• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation of stratosphere-troposphere exchange in East Asia cut-off lows: cases from the Lagrangian perspective

    2016-11-23 01:12:55WUXueandDaRen
    關(guān)鍵詞:東亞地區(qū)個例平流層

    WU Xue and Lü Da-Ren

    Key Laboratory for Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Calculation of stratosphere-troposphere exchange in East Asia cut-off lows: cases from the Lagrangian perspective

    WU Xue and Lü Da-Ren

    Key Laboratory for Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    In this study, the authors focus on the cut-off low pressure systems (COLs) lingering over East Asia in late spring and early summer and quantify the two-way stratosphere-troposphere exchange(STE) by 3D trajectory integrations, achieved using a revised version of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code (Version 3). By selecting 10 typical COLs and calculating the cross-tropopause air mass fluxes, it is found that stratosphere-to-troposphere transport (STT) fluxes exist in the center of COLs; and in the periphery of the COL center, troposphereto-stratosphere transport (TST) fluxes and STT fluxes are distributed alternately. Net transport fluxes in COLs are from stratosphere to troposphere, and the magnitude is about 10-4kg m-2s-1. The ratio between the area-averaged STT and TST fluxes increases with increasing strength of the COLs. By adopting appropriate residence time, the spurious transports are effectively excluded. Finally, the authors compare the results with previous studies, and find that the cross-tropopause fluxes (CTFs)induced by COLs are about one to two orders of magnitude larger than global CTFs. COLs play a significant role in local, rapid air mass exchanges, although they may only be responsible for a fraction of the total STE.

    ARTICLE HISTORY

    Accepted 30 July 2015

    Stratosphere-troposphere exchange; cut-off low;

    trajectory model

    本文使用三維非絕熱朗格朗日軌跡模式OFFLINE3,對春末夏初東亞地區(qū)的切斷低壓所主導(dǎo)的雙向平流層-對流層交換(STE)進(jìn)行定量計算。通過對10個東亞地區(qū)切斷低壓的識別、計算、分析,發(fā)現(xiàn)切斷低壓附近發(fā)生平流層向?qū)α鲗淤|(zhì)量通量(STT)與對流層向平流層質(zhì)量通量(TST)量級相當(dāng),但是分布范圍不同:STT出現(xiàn)在低壓中心西南部,最大通量位置出現(xiàn)在低壓中心東南,TST最大值出現(xiàn)在槽前,并且從低壓中心向外STT與TST交替分布。從本文所取的切斷低壓個例而言,切斷低壓產(chǎn)生的STT質(zhì)量通量量級為10-4 kg m-2 s-1,促成的STE的凈輸送方向為從平流層向?qū)α鲗?,量級?0-4 kg m-2 s-1,比全球平均STE質(zhì)量通量大1-2個量級。

    Introduction

    Stratosphere-troposphere exchange (STE) is an important topic for understanding and quantifying the human impact on global climate change. The transport of anthropogenic emissions, e.g. CFCs and NO2, to the stratosphere accelerates ozone depletion, and the downward transport of stratospheric ozone into the troposphere aggravates photochemical pollution (Lü et al. 2008; Randel et al. 2010). Global STE is often described by the Brewer-Dobson circulation, which involves troposphere-to-stratosphere transport(TST) in the tropics, poleward drift in the stratosphere, and stratosphere-to-troposphere transport (STT) in polar regions. However, the Brewer-Dobson circulation fails to describe the synoptic- or mesoscale mass transports and the consequent redistribution of trace gases, e.g. ozone and water vapor.

    The cut-off low pressure systems (COLs) are one of the most representative synoptic-scale systems in the middle latitudes. They are usually closed circulations generated from a deep trough in the upper-troposphere westerly current. Air enclosed in the center of COLs often originates from high latitudes where potential vorticity (PV) is higher, meaning the tropopause at the center of COLs is lower than the tropopause in surrounding areas. Three mechanisms associated with STT,i.e. convective erosion of tropopauses, erosion of the tropopause by turbulence, and the tropopause folding around the flank of COLs, have been discussed by Price and Vaughan(1993), and other studies have shown that COLs could also transfer tropospheric air into the lower stratosphere (Ancellet,Beekmann, and Papayannis 1994; Ebel et al. 1991; Kentarchos,Davies, and Zerefos 1998; Kentarchos, Roelofs, and Lelieveld1999; Porcu et al. 2007; Sprenger, Wernli, and Bourqui 2007;Yang and Lü 2003).

    Figure 1.Schematic illustration of the two-way exchange for Lagrangian calculations.

    COLs are more frequent during the late spring and summer months, and there are three climatologically preferred regions for COL occurrence: the northern China-Siberia region, the eastern North Pacific, and southern Europe and the eastern Atlantic coast (Nieto et al. 2008). As a manifestation of Rossby wave breaking, COLs play a vital role in the irreversible mixing between the stratosphere and troposphere in these regions. In Northeast China, cold vortices, which are frequent synoptic systems in spring or summer, often derive from deeply developed COLs. Although precipitation and disastrous weather caused by northeast cold vortices have been widely investigated (Hu, Lu, and Wang 2011; Zhang and Li 2009), the quantification of STE generated by vortices or COLs in China or East Asia has, to date, been insufficiently studied.

    STE in the vicinity of COLs is usually calculated with Eulerian methods, which are based on Eulerian formulations of cross-tropopause fluxes and estimated from each term of the formulations (e.g. Chen, Lü, and Chen 2014; Wei 1987; Wirth 1995; Wirth and Egger 1999). Compared with the Eulerian methods, trajectory-based Lagrangian computation of the STE is able to identify the source regions, pathways, timescales, etc. of the air parcels involved in the STE procedure, and helps to distinguish the effective exchange(Bourqui 2004; Chen et al. 2010; Fueglistaler, Wernli, and Peter 2004; James et al. 2003; Meloen, Siegmund, and Sigmond 2001; Stohl 1998; Stohl et al. 2003a, 2003b; Vogel et al. 2011). This study focuses on the COLs in East Asia and aims to quantify the COL-related cross-tropopause exchange.

