September sea-ice volume (extent) of the four selected models for each year from 2008 to 2099. (2) Based on the results from (1), compute the five-year mean of 2008-12,2009-13, 2010-14, and so on. (3) Compute the rate of decrease of the five-year mean ice volume (extent) relative to 1979. (4) Finally, compute the ratio of the ice volume rate of decrease to the ice extent rate of decrease. Under the RCP4.5 scenario, the proportional reduction of the ice volume is nearly two times that of the ice extent at thebeginning of the twenty-first century, which is consistent with the observation. The ratio decreases to ~1.2-1.3 in the early 2060s, and then tends to oscillate around ~1.2-1.3 towards the end of the twenty-first century. It reflects a more rapid decline of the ice volume than that of the ice extent before the early 2060s. Since the ratio primarily reflects the ensemble mean evolution of the ice thickness,it implies that the basin-wide average ice thickness tends to level off in the early 2060s. By contrast, under the RCP8.5 scenario, the ratio decreases to ~1.2-1.3 in the early 2040s,and approaches ~1 in the early 2070s. The timings of these ratio changes (Figure 6, which mainly reflects the averaged sea-ice thickness change) are in good agreement with the aforementioned spread variations (Figure 3) in RCP4.5 and RCP8.5.

    Conclusions

    This study identifies (1) significantly larger spread regarding September sea-ice volume forced by anthropogenic and natural forcings, as compared to September sea-ice extent, as shown in the historical simulations, and (2)greater sensitivity regarding September sea-ice volume in response to the increase in greenhouse gas emissions relative to September sea-ice extent, as shown in the projection simulations. These impose further challenges to achieve accurate simulation of Arctic sea-ice volume as the climate warms.

    The model selection described in this study reduces the spread in the projected September sea-ice volume under both emissions scenarios. A quantitative analysis of the ice volume and extent reduction using the selected models is implemented, and it indicates that, with respect to the historical condition, the reduction of the ice volume,associated with increasing greenhouse gas emissions, is more rapid than that of the ice extent during the twenty-first century. The ratio evolution (expressing the relation between the reduction in sea-ice volume and sea-ice extent) is in quite good agreement with the anthropogenic forcing variations in both RCP4.5 and RCP8.5. Firstly, the ratio decreases from ~2.0 in the early 2010s to 1.2-1.3 in the early 2060s, then becomes persistent around 1.2,under the RCP4.5 scenario. Secondly, the ratio decreases from ~1.9 at the beginning of the 2010s to near 1 by the end of twenty-first century, under the RCP8.5 scenario. The transition from large to small ratio indicates that the Arctic sea-ice state is changing. Thus, better understanding the evolution of the ratio between the proportional reduction of observed September sea-ice volume and extent may provide us with further clues on the future change of Arctic sea ice.

    Moreover, the rapid loss of Arctic sea ice in recent years provides further evidence that Arctic sea ice has entered a new regime of thinner and predominantly first-year ice. Given the discrepancy between the simulated and observed ice volume and rapid change of sea ice, we need to improve the radiative interactions among the atmosphere, sea ice and ocean (positive feedbacks),and poleward oceanic and atmospheric heat transports(potential negative feedback) in climate models, as they play important roles in the simulation of Arctic sea-ice volume. Better representation of these processes, leading to reasonable simulation of Arctic sea-ice volume in response to anthropogenic and natural forcings, is a priority for the accurate prediction of how Arctic sea ice might change in the near future.

    Acknowledgments

    Thanks and appreciation are extended to the climate modeling groups all across the world, the WCRP Working Group on Coupled Modeling, and the Program for Climate Model Diagnosis and Intercomparison, for making the CMIP5 model outputs available.

    Funding

    This research was supported by the National Natural Science Foundation of China [grant numbers 41305097 and 41176169],the National Basic Research Program of China [973 program,grant number 2011CB309704].

    References

    Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock. 2008.“Accelerated Decline in the Arctic Sea Ice Cover.” Geophysical Research Letters 35: L01703.

    Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2009. Sea Ice Index [1979-2011]. Boulder, CO: National Snow and Ice Data Center. http://nsidc.org/data/G02135.