    Methodology

    Model and data

    In this study, 3D trajectory integrations are performed using the OFFLINE3 diabatic trajectory model, which is a modification of the third edition of the UK Universities Global Atmospheric Modelling Programme Offline Trajectory Code (Methven 1997). Compared with the regional kinematic trajectory model, the main difference in the diabatic model is the vertical velocity scheme: vertical(cross-isentropic) velocity is expressed with the diabatic heating rate instead of being calculated with the horizontal wind through the continuity equation. By reducing errors in vertical velocity, the diabatic trajectory model can give better results, especially when relatively coarse primary analysis fields are used (Ploeger et al. 2010, 2011). A comprehensive review of the accuracy of trajectories is given in Methven (1997) and Stohl (1998).

    The OFFLINE3 diabatic trajectory model can be run both forwards and backwards. In this study, trajectories are driven by six-hourly ERA-Interim (European Center for Medium-Range Weather Forecasts Interim Reanalysis)data, and the spatial resolution is T255 (0.75° × 0.75°)(Simmons et al. 2006). Three-dimensional offline meteorological data, e.g. wind field and temperature, are interpolated to the trajectory locations. At each integration time,values of meteorological fields, including PV, temperature,potential temperature, pressure, and surface pressure are assigned as attributes for the particles moving along the trajectories.

    Trajectories are released every 12 h, which is proved sufficient to generate smooth and robust features and overall physical characteristics. The horizontal study domain size is 50° × 50°, moving with COL centers, and the vertical range extends from 700 hPa to 50 hPa, with a vertical resolution of 10 hPa. Each trajectory represents an air mass Δm: Δm = g-1·Δx·Δy·Δp = 6.53 × 1011kg, where the spacing of the air parcel is approximately Δx = Δy = 80 km in the horizontal and Δp = 10 hPa in the vertical. And if the particles cross the tropopause, then the air mass represented by the particles is considered to have crossed the tropopause. The choice of vertical resolution is reasonable in the subtropics but still needs to be verified in the upper troposphere of the tropics where vertical motion is slower.

    Definition of the dynamical tropopause

    In this study, the PV value of 3.5 PVU (1 PVU = 10-6m2s-1K kg-1)is defined to be the dynamical tropopause. Previous studies have shown that the calculated results of cross-tropopause mass exchange are not very sensitive to the value of PV chosen as the tropopause in the range of 2-5 PVU (Dethof, O'Neill,and Slingo 2000; Pan et al. 2000). Further study shows that the calculated transports (both upward and downward) decrease as the PV threshold increases from 1.5 to 3.5 PVU, and become relatively constant from 3.5 to 5.5 PVU (Yang and Lü 2003). In this study, the choice of the dynamical tropopause has been tested by computing the transport cross surface of constantPV values of 2, 2.5, 3, 3.5, and 4 PVU. The results verified the conclusions of Yang and Lü (2003), showing that 3.5 PVU as the dynamical tropopause may produce slightly weaker cross-tropopause mass fluxes than 2.5 and 3 PVU, but the transport will not increase when the PV values are higher. In the following analysis, 3.5 PVU is defined as the dynamical tropopause and air masses are considered to transmit from the stratosphere to troposphere if their PV value drops from > 3.5 PVU to < 3.5 PVU, and vice versa. Trajectories that cross the 3.5 PVU iso-surface are extended for three days both backwards and forwards. Meanwhile, we introduce residence time τ to eliminate spurious transport. The residence time is a criterion involving the trajectory residing for a period of time longer than a threshold τ on either side of the tropopause before and after having crossed it. And if the condition is not fulfilled, then the transport is considered spurious, as shown in Figure 1.

    Selection of COLs

    We focus on the COLs lingering over Northeast China in late spring and early summer between 2003 and 2012. First, the COL cases are selected objectively using a similar algorithm as applied in Porcu et al. (2007), based on the three main characteristics of the COL theoretical model (Nieto et al. 2005). The algorithm can be summarized as follows:

    (1) At 300 hPa, if a grid point is a minimum (within a 10 gpm threshold) in at least six of the eight surrounding grid points, it is identified as a geopotential minimum.

    (2) For all the grid points selected in step (1),only those having different wind directions with their adjacent grid points northwards are retained.

    (3) Finally, to define the weather system as a COL,the grid points eastward of a candidate COL point should have a thermal front parameter(TFP) higher than that at the COL point.

    The first step identifies systems with vortex characteristics and the second step makes sure the vortex is cut off from the westerlies. In the third step, the TFP, defined as in Equation (1), is the change of temperature (T; units: K)gradient in the direction of its gradient:

    TFP serves to verify the baroclinic instability of the system. Further details of the algorithm can be found in Porcu et al. (2007).

    Then, 10 of the candidate COLs with a lifetime longer than five days are chosen subjectively; one COL in each year from 2003 to 2012.

    Results and discussion

    Air mass fluxes and comparison

    Cross-tropopause fluxes (CTFs) for one COL case in April 2007 are shown as an example. The TST, STT and net fluxes for this case are demonstrated in Figure 2. The TST and STT fluxes were interpolated from the location where they happened to grids, and then the values on the grids were binned every 2° of longitude and latitude. The solid lines in Figure 2 show the 350 hPa geopotential height field at 1800 UTC 29 April 2007 (Figure 2a-c), 1800 UTC 30 April 2007 (Figure 2d-f), and 1800 UTC 1 May 2007 (Figure 2g-i).

    On 27 April 2007, the COL started to generate from a deep trough over East Siberia, and cut off on 28 April. Then, the COL intensified and reached maturity on 29 April. Its strength maintained until 1 May and weakened afterwards. As seen in Figure 2b, on 29 April, STT occupied the center, south, and southeast of the COL; this transport spread out to the southwest, south, and southeast on 30 April; and on 1 May, when the COL started to weaken, the STT fluxes curled to the north. TST was mainly in the south and in the east of the trough; and on 1 May, TST increased in the west of the center.

    Overall, STT dominated throughout the three days. STT fluxes existed in the center, and in the periphery of the center TST fluxes and STT fluxes were distributed alternately. Net transport in this COL was from the stratosphere to troposphere. For this case, domain-averaged STT and TST fluxes were -1.69 × 10-3and 1.21 × 10-3kg m-2s-1,respectively, the net flux was -0.48 × 10-3kg m-2s-1, and the ratio for TST/STT was 0.716.

    Next, we compare our results with previous studies, as listed in Table 1. Sources with asterisks represent studies on global CTFs, and sources without asterisks denote studies on CTFs related with synoptic- or mesoscale weather systems, e.g. extratropical cyclones and streamers. In all of the 10 cases, net CTFs are from the stratosphere to troposphere. The comparison shows that our results are of the same magnitude as results from similar studies on synoptic systems. The CTFs induced by COLs are about one to two orders of magnitude larger than global CTFs. Although STE related with COLs only takes up a fraction of the total STE (Price and Vaughan 1993), COLs play a significant role in local, rapid air mass exchange.

    The preliminary dependencies of the CTFs and total air mass exchange on the intensity of COLs, which is represented by the minimum pressure, are shown in Figure 3. As far as can be revealed by the COL cases used in our study, COLs with STT and TST fluxes (Figure 3a and 3b)generally increase in intensity when minimum pressure decreases, albeit with some exceptions. Similar to the fluxes, the exchanged STT and TST air masses also show a clear dependence on the minimum pressure. Comparedwith the TST fluxes and exchanged mass, the STT fluxes and exchanged mass change more steeply with minimum pressure. These phenomena have also been observed in other studies regarding STE in the vicinity of synoptic systems (Reutter et al. 2015).

    Figure 2.Air mass fluxes for TST (upper row), STT (middle row), and net transport fluxes (lower row) on (a-c) 29 April, (d-f) 30 April, and(g-i) 1 May 2007 (units: 10-4kg m-2s-1). Values on grids were binned every 2° of longitude and latitude. For the net transport, positive values show TST and negative values show STT. Only Absolute values larger than 3 × 10-4kg m-2s-1are shown in the figures.

    Table 1.Comparison of mass flux results from previous studies.

    Effectiveness of residence time

    Residence time is usually used in Lagrangian calculation of STE to eliminate spurious exchange. The results in this study were based on a residence time threshold of 24 h. In order to investigate the sensitivity to residence time, we conducted the above calculations based on residence times of 0, 6, 12,18, and 48 h, and compared the averaged STT and TST fluxes,as shown in Figure 4. The indication is that large numbers of CTFs are associated with time scales smaller than 24 h, and produced reversible exchange. In these cases, 24 h as the residence time threshold helped to exclude spurious exchange and generate reasonable and consistent fluxes. However, the choice of residence time is not unique and it may depend on data resolution, sizes of calculation domains, synoptic systems, etc. A longer residence time would help to focus on more significant exchange.

    Summary

    In this work, a Lagrangian method for calculating the two-way STE has been applied. COL cases in late spring and early summer over East Asia were selected and the cross-troposphere air mass fluxes in the vicinity of thesecases computed - the aim being to obtain a more accurate understanding of the role that COLs in East Asia play in STE. The diabatic trajectory model used was able to produce more reasonable results because the large-scale motion in large parts of the atmosphere is nearly adiabatic,and the isentropic coordinate system relates better to the physics than the kinematic coordinate system.

    Figure 3.Dependence of the (a, b) CTFs (units: 10-4kg m-2s-1) and (c, d) exchanged mass (units: 1014kg) on the minimum pressure of COLs.

    Figure 4.Ratio (results using different residence times/results using 24 h as the residence time) of (a) STT fluxes and (b) TST fluxes.

    The results showed that STT dominates the exchange processes in COLs and the net transport is from the stratosphere to troposphere with a magnitude of 10-4kg m-2s-1. The STT and TST fluxes (both with magnitude of 10-3kg m-2s-1) are one to two orders of magnitude larger than global CTFs, and both the STT/TST fluxes and total exchanged air mass during the life cycle of COLs are larger in more intense COLs. The choice of residence time influences the results and, in our study, 24 h was effective in excluding insignificant exchange. COLs contribute to local and efficient air exchange and may favor the rapid transmission of chemicals between the stratosphere and troposphere, although the total exchanged air masses may not be comparable to the total global STE.

    Acknowledgements

    We thank Dr Sue Yu LIU for providing the OFFLINE3_diab model, and for helpful suggestions. The ERA-interim data were obtained from the European Center for Medium-Range Weather Forecasts, via www.ecmwf.int.

    Funding

    This work was supported by the Special Fund for Strategic Pilot Technology, Chinese Academy of Sciences [grant number XDA05040300].

    References

    Ancellet, G., M. Beekmann, and A. Papayannis. 1994. “Impact of a Cutoff Low Development on Downward Transport of Ozone in the Troposphere.” Journal of Geophysical Research 99 (D2): 3451-3468. doi:10.1029/93jd02551.

    Bourqui, M. S. 2004. “Stratosphere-Troposphere Exchange from the Lagrangian Perspective: A Case Study and Method Sensitivities.” Atmospheric Chemistry and Physics 6: 2651-2670.

    Chen, B., X. Xu, J. Bian, X. H. Shi. 2010. “Sources, Pathways and Timescales for the Troposphere to Stratosphere Transport over Asian Monsoon Regions in Boreal Summer.” Chinese Journal of Atmospheric Sciences (in Chinese) 34 (3): 495-505. Chen, D., D. R. Lü, and Z. Y. Chen. 2014. “Simulation of the Stratosphere-Troposphere Exchange Process in a Typical Cold Vortex over Northeast China.” Science China Earth Sciences 57(7): 1452-1463. doi:10.1007/s11430-014-4864-x.

    Dethof, A., A. O'Neill, and J. Slingo. 2000. “Quantification of the Isentropic Mass Transport across the Dynamical Tropopause.”Journal of Geophysical Research 105: 12279-12294. doi:10.1029/2000jd900127.

    Ebel, A., H. Hass, H. J. Jakobs, M. Laube, M. Memmesheimer,A. Oberreuter, H. Geiss, and Y. H. Kuo. 1991. “Simulation of Ozone Intrusion Caused by a Tropopause Fold and Cut-off Low.” Atmospheric Environment. Part a. General Topics 25 (10): 2131-2144. doi:10.1016/0960-1686(91)90089-p.