    Giles, K. A., S. W. Laxon, and A. L. Ridout. 2008. “Circumpolar Thinning of Arctic Sea Ice following the 2007 Record Ice Extent Minimum.” Geophysical Research Letters 35: L22502.

    Hezel, P. J., T. Fichefet, and F. Massonnet. 2014. “Modeled Arctic Sea Ice Evolution through 2300 in CMIP5 Extended RCPs.” The Cryosphere 8: 1195-1204.

    Kay, J. E., M. M. Holland, and A. Jahn. 2011. “Inter-annual to Multi-decadal Arctic Sea Ice Extent Trends in a Warming World.” Geophysical Research Letters 38: L15708.

    Knutti, R., and J. Sedlá?ek. 2013. “Robustness and Uncertainties in the New CMIP5 Climate Model Projections.” Nature Climate Change 3: 369-373.

    Kwok, R., and D. Rothrock. 2009. “Decline in Arctic Sea Ice Thickness from Submarine and ICESat Records: 1958-2008.”Geophysical Research Letters 36: L15501.

    Kwok, R., and N. Untersteiner. 2011. “The Thinning of Arctic Sea Ice.” Physics Today 64 (4): 36-41.

    Langehaug, H. R., F. Geyer, L. H. Smedsrud, and Y. Gao. 2013.“Arctic Sea Ice Decline and Ice Export in the CMIP5 Historical Simulations.” Ocean Modelling 71: 114-126.

    Laxon, S. W., K. A. Giles, A. L. Ridout, D. J. Wingham, R. Willatt, R.Cullen, R. Kwok, A. Schweiger, J. Zhang, and C. Haas. 2013.“CryoSat-2 Estimates of Arctic Sea Ice Thickness and Volume.”Geophysical Research Letters 40 (4): 732-737.

    Liu, J. P., M. R. Song, R. M. Horton, and Y. Y. Hu. 2013. “Reducing Spread in Climate Model Projections of a September Ice-Free Arctic.” Proceedings of the National Academy of Sciences of the United States of America 110: 12571-12576.

    Maslanik, J., C. Fowler, J. Stroeve, S. Drobot, J. Zwally, D. Yi, and W. Emery. 2007. “A Younger, Thinner Arctic Ice Cover: Increased Potential for Rapid, Extensive Sea-Ice Loss.” Geophysical Research Letters 34: L24501.

    Maslanik, J., J. Stroeve, C. Fowler, and W. Emery. 2011.“Distribution and Trends in Arctic Sea Ice Age through Spring 2011.” Geophysical Research Letters 38: L13502.

    Massonnet, F., T. Fichefet, H. Goosse, C. M. Bitz, G. Philippon-Berthier, M. M. Holland, and P. Y. Barriat. 2012. “Constraining Projections of Summer Arctic Sea Ice.” Cryosphere 6: 1383-1394. Rothrock, D. A., Y. Yu, and G. A. Maykut. 1999. “Thinning of the Arctic Sea-Ice Cover.” Geophysical Research Letters 26: 3469-3472.

    Schweiger, A., R. Lindsay, J. L. Zhang, M. Steele, H. Stern, and R. Kwok. 2011. “Uncertainty in Modeled Arctic Sea Ice Volume.”Journal of Geophysical Research-Oceans 116: C00D06.

    Serreze, M. C., M. M. Holland, and J. Stroeve. 2007. “Perspectives on the Arctic's Shrinking Sea-Ice Cover.” Science 315: 1533-1536.

    Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh. 2013. “Climate Extremes Indices in the CMIP5 Multimodel Ensemble: Part 1. Model Evaluation in the Present Climate.”Journal of Geophysical Research-Atmospheres 118: 1716-1733. Stroeve, J. C., V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Holland, and W. N. Meier. 2012. “Trends in Arctic Sea Ice Extent from CMIP5, CMIP3 and Observations.” Geophysical Research Letters 39: L16502.

    Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An Overview of CMIP5 and the Experiment Design.” Bulletin of the American Meteorological Society 93: 485-498.

    Wang, M. Y., and J. E. Overland. 2012. “A Sea Ice Free Summer Arctic within 30 Years: An Update from CMIP5 Models.”Geophysical Research Letters 39: L18501.

    Zygmuntowska, M., P. Rampal, N. Ivanova, and L. H. Smedsrud. 2014. “Uncertainties in Arctic Sea Ice Thickness and Volume: New Estimates and Implications for Trends.” The Cryosphere 8: 705-720.

    7 May 2015

    CONTACT SONG Mi-Rong songmirong@lasg.iap.ac.cn

    ? 2016 The Author(s)

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    北極海覆蓋范圍海冰
    末次盛冰期以來(lái)巴倫支海-喀拉海古海洋環(huán)境及海冰研究進(jìn)展
    基于機(jī)器學(xué)習(xí)的基站覆蓋范圍仿真
    基于SIFT-SVM的北冰洋海冰識(shí)別研究
    工傷社會(huì)保險(xiǎn)覆蓋范圍的擴(kuò)展及其路徑
    淺談提高小功率短波電臺(tái)覆蓋范圍的措施
    電子制作(2016年23期)2016-05-17 03:54:06
    關(guān)于短波廣播覆蓋范圍的幾點(diǎn)探討
    科技視界(2016年9期)2016-04-26 09:14:10
    累積海冰密集度及其在認(rèn)識(shí)北極海冰快速變化的作用
    中部型El Nino與北極海冰變化的聯(lián)系
    南、北極海冰的長(zhǎng)期變化趨勢(shì)及其與大氣環(huán)流的聯(lián)系
    應(yīng)用MODIS數(shù)據(jù)監(jiān)測(cè)河北省近海海域海冰
    河北遙感(2014年4期)2014-07-10 13:54:59
    久久人妻av系列| 国产野战对白在线观看| 18禁国产床啪视频网站| 欧美成人a在线观看| 老司机午夜十八禁免费视频| 9191精品国产免费久久| 国内精品美女久久久久久| 中文字幕人成人乱码亚洲影| 露出奶头的视频| 99在线视频只有这里精品首页| 尤物成人国产欧美一区二区三区| 欧美日韩综合久久久久久 | 在线国产一区二区在线| 国产99白浆流出| 一进一出好大好爽视频| 给我免费播放毛片高清在线观看| 日本一本二区三区精品| 亚洲国产高清在线一区二区三| 久久这里只有精品中国| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 在线观看美女被高潮喷水网站 | 成熟少妇高潮喷水视频| 国内精品一区二区在线观看| avwww免费| 日本a在线网址| 日本黄色片子视频| 岛国在线观看网站| 婷婷六月久久综合丁香| 性色avwww在线观看| 色尼玛亚洲综合影院| 岛国在线观看网站| 国内揄拍国产精品人妻在线| www.www免费av| 丰满人妻熟妇乱又伦精品不卡| 白带黄色成豆腐渣| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 最新美女视频免费是黄的| 国产精品1区2区在线观看.| av欧美777| 欧美激情在线99| 国产v大片淫在线免费观看| 香蕉久久夜色| 国产一区二区在线观看日韩 | 日日夜夜操网爽| 身体一侧抽搐| 丰满乱子伦码专区| 欧美中文日本在线观看视频| 一个人看视频在线观看www免费 | xxx96com| 国产高潮美女av| 免费高清视频大片| 亚洲最大成人手机在线| 丰满人妻熟妇乱又伦精品不卡| av福利片在线观看| 他把我摸到了高潮在线观看| 国产精品嫩草影院av在线观看 | 一级作爱视频免费观看| 91在线观看av| 国产成人系列免费观看| 男女视频在线观看网站免费| 国产色爽女视频免费观看| 国产精品久久久久久久电影 | 日韩欧美在线乱码| 一级a爱片免费观看的视频| 亚洲七黄色美女视频| 99久久综合精品五月天人人| 又紧又爽又黄一区二区| 天堂√8在线中文| 欧美日韩一级在线毛片| 欧美日韩国产亚洲二区| 