    Fueglistaler, S., H. Wernli, and T. Peter. 2004. “Tropical Troposphere-to-Stratosphere Transport Inferred from Trajectory Calculations.” Journal of Geophysical Research 109: D03108. doi:10.1029/2003jd004069.

    Hu, K. X., R. Y. Lu, and D. H. Wang. 2011. “Cold Vortex over North East China and Its Climate Effect.” Chinese Journal of Atmospheric Sciences (in Chinese) 35 (1): 179-191.

    James, P., A. Stohl, C. Forster, S. Eckhardt, P. Seibert, and A. Frank. 2003. “A 15-Year Climatology of Stratosphere-Troposphere Exchange with a Lagrangian Particle Dispersion Model: 1. Methodology and Validation.” Journal of Geophysical Research 108 (D12): 8519. doi:10.1029/2002jd002639.

    Kentarchos, A. S., T. D. Davies, and C. S. Zerefos. 1998. “A Low Latitude Stratospheric Intrusion Associated with a Cut-off Low.” Geophysical Research Letters 25 (1): 67-70. doi:10.1029/97gl03351.

    Kentarchos, A. S., G. J. Roelofs, and J. Lelieveld. 1999.“Model Study of a Stratospheric Intrusion Event at Lower Midlatitudes Associated with the Development of a Cutoff Low.” Journal of Geophysical Research 104 (D1): 1717-1727. doi:10.1029/1998jd100051.

    Lamarque, J. F., and P. G. Hess. 1994. “Cross-Tropopause Mass Exchange and Potential Vorticity Budget in a Simulated Tropopause Folding.” Journal of the Atmospheric Sciences 51 (15): 2246-2269. doi:10.1175/1520-0469(1994)051<2246:CTMEAP>2.0.CO;2.

    Lü, D. R., Z. Y. Chen, J. C. Bian, and H. B. Chen. 2008. “Advances in Researches on the Characteristics of Multi-Scale Processes of Interactions between the Stratosphere and the Troposphere and Its Relations with Weather and Climate.” Chinese Journal of Atmospheric Sciences (in Chinese) 32 (4): 782-792.

    Meloen, J., P. Siegmund, and M. Sigmond. 2001. “A Lagrangian Computation of Stratosphere-Troposphere Exchange in a Tropopause-Folding Event in the Subtropical Southern Hemisphere.” Tellus A 53 (3): 368-379. doi:10.1034/j.1600-0870.2001.01175.x.

    Methven, J. 1997. Offline Trajectories: Calculation and Accuracy,UGAMP, Technical Report 44. Reading, UK: Department of Meteorology, University of Reading.

    Nieto, R. L., L. De Gimeno, P. La Torre, D. Ribera, R. Gallego, J. A. Garcia-Herrera, M. Garcia, A. Nunez, and J. Lorente Redano. 2005. “Climatological Features of Cutoff Low Systems in the Northern Hemisphere.” Journal of Climate 18 (16): 3085-3103. doi:10.1175/jcli3386.1.

    Nieto, R., M. Sprenger, H. Wernli, R. M. Trigo, and L. Gimeno. 2008. “Identification and Climatology of Cut-off Lows near the Tropopause.” In Trends and Directions in Climate Research,edited by L. Gimeno, R. GarciaHerrera, and R. M. Trigo, Vol. 1146, 256-290. Malden: Wiley-Blackwell.

    Pan, L. L., E. J. Hintsa, E. M. Stone, E. M. Weinstock, and W. J. Randel. 2000. “The Seasonal Cycle of Water Vapor and Saturation Vapor Mixing Ratio in the Extratropical Lowermost Stratosphere.” Journal of Geophysical Research 105: 26519-26530. doi:10.1029/2000jd900401.

    Ploeger, F., P. Konopka, G. Gunther, J. U. Grooss, and R. Muller. 2010. “Impact of the Vertical Velocity Scheme on Modeling Transport in the Tropical Tropopause Layer.” Journal of Geophysical Research 115: D03301. doi:10.1029/2009JD012023.

    Ploeger, F., S. Fueglistaler, J. U. Groo?, G. Gunther, P. Konopka,Y. S. Liu, R. Muller, et al. 2011. “Insight from Ozone and Water Vapour on Transport in the Tropical Tropopause Layer(TTL).” Atmospheric Chemistry and Physics 11 (1): 407-419. doi:10.5194/acp-11-407-2011.

    Porcu, F., A. Carrassi, C. M. Medaglia, F. Prodi, and A. Mugnai. 2007.“A Study on Cut-off Low Vertical Structure and Precipitation in the Mediterranean Region.” Meteorology and Atmospheric Physics 96 (1-2): 121-140. doi:10.1007/s00703-006-0224-5.

    Price, J. D., and G. Vaughan. 1993. “The Potential for Stratosphere-Troposphere Exchange in Cut-off-Low Systems.” Quarterly Journal of the Royal Meteorological Society 119 (510): 343-365. doi:10.1002/qj.49711951007.

    Randel, W. J., M. Park, L. Emmons, D. Kinnison, P. Bernath, K. A. Walker, C. Boone, and H. Pumphrey. 2010. “Asian Monsoon Transport of Pollution to the Stratosphere.” Science 328(5978): 611-613. doi:10.1126/science.1182274.

    Reutter, P., B. ?kerlak, M. Sprenger, and H. Wernli. 2015.“Stratosphere-Troposphere Exchange (STE) in the Vicinity of North Atlantic Cyclones.” Atmospheric Chemistry and Physics Discussions 15 (2): 2535-2575. doi:10.5194/acpd-15-2535-2015. Siegmund, P. C., P. F. J. van Velthoven, and H. Kelder. 1996. “Cross-Tropopause Transport in the Extratropical Northern Winter Hemisphere, Diagnosed from High-Resolution ECMWF Data.”Quarterly Journal of the Royal Meteorological Society 122: 1921-1941. doi:10.1256/smsqj.53608.

    Sigmond, M., J. Meloen, and P. C. Siegmund. 2000. “Stratosphere-Troposphere Exchange in an Extratropical Cyclone, Calculated with a Lagrangian Method.” Annales Geophysicae 18 (5): 573-582. doi:10.1007/s00585-000-0573-1.

    Simmons, A., S. Uppala, D. Dee, and S. Kobayashi. 2006. “ERAInterim: New ECMWF Reanalysis Products from 1989 Onwards.” ECMWF Newsletter 110: 25-35.

    Skerlak, B., M. Sprenger, and H. Wernli. 2013. “A Global Climatology of Stratosphere-Troposphere Exchange Using the ERA-Interim Dataset from 1979 to 2011.” Atmospheric Chemistry and Physics Discussions 13 (5): 11537-11595. doi:10.5194/acp-14-913-2014.

    Spaete, P., R. J. Donald, and T. K. Schaack. 1994. “Stratospheric-Tropospheric Mass Exchange during the Presidents' Day Storm.” Monthly Weather Review 122: 424-439. doi:10.1175/1520-0493(1994) 122<0424:SMEDTP>2.0.CO;2.

    Sprenger, M., H. Wernli, and M. Bourqui. 2007. “Stratosphere-Troposphere Exchange and Its Relation to Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause.”Journal of the Atmospheric Sciences 64 (5): 1587-1602.doi:10.1175/jas3911.1.

    Stohl, A. 1998. “Computation, Accuracy and Applications of Trajectories-A Review and Bibliography.” Atmospheric Environment 32 (6): 947-966. doi:10.1016/s1352-2310(97)00457-3.

    Stohl, A., P. Bonasoni, P. Cristofanelli, W. Collins, J. Feichter, A. Frank, C. Forster, et al. 2003a. “Stratosphere-Troposphere Exchange: A Review, and What We Have Learned from STACCATO.” Journal of Geophysical Research 108 (D12): 8516. doi:10.1029/2002jd002490.

    Stohl, A., H. Wernli, P. James, M. Bourqui, C. Forster, M. A. Liniger,P. Seibert, and M. Sprenger. 2003b. “A New Perspective of Stratosphere-Troposphere Exchange.” Bulletin of the American Meteorological Society 84: 1565-1573. doi:10.1175/ bams-84-11-1565.

    Vogel, B., L. L. Pan, P. Konopka, G. Gunther, R. Muller, W. Hall,and T. Campos. 2011. “Transport Pathways and Signatures of Mixing in the Extratropical Tropopause Region Derived from Lagrangian Model Simulations.” Journal of the Atmospheric Sciences 116: D05306. doi:10.1029/2010jd014876.

    Wei, M. -Y. 1987. “A New Formulation of the Exchange of Mass and Trace Constituents between the Stratosphere and Troposphere.”Journal of the Atmospheric Sciences 44: 3079-3086. doi:10.1175/1520-0469(1987) 044<3079:ANFOTE>2.0.CO;2.

    Wirth, V. 1995. “Comments on “a New Formulation of the Exchange of Mass and Trace Constituents between the Stratosphere and Troposphere”.” Journal of the Atmospheric Sciences 52: 2491-2493. doi:10.1175/1520-0469(1995)052<2491:CONFOT>2.0.CO;2.

    Wirth, V., and J., Egger. 1999. “Diagnosing Extratropical Synoptic-Scale Stratosphere-Troposphere Exchange: A Case Study.”Quarterly Journal of the Royal Meteorological Society 125: 635-655. doi:10.1256/smsqj.55412.

    Yang, J., and D. R. Lü. 2003. “A Simulation Study of Stratosphere-Troposphere Exchange due to Cut-off-Low over Eastern Asia.”Chinese Journal of Atmospheric Science (in Chinese) 27 (6): 1031-1044.

    Zhang, L. X., and Z. C. Li. 2009. “A Summary of Research on Cold Vortex over Northeast China.” Climatic Environmental Research (in Chinese) 14 (2): 218-228.