国产高清激情床上av| 18美女黄网站色大片免费观看| 99久久成人亚洲精品观看| 在线a可以看的网站| 久久99热这里只有精品18| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久大av| www.www免费av| 亚洲av成人精品一区久久| 999久久久精品免费观看国产| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 一区二区三区国产精品乱码| 欧美在线黄色| 黄片大片在线免费观看| 真人做人爱边吃奶动态| 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 久久久久免费精品人妻一区二区| 热99在线观看视频| 亚洲国产色片| 看黄色毛片网站| 成人国产一区最新在线观看| av视频在线观看入口| 国产精品 欧美亚洲| 国产亚洲精品久久久久久毛片| 国产精品一区二区三区四区久久| 国产成人av教育| 亚洲国产日韩欧美精品在线观看 | 国产aⅴ精品一区二区三区波| 久久精品91蜜桃| 国产av不卡久久| 18禁黄网站禁片午夜丰满| 久久精品国产综合久久久| 欧美3d第一页| 亚洲av五月六月丁香网| 男女床上黄色一级片免费看| av片东京热男人的天堂| 欧美最新免费一区二区三区 | 国产精品三级大全| 国内精品久久久久久久电影| h日本视频在线播放| 国产私拍福利视频在线观看| x7x7x7水蜜桃| 在线十欧美十亚洲十日本专区| 一区福利在线观看| 国产欧美日韩一区二区精品| 亚洲中文日韩欧美视频| 午夜福利欧美成人| 欧美乱妇无乱码| 看片在线看免费视频| av天堂在线播放| 女人十人毛片免费观看3o分钟| 尤物成人国产欧美一区二区三区| 波多野结衣高清无吗| 亚洲av一区综合| 欧美另类亚洲清纯唯美| 免费在线观看影片大全网站| 91在线精品国自产拍蜜月 | 亚洲av日韩精品久久久久久密| 成年免费大片在线观看| 女同久久另类99精品国产91| 亚洲内射少妇av| 亚洲欧美激情综合另类| 变态另类成人亚洲欧美熟女| 久久香蕉国产精品| 成年女人毛片免费观看观看9| 黄色成人免费大全| 天堂动漫精品| 国产精品亚洲av一区麻豆| 精品福利观看| 国产成年人精品一区二区| 少妇人妻精品综合一区二区 | 色哟哟哟哟哟哟| 久久久国产精品麻豆| www国产在线视频色| 三级男女做爰猛烈吃奶摸视频| 亚洲国产欧洲综合997久久,| 又爽又黄无遮挡网站| 国产精品99久久99久久久不卡| 97超视频在线观看视频| 国产成人欧美在线观看| 麻豆久久精品国产亚洲av| 亚洲内射少妇av| 一级作爱视频免费观看| 国产v大片淫在线免费观看| 久久久精品欧美日韩精品| 国产精品久久久久久人妻精品电影| 国产中年淑女户外野战色| 看片在线看免费视频| 我的老师免费观看完整版| 色噜噜av男人的天堂激情| 国产国拍精品亚洲av在线观看 | 欧美极品一区二区三区四区| 久久香蕉精品热| 长腿黑丝高跟| 欧美中文综合在线视频| 波多野结衣高清无吗| 夜夜爽天天搞| 99精品在免费线老司机午夜| 一区福利在线观看| xxxwww97欧美| 国产视频一区二区在线看| 成年女人永久免费观看视频| 亚洲第一电影网av| 人人妻,人人澡人人爽秒播| 母亲3免费完整高清在线观看| 久久久精品大字幕| 3wmmmm亚洲av在线观看| 日韩有码中文字幕| 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 在线播放国产精品三级| 日韩欧美国产一区二区入口| 久久久久九九精品影院| 亚洲va日本ⅴa欧美va伊人久久| 久久中文看片网| 国产麻豆成人av免费视频| 激情在线观看视频在线高清| 丰满乱子伦码专区| xxxwww97欧美| 亚洲专区国产一区二区| 亚洲av电影在线进入| 别揉我奶头~嗯~啊~动态视频| 免费av观看视频| 草草在线视频免费看| 成人性生交大片免费视频hd| 亚洲va日本ⅴa欧美va伊人久久| 深夜精品福利| 亚洲国产精品久久男人天堂| 亚洲成人精品中文字幕电影| 亚洲最大成人手机在线| 伊人久久精品亚洲午夜| 变态另类丝袜制服| av黄色大香蕉| 