    11 May 2015

    CONTACT Lü Da-Ren ludr@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    東亞地區(qū)個例平流層
    青藏高原上空平流層水汽的時空演變特征
    基于副氣囊的平流層浮空器高度控制
    一例膀胱鏡下留置尿管困難拔除個例分析
    如何看待我國的高投資率
    會“珰”洞鑒以昭然——古代東亞地區(qū)冠飾“珰”之探究
    四川省春季一次飛機(jī)增雨作業(yè)個例分析
    四川盆地南部一次冬季飛機(jī)增雨作業(yè)個例分析
    1979~2011年間平流層溫度及平流層水汽的演變趨勢
    一次森林滅火人工增雪個例分析
    西藏科技(2016年8期)2016-09-26 09:00:53
    鼎盛與危機(jī):明清東亞宗藩體系嬗變
    国产精品国产三级国产专区5o| 十八禁网站网址无遮挡 | 国产中年淑女户外野战色| 听说在线观看完整版免费高清| 亚洲精品亚洲一区二区| 街头女战士在线观看网站| 久久久国产一区二区| 岛国毛片在线播放| 亚洲真实伦在线观看| 天堂俺去俺来也www色官网| 青春草亚洲视频在线观看| 少妇人妻一区二区三区视频| 在线精品无人区一区二区三 | 能在线免费看毛片的网站| 99热国产这里只有精品6| 日韩成人伦理影院| 国产69精品久久久久777片| 久久6这里有精品| 少妇人妻 视频| 亚洲成色77777| 国产精品麻豆人妻色哟哟久久| 黄色视频在线播放观看不卡| 搡老乐熟女国产| 国产成人91sexporn| 国产女主播在线喷水免费视频网站| 日本一本二区三区精品| 老司机影院成人| 一边亲一边摸免费视频| 日韩欧美精品v在线| 亚洲欧美日韩东京热| 乱码一卡2卡4卡精品| 国产片特级美女逼逼视频| 99久久精品国产国产毛片| 99久国产av精品国产电影| 最近的中文字幕免费完整| 深爱激情五月婷婷| 街头女战士在线观看网站| videos熟女内射| 免费黄色在线免费观看| 久久久精品欧美日韩精品| 亚洲精品日韩av片在线观看| 大陆偷拍与自拍| 另类亚洲欧美激情| 亚洲精品国产av蜜桃| 午夜老司机福利剧场| 99久久中文字幕三级久久日本| 汤姆久久久久久久影院中文字幕| 国产毛片在线视频| 日本一本二区三区精品| 亚洲人与动物交配视频| 亚洲,一卡二卡三卡| 久久人人爽人人爽人人片va| 亚洲真实伦在线观看| 欧美区成人在线视频| 国产日韩欧美在线精品| 干丝袜人妻中文字幕| 亚洲av免费高清在线观看| 日韩强制内射视频| 成人国产av品久久久| 五月开心婷婷网| 国产高清三级在线| 国产一级毛片在线| 男人和女人高潮做爰伦理| 日本av手机在线免费观看| 一级毛片 在线播放| 国产黄色免费在线视频| 最近中文字幕2019免费版| 欧美高清成人免费视频www| 欧美高清性xxxxhd video| 黄色视频在线播放观看不卡| 国产成人免费无遮挡视频| 久久ye,这里只有精品| 亚洲伊人久久精品综合| 国产亚洲5aaaaa淫片| 永久网站在线| 特级一级黄色大片| 97超碰精品成人国产| 亚洲人成网站高清观看| 亚洲精品乱码久久久v下载方式| 久久久久国产精品人妻一区二区| 王馨瑶露胸无遮挡在线观看| 最近中文字幕高清免费大全6| 一级a做视频免费观看| 亚洲在久久综合| 男人添女人高潮全过程视频| 乱码一卡2卡4卡精品| 极品教师在线视频| 亚洲欧美日韩另类电影网站 | 亚洲美女视频黄频| 在线观看av片永久免费下载| 亚洲第一区二区三区不卡| 在线a可以看的网站| 人人妻人人澡人人爽人人夜夜| 不卡视频在线观看欧美| 日韩成人伦理影院| 亚洲精品一二三| 少妇的逼水好多| 精品一区二区三卡| 精品人妻一区二区三区麻豆| 国产视频内射| 国产片特级美女逼逼视频| 热99国产精品久久久久久7| 色视频在线一区二区三区| 嫩草影院精品99| 一级a做视频免费观看| 又粗又硬又长又爽又黄的视频| 精华霜和精华液先用哪个| 亚洲精品久久久久久婷婷小说| 国内精品美女久久久久久| 99视频精品全部免费 在线| 国产欧美亚洲国产| 搞女人的毛片| 亚洲性久久影院| 少妇的逼水好多| 午夜免费观看性视频| 国产日韩欧美在线精品| 国产高清三级在线| av在线老鸭窝| 国产精品99久久久久久久久| 麻豆成人av视频| 男人添女人高潮全过程视频| 真实男女啪啪啪动态图| 亚洲不卡免费看| 色视频www国产| 一级黄片播放器| 99久国产av精品国产电影| 一级毛片我不卡| 一二三四中文在线观看免费高清| 亚洲精品久久午夜乱码| 在线观看美女被高潮喷水网站| 久久久国产一区二区| 日韩伦理黄色片| 22中文网久久字幕| 人人妻人人看人人澡| 丝袜喷水一区| 蜜桃亚洲精品一区二区三区| 婷婷色综合www| 国产综合精华液| 美女国产视频在线观看| 亚洲成人精品中文字幕电影| 大话2 男鬼变身卡| 精品酒店卫生间| 亚洲精品一二三| videos熟女内射| 丝瓜视频免费看黄片| 免费看av在线观看网站| 在线免费十八禁| 欧美成人a在线观看| 综合色丁香网| 日韩强制内射视频| 有码 亚洲区| 国内揄拍国产精品人妻在线| 国产黄色免费在线视频| 国内少妇人妻偷人精品xxx网站| 制服丝袜香蕉在线| 国产熟女欧美一区二区| 国产白丝娇喘喷水9色精品| 麻豆成人av视频| 亚洲最大成人中文| 一个人看的www免费观看视频| 99re6热这里在线精品视频| 国产成人午夜福利电影在线观看| 国产精品麻豆人妻色哟哟久久| 涩涩av久久男人的天堂| 精品人妻一区二区三区麻豆| 观看免费一级毛片| 欧美成人午夜免费资源| 91精品国产九色| 内地一区二区视频在线| 久久久久久久久久久丰满| 国产精品蜜桃在线观看| 九九爱精品视频在线观看| 18禁动态无遮挡网站| 嘟嘟电影网在线观看| a级毛色黄片| 如何舔出高潮| 成年av动漫网址| 搡女人真爽免费视频火全软件| 国产成人精品久久久久久| 夜夜看夜夜爽夜夜摸| 熟女电影av网| 22中文网久久字幕| 亚洲精品亚洲一区二区| 精品人妻视频免费看| 日韩制服骚丝袜av| 亚洲av男天堂| 97超视频在线观看视频| 亚洲精品色激情综合| 精品久久久久久久久av| 精品久久国产蜜桃| av一本久久久久| 噜噜噜噜噜久久久久久91| 久久影院123| 视频中文字幕在线观看| 少妇猛男粗大的猛烈进出视频 | 80岁老熟妇乱子伦牲交| 男女无遮挡免费网站观看| 秋霞伦理黄片| 欧美高清成人免费视频www| 久久久久国产网址| 大陆偷拍与自拍| 成人毛片a级毛片在线播放| 国产乱人视频| 亚洲精品久久久久久婷婷小说| 欧美精品人与动牲交sv欧美| 91午夜精品亚洲一区二区三区| 边亲边吃奶的免费视频| 狠狠精品人妻久久久久久综合| av在线观看视频网站免费| 午夜福利视频1000在线观看| 欧美三级亚洲精品| 下体分泌物呈黄色| 亚洲国产色片| av在线老鸭窝| 久久久欧美国产精品| 欧美极品一区二区三区四区| 国产精品国产三级国产专区5o| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久精品精品| 性插视频无遮挡在线免费观看| 18禁在线无遮挡免费观看视频| 亚洲va在线va天堂va国产| 插阴视频在线观看视频| 色婷婷久久久亚洲欧美| 国产人妻一区二区三区在| 国产成人aa在线观看| 久久精品夜色国产| 国产精品蜜桃在线观看| 亚洲av在线观看美女高潮| 真实男女啪啪啪动态图| 可以在线观看毛片的网站| 国产成人午夜福利电影在线观看| 内射极品少妇av片p| 欧美最新免费一区二区三区| 人体艺术视频欧美日本| 国产有黄有色有爽视频| 婷婷色麻豆天堂久久| 九九久久精品国产亚洲av麻豆| 国产精品一及| 欧美国产精品一级二级三级 | 涩涩av久久男人的天堂| 小蜜桃在线观看免费完整版高清| 在线播放无遮挡| 成年版毛片免费区| 精品国产露脸久久av麻豆| 中文字幕av成人在线电影| 亚洲天堂av无毛| 美女国产视频在线观看| 欧美少妇被猛烈插入视频| 卡戴珊不雅视频在线播放| 高清欧美精品videossex| 一级黄片播放器| 久久久久久久国产电影| 国产探花在线观看一区二区| 在线精品无人区一区二区三 | 另类亚洲欧美激情| 成人高潮视频无遮挡免费网站| 大陆偷拍与自拍| 1000部很黄的大片| 国产午夜精品久久久久久一区二区三区| 日韩伦理黄色片| 亚洲综合色惰| 国产男女内射视频| 欧美日韩视频高清一区二区三区二| 久久韩国三级中文字幕| 日本欧美国产在线视频| 亚洲国产色片| 91精品国产九色| 日韩电影二区| 欧美+日韩+精品| 一级毛片黄色毛片免费观看视频| 永久免费av网站大全| 亚洲成人中文字幕在线播放| 大码成人一级视频| 18禁在线无遮挡免费观看视频| 久久精品国产亚洲网站| 日韩电影二区| 婷婷色麻豆天堂久久| 亚洲av.av天堂| 欧美一区二区亚洲| 久久久久国产精品人妻一区二区| 99热这里只有是精品50| 精品酒店卫生间| 一区二区三区精品91| 又粗又硬又长又爽又黄的视频| 欧美zozozo另类| 久久精品夜色国产| 国产综合懂色| 久久久久久久久久久免费av| 免费看a级黄色片| 日韩av免费高清视频| 美女cb高潮喷水在线观看| 国产欧美日韩一区二区三区在线 | 欧美高清成人免费视频www| 人妻夜夜爽99麻豆av| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av国产精品久久久久影院| 亚洲欧美一区二区三区国产| 乱码一卡2卡4卡精品| 日韩,欧美,国产一区二区三区| 亚洲精品自拍成人| 2018国产大陆天天弄谢| 男插女下体视频免费在线播放| 免费看日本二区| 美女被艹到高潮喷水动态| 色网站视频免费| 少妇被粗大猛烈的视频| 欧美性猛交╳xxx乱大交人| 婷婷色综合www| 亚洲国产精品国产精品| 国产成人freesex在线| 亚洲精品乱码久久久久久按摩| 97超视频在线观看视频| 美女内射精品一级片tv| 久久精品久久久久久久性| 国产精品人妻久久久久久| 永久网站在线| av免费在线看不卡| 亚洲,一卡二卡三卡| 亚洲欧美日韩另类电影网站 | 久久久久精品性色| 成年av动漫网址| 国产成人freesex在线| 国产午夜精品久久久久久一区二区三区| 国产黄a三级三级三级人| 性色avwww在线观看| 精品99又大又爽又粗少妇毛片| 人妻一区二区av| 午夜日本视频在线| 亚洲av.av天堂| 国模一区二区三区四区视频| 久久精品国产a三级三级三级| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 国产成人福利小说| 18禁裸乳无遮挡免费网站照片| 精品99又大又爽又粗少妇毛片| 国产探花极品一区二区| 国产极品天堂在线| 亚洲内射少妇av| 国语对白做爰xxxⅹ性视频网站| 99久久人妻综合| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 天天躁日日操中文字幕| 亚洲人成网站在线播| 黄色一级大片看看| 日韩精品有码人妻一区| 欧美激情在线99| 久久精品国产亚洲网站| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| 亚洲最大成人av| 在线免费观看不下载黄p国产| 成人综合一区亚洲| 午夜福利高清视频| 91久久精品国产一区二区三区| 国产人妻一区二区三区在| 午夜免费观看性视频| 国产黄色免费在线视频| 国产精品精品国产色婷婷| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久久久| 国产精品偷伦视频观看了| 久久精品久久精品一区二区三区| 蜜桃亚洲精品一区二区三区| 大香蕉久久网| 久久久久久久久大av| 精品久久久精品久久久| 观看免费一级毛片| 两个人的视频大全免费| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 亚洲精品亚洲一区二区| 深爱激情五月婷婷| 欧美成人精品欧美一级黄| 黄色配什么色好看| 亚洲国产精品专区欧美| 亚洲国产精品成人综合色| 日本三级黄在线观看| 国产精品一区二区在线观看99| 国产成人91sexporn| 亚洲欧美清纯卡通| 亚洲精品一二三| 国产亚洲5aaaaa淫片| 国产高清国产精品国产三级 | 一本一本综合久久| 亚洲av成人精品一区久久| 免费观看在线日韩| 午夜激情久久久久久久| 亚洲精品日本国产第一区| 男人添女人高潮全过程视频| 国产高潮美女av| 国产亚洲午夜精品一区二区久久 | 插逼视频在线观看| 日日撸夜夜添| 男插女下体视频免费在线播放| 大又大粗又爽又黄少妇毛片口| 亚洲,欧美,日韩| 日韩一本色道免费dvd| 欧美另类一区| 国产69精品久久久久777片| 麻豆成人av视频| 只有这里有精品99| 亚洲精品久久午夜乱码| 