国产一区二区在线观看日韩 | 久久香蕉精品热| 99国产综合亚洲精品| 最新美女视频免费是黄的| 国产野战对白在线观看| 一进一出抽搐动态| 在线a可以看的网站| 国产精品自产拍在线观看55亚洲| 欧美最黄视频在线播放免费| 男女做爰动态图高潮gif福利片| 精品熟女少妇八av免费久了| 激情在线观看视频在线高清| 一个人免费在线观看的高清视频| 国产av一区在线观看免费| av在线蜜桃| 69av精品久久久久久| 国产欧美日韩精品一区二区| 国产免费av片在线观看野外av| 亚洲欧美激情综合另类| 午夜福利在线观看免费完整高清在 | 国产伦人伦偷精品视频| 一级毛片高清免费大全| www.999成人在线观看| 老司机午夜福利在线观看视频| 日本黄大片高清| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 欧美av亚洲av综合av国产av| 女人十人毛片免费观看3o分钟| 亚洲专区中文字幕在线| 亚洲国产精品sss在线观看| 九色成人免费人妻av| 男人和女人高潮做爰伦理| 成人欧美大片| 免费看a级黄色片| 偷拍熟女少妇极品色| 99热这里只有精品一区| 波野结衣二区三区在线 | 国产国拍精品亚洲av在线观看 | 国产单亲对白刺激| 91九色精品人成在线观看| 搡老岳熟女国产| 欧美黑人巨大hd| 日本三级黄在线观看| 小说图片视频综合网站| 天堂动漫精品| 久久久色成人| www.熟女人妻精品国产| 麻豆成人av在线观看| 国产精品免费一区二区三区在线| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 国产精品综合久久久久久久免费| 亚洲av日韩精品久久久久久密| 毛片女人毛片| 免费av观看视频| eeuss影院久久| 欧美一区二区亚洲| 女人被狂操c到高潮| 日本熟妇午夜| 午夜a级毛片| 国产精品 国内视频| 精品久久久久久久久久免费视频| 午夜福利高清视频| 国产国拍精品亚洲av在线观看 | 国产色婷婷99| 日韩欧美国产一区二区入口| 在线观看美女被高潮喷水网站 | 国产精品一及| 日韩亚洲欧美综合| 婷婷亚洲欧美| 国产高清有码在线观看视频| 国产亚洲精品av在线| 国产精品一区二区三区四区久久| 观看免费一级毛片| 午夜免费观看网址| 欧美国产日韩亚洲一区| 一级a爱片免费观看的视频| 美女 人体艺术 gogo| 亚洲 欧美 日韩 在线 免费| 午夜福利在线观看吧| 在线十欧美十亚洲十日本专区| 精品久久久久久久毛片微露脸| 淫妇啪啪啪对白视频| 亚洲美女视频黄频| 欧洲精品卡2卡3卡4卡5卡区| 国产真人三级小视频在线观看| 精品无人区乱码1区二区| 色哟哟哟哟哟哟| 最后的刺客免费高清国语| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 国产精品野战在线观看| 国产精品三级大全| 亚洲av中文字字幕乱码综合| 国产黄a三级三级三级人| 男女那种视频在线观看| 久久精品国产清高在天天线| 亚洲人成网站在线播| 欧美日本亚洲视频在线播放| xxxwww97欧美| 亚洲乱码一区二区免费版| 日韩亚洲欧美综合| 两个人的视频大全免费| 久9热在线精品视频| 女同久久另类99精品国产91| 18禁裸乳无遮挡免费网站照片| 国语自产精品视频在线第100页| 国产精品女同一区二区软件 | 国产精品一区二区免费欧美| 久久久久久久久久黄片| 欧美大码av| 黄色女人牲交| 级片在线观看| 久久中文看片网| 尤物成人国产欧美一区二区三区| 亚洲激情在线av| 亚洲欧美精品综合久久99| 国产野战对白在线观看| 国产单亲对白刺激| 五月伊人婷婷丁香| 日韩欧美精品免费久久 | 大型黄色视频在线免费观看| 欧美午夜高清在线| 亚洲欧美激情综合另类| 天天一区二区日本电影三级| 黄片小视频在线播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲乱码一区二区免费版| 亚洲欧美激情综合另类| 国产午夜精品久久久久久一区二区三区 | 夜夜躁狠狠躁天天躁| 免费电影在线观看免费观看| 男女那种视频在线观看| 亚洲精品色激情综合| 级片在线观看| 国产成年人精品一区二区| 黑人欧美特级aaaaaa片| 99热只有精品国产| 国产探花在线观看一区二区| 亚洲熟妇熟女久久| 看片在线看免费视频| 麻豆国产97在线/欧美| 久久久精品大字幕| 国产三级黄色录像| 在线国产一区二区在线| 免费看美女性在线毛片视频| 久久精品国产亚洲av涩爱 | 熟女少妇亚洲综合色aaa.