国产精品蜜桃在线观看| 免费av不卡在线播放| 99久久中文字幕三级久久日本| 精品一区二区三区视频在线| 在线播放无遮挡| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| tube8黄色片| 久久久亚洲精品成人影院| av在线天堂中文字幕| 欧美日韩亚洲高清精品| 大陆偷拍与自拍| 国产黄a三级三级三级人| 三级国产精品片| 色综合色国产| xxx大片免费视频| 国产视频内射| 亚洲成人av在线免费| 97在线视频观看| 国产一级毛片在线| 免费观看av网站的网址| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 成人亚洲欧美一区二区av| 高清av免费在线| 亚洲精品456在线播放app| 高清午夜精品一区二区三区| 国产亚洲最大av| av线在线观看网站| 国产爱豆传媒在线观看| 18禁在线播放成人免费| 中文字幕人妻熟人妻熟丝袜美| av在线蜜桃| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 汤姆久久久久久久影院中文字幕| 久久6这里有精品| 日韩电影二区| 日本色播在线视频| 国语对白做爰xxxⅹ性视频网站| a级一级毛片免费在线观看| 日韩中字成人| 国内精品宾馆在线| 搞女人的毛片| xxx大片免费视频| 女人被狂操c到高潮| 国产av码专区亚洲av| 中国国产av一级| av黄色大香蕉| 97人妻精品一区二区三区麻豆| 99热全是精品| 亚洲第一区二区三区不卡| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 男人舔奶头视频| 久久午夜福利片| 久久亚洲国产成人精品v| 3wmmmm亚洲av在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 人妻系列 视频| 亚洲成人av在线免费| 综合色av麻豆| 国产久久久一区二区三区| 国产免费福利视频在线观看| 少妇裸体淫交视频免费看高清| 国产精品麻豆人妻色哟哟久久| 中文欧美无线码| 2021少妇久久久久久久久久久| 人人妻人人爽人人添夜夜欢视频 | 一区二区三区免费毛片| 欧美潮喷喷水| 久久久久精品久久久久真实原创| 国产 精品1| 欧美最新免费一区二区三区| 青春草亚洲视频在线观看| 在线观看一区二区三区激情| 国产精品成人在线| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 日本猛色少妇xxxxx猛交久久| 18禁动态无遮挡网站| 在线观看av片永久免费下载| 好男人视频免费观看在线| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 高清欧美精品videossex| 在线观看人妻少妇| 久久亚洲国产成人精品v| 欧美潮喷喷水| 久久精品熟女亚洲av麻豆精品| 久久久久性生活片| 国产亚洲一区二区精品| 夫妻性生交免费视频一级片| 狂野欧美激情性xxxx在线观看| 老师上课跳d突然被开到最大视频| 国产真实伦视频高清在线观看| 久久久久精品性色| 插逼视频在线观看| 亚洲,一卡二卡三卡| 国产精品人妻久久久久久| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 中文字幕av成人在线电影| 亚洲综合精品二区| 免费大片黄手机在线观看| 欧美另类一区| 国产色爽女视频免费观看| 黄片wwwwww| 成年免费大片在线观看| 午夜福利在线观看免费完整高清在| 一二三四中文在线观看免费高清| 久久久欧美国产精品| 亚洲国产欧美在线一区| 直男gayav资源| 美女主播在线视频| 三级国产精品片| 两个人的视频大全免费| 亚洲va在线va天堂va国产| 国产成人精品福利久久| 亚洲精品国产色婷婷电影| 国产成人精品一,二区| 搡女人真爽免费视频火全软件| 又爽又黄无遮挡网站| 男人舔奶头视频| 在线 av 中文字幕| 国产亚洲av嫩草精品影院| 另类亚洲欧美激情| 亚洲av福利一区| tube8黄色片| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 久久99蜜桃精品久久| 最近的中文字幕免费完整| 边亲边吃奶的免费视频| 国产在视频线精品| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| 在线播放无遮挡| 高清av免费在线| 国产 一区 欧美 日韩| av免费观看日本| 成人鲁丝片一二三区免费| 蜜臀久久99精品久久宅男| 麻豆成人午夜福利视频| 欧美xxⅹ黑人| 五月天丁香电影| 精品熟女少妇av免费看| 精品久久久精品久久久| 波野结衣二区三区在线| 久久韩国三级中文字幕| 国产成人精品福利久久| av在线播放精品| 国产一区二区三区综合在线观看 | 欧美激情久久久久久爽电影| 日本av手机在线免费观看| 91精品一卡2卡3卡4卡| 舔av片在线| 人妻一区二区av| 视频中文字幕在线观看| 久久久久久久久久成人| 欧美一区二区亚洲| 伦精品一区二区三区| 欧美性感艳星| 麻豆成人av视频| 天美传媒精品一区二区| 欧美+日韩+精品| 欧美日韩视频高清一区二区三区二| 欧美日本视频| 成人漫画全彩无遮挡| 在线播放无遮挡| 欧美一区二区亚洲| 在线精品无人区一区二区三 | 亚洲av一区综合| 亚洲国产日韩一区二区| 啦啦啦中文免费视频观看日本| 99re6热这里在线精品视频| 欧美日韩视频高清一区二区三区二| 特级一级黄色大片| 最近中文字幕高清免费大全6| 伊人久久精品亚洲午夜| 亚洲色图综合在线观看| 欧美激情久久久久久爽电影| 在线观看免费高清a一片| 黄色日韩在线| 最后的刺客免费高清国语| 国产有黄有色有爽视频| 久久国内精品自在自线图片| 国产免费福利视频在线观看| 麻豆成人午夜福利视频| 国产乱人视频| 韩国av在线不卡| 欧美日韩视频精品一区| 国产久久久一区二区三区| av免费在线看不卡| 精品人妻一区二区三区麻豆| av免费在线看不卡| 一级爰片在线观看| 亚洲国产欧美人成| 精品久久久噜噜| 亚洲欧洲国产日韩| 99热这里只有精品一区| 草草在线视频免费看| 亚洲精品第二区| 制服丝袜香蕉在线| 久久久久网色| 亚洲精品视频女| 亚洲精品中文字幕在线视频 | 噜噜噜噜噜久久久久久91| 国产毛片在线视频|