| 搡老岳熟女国产| 性欧美人与动物交配| 亚洲美女黄片视频| 亚洲av电影不卡..在线观看| 草草在线视频免费看| 日本三级黄在线观看| 国产精品av视频在线免费观看| 亚洲avbb在线观看| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 88av欧美| 可以在线观看毛片的网站| 亚洲国产欧美人成| 亚洲无线观看免费| 欧美激情在线99| 亚洲色图av天堂| 色播亚洲综合网| 欧美最新免费一区二区三区 | 亚洲成人久久爱视频| 亚洲 国产 在线| 狂野欧美白嫩少妇大欣赏| 日韩欧美国产一区二区入口| 国产日本99.免费观看| 久久久久亚洲av毛片大全| 免费在线观看成人毛片| 国产真实伦视频高清在线观看 | 国产69精品久久久久777片| 欧美又色又爽又黄视频| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 一卡2卡三卡四卡精品乱码亚洲| 热99在线观看视频| 男女那种视频在线观看| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 在线观看美女被高潮喷水网站 | 悠悠久久av| 欧美日韩福利视频一区二区| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 日韩 欧美 亚洲 中文字幕| 日韩欧美在线二视频| 一进一出好大好爽视频| 99热精品在线国产| 黄色视频,在线免费观看| 国产探花极品一区二区| 欧美黑人巨大hd| 国产精品亚洲一级av第二区| 一级毛片高清免费大全| 欧美一区二区亚洲| 白带黄色成豆腐渣| 国产亚洲精品久久久com| 99久久久亚洲精品蜜臀av| 51国产日韩欧美| 精品电影一区二区在线| 女人被狂操c到高潮| 在线观看一区二区三区| 黑人欧美特级aaaaaa片| 久久久久久大精品| 欧美日韩瑟瑟在线播放| 欧美xxxx黑人xx丫x性爽| 精品国产超薄肉色丝袜足j| 在线观看日韩欧美| 日韩欧美精品v在线| 精品99又大又爽又粗少妇毛片 | 久久精品夜夜夜夜夜久久蜜豆| av黄色大香蕉| 国产三级黄色录像| 免费看光身美女| 欧美成人a在线观看| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 日韩欧美精品v在线| 两人在一起打扑克的视频| 欧美一区二区精品小视频在线| 桃红色精品国产亚洲av| 精品久久久久久久久久免费视频| 亚洲五月婷婷丁香| 日本成人三级电影网站| 国产精品久久久久久人妻精品电影| 岛国在线观看网站| 两个人视频免费观看高清| 国产午夜精品论理片| 精品免费久久久久久久清纯| 成人高潮视频无遮挡免费网站| 观看美女的网站| 国产伦精品一区二区三区四那| 免费av不卡在线播放| 国产伦精品一区二区三区视频9 | 国产成+人综合+亚洲专区| 俄罗斯特黄特色一大片| 搞女人的毛片| 日韩欧美免费精品| 好看av亚洲va欧美ⅴa在| 欧美性猛交╳xxx乱大交人| 欧美高清成人免费视频www| av在线天堂中文字幕| 成人永久免费在线观看视频| 乱人视频在线观看| 亚洲国产欧美网| 90打野战视频偷拍视频| 波多野结衣巨乳人妻| 露出奶头的视频| 亚洲av中文字字幕乱码综合| 久久精品综合一区二区三区| 怎么达到女性高潮| АⅤ资源中文在线天堂| 亚洲欧美日韩高清在线视频| 免费高清视频大片| 免费观看精品视频网站| 99在线人妻在线中文字幕| 免费观看精品视频网站| 波多野结衣高清作品| 国产精品电影一区二区三区| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 久久婷婷人人爽人人干人人爱| 少妇的丰满在线观看| 2021天堂中文幕一二区在线观| 三级毛片av免费| 中文字幕av成人在线电影| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看| 久久久久国内视频| 婷婷亚洲欧美| 成人午夜高清在线视频| 国产精品乱码一区二三区的特点| 一个人免费在线观看电影| 国产亚洲精品一区二区www| 久久久精品欧美日韩精品| 一区二区三区国产精品乱码| 麻豆国产97在线/欧美| 99精品在免费线老司机午夜| 亚洲精品美女久久久久99蜜臀| 国产色爽女视频免费观看| 99热只有精品国产| 天堂网av新在线| 天堂√8在线中文| 精品国内亚洲2022精品成人| 亚洲av成人av| 在线国产一区二区在线| 亚洲aⅴ乱码一区二区在线播放| 身体一侧抽搐| 中出人妻视频一区二区| 天堂动漫精品| 两性午夜刺激爽爽歪歪视频在线观看| 俺也久久电影网| 午夜免费成人在线视频| 日韩欧美国产在线观看| 黄色视频,在线免费观看| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 国产精品久久久久久精品电影| 少妇的逼水好多| 嫩草影院入口| 久久欧美精品欧美久久欧美| 亚洲不卡免费看| 欧美一区二区国产精品久久精品| 国语自产精品视频在线第100页| 国产真实乱freesex| 中文字幕人成人乱码亚洲影| 国产精品电影一区二区三区| 日韩av在线大香蕉| 一进一出抽搐gif免费好疼| 人妻久久中文字幕网| 国产国拍精品亚洲av在线观看 | 国产一区二区在线av高清观看| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久com| 国产av在哪里看| 国产综合懂色| 俄罗斯特黄特色一大片| 亚洲电影在线观看av| 国产单亲对白刺激| www.999成人在线观看| 国产精品乱码一区二三区的特点| 麻豆成人午夜福利视频| 国产不卡一卡二| 啦啦啦韩国在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区高清视频在线| 国产精品久久电影中文字幕| 亚洲av日韩精品久久久久久密| 波野结衣二区三区在线 | 不卡一级毛片| 色综合欧美亚洲国产小说| 亚洲av免费在线观看| 国产探花极品一区二区| 男人的好看免费观看在线视频| 成人国产一区最新在线观看| 99久久成人亚洲精品观看| 国产精品自产拍在线观看55亚洲| 一区二区三区激情视频| 亚洲第一欧美日韩一区二区三区| 男女床上黄色一级片免费看| 岛国在线观看网站| 狂野欧美白嫩少妇大欣赏| 热99在线观看视频| 在线播放无遮挡| 久久性视频一级片| 午夜免费成人在线视频| 国产精品一区二区免费欧美| 岛国在线免费视频观看| 亚洲 国产 在线| 天堂影院成人在线观看| 日韩欧美免费精品| 我的老师免费观看完整版| 校园春色视频在线观看| 90打野战视频偷拍视频| 又黄又爽又免费观看的视频| 99精品久久久久人妻精品| 男人舔女人下体高潮全视频| 色综合婷婷激情| 亚洲五月婷婷丁香| 美女大奶头视频| 国产精品野战在线观看| 亚洲精品影视一区二区三区av| 日韩欧美国产一区二区入口| 黑人欧美特级aaaaaa片| 亚洲av第一区精品v没综合| 亚洲成人久久性| 色尼玛亚洲综合影院| 欧美一区二区亚洲| 12—13女人毛片做爰片一| 中文字幕人成人乱码亚洲影| 宅男免费午夜| 九色国产91popny在线| 88av欧美| 亚洲国产欧美网| 亚洲性夜色夜夜综合| 可以在线观看毛片的网站| 长腿黑丝高跟| 免费观看精品视频网站| 黄片小视频在线播放| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 色在线成人网| 国内精品久久久久精免费| 欧美zozozo另类| 一级毛片女人18水好多| 免费人成视频x8x8入口观看| 亚洲 国产 在线| 成人18禁在线播放| 欧美性猛交╳xxx乱大交人| 国产视频一区二区在线看| 成人鲁丝片一二三区免费| 97超视频在线观看视频| 亚洲欧美日韩东京热| 99在线视频只有这里精品首页| av欧美777| 亚洲午夜理论影院|