• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Gustiness and coherent structure under weak wind period in atmospheric boundary layer

    2016-11-23 01:12:57LiQiLongChengXueLingndZengQingCun

    Li Qi-Long, Cheng Xue-Lingnd Zeng Qing-Cun

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;bUniversity of Chinese Academy of Sciences, Beijing 100049, China

    Gustiness and coherent structure under weak wind period in atmospheric boundary layer

    Li Qi-Longa,b, Cheng Xue-Lingaand Zeng Qing-Cuna

    aState Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;bUniversity of Chinese Academy of Sciences, Beijing 100049, China

    Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out. The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47m, 120m, and 280m levels on Beijing 325m meteorological tower. The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts: basic mean flow (period > 10 min), gusty disturbances (1 min < period < 10 min) and turbulence fluctuations (period < 1 min). The results show that under weak mean wind condition: 1) the gusty disturbances are the most strong fluctuations, contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum, although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition; 2) the gusty wind disturbances are anisotropic; 3) the gusty wind disturbances have obviously coherent structure, and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively; 4) the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.

    ARTICLE HISTORY

    Atmospheric boundary layer; gusty wind;

    coherent structure; weak wind; downward flux of momentum

    1. Introduction

    Atmospheric boundary layer is influenced by the underlying earth surface such as frictional drag and heat transfer, the fluid motion in atmospheric boundary layer is no longer laminar flow-is turbulent. Turbulence plays an important role in transporting moisture, heat, momentum, and pollutants in the vertical direction. Local winds such as mountain and valley winds, sea breeze, which are caused by geographic variations,can transport moisture, heat, momentum, and pollutants also. Recently, researchers pay more attention to gusty wind. Gusty wind is velocity disturbance whose period is between 1 min and 10 min. Zeng, Hu, and Cheng (2007), Zeng et al. (2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011) analyzed gusty wind disturbances under strong wind period. The result shows gusty wind is characterized by coherent structure. The coherent structure of gusty wind is beneficial to vertical flux of horizontal momentum. Hence, gusty wind disturbances are as important as turbulence fluctuations in downward flux of momentum. Gusty wind disturbances can transport moisture and pollutants in the vertical direction. And it is the fundamental mechanism of gusty wind blowing dust (Zeng, Hu, and Cheng 2007).

    In engineering, the research on gusty wind is systemic and mature. Recently, more and more researchers realize gusty wind in atmospheric science. Some of them were devoted to statistical analysis of wind gusts or gust factor (Jungo,Goyette, and Beniston 2002; Boettcher et al. 2003; Paulsen and Schroeder 2005). In the prediction of gusty wind, Brasseur (2001) proposed a wind gust estimate method, and it was applied to a numerical regional climate model (Goyette, Brasseur, and Beniston 2003). Thorarinsdottir and Johnson (2012)using non-homogeneous Gaussian regression proposed a new prediction method. Some of them to the numerical simulation of wind gusts (Peinke et al. 2004; Zhu 2008; Agustsson and Olafsson 2009; Cheng, Hu, and Zeng 2012; Cheng et al. 2012).

    Although researches on gusty wind have been considerable progress. But, researches on the structure of gusty wind are still lack. Only Zeng, Hu, and Cheng (2007), Zeng et al.(2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011)found that: under strong wind period behind cold fronts, the gusty wind is characterized by a coherent structure, and the corresponding vertical velocity is negatively correlated with the horizontal wind component. The results have been verified by Guo's research (Guo et al. 2012).

    Is gustiness and coherent structure of wind universal? That is, in gusty disturbance spectrum area, whether has the gustiness and coherent structure under the weak wind condition?There is no report on it so far. We use the data obtained frommultilevel ultrasonic anemometer-thermometers located on 325m meteorological tower in Beijing in 2003 to make statistical analysis in order to fill this gap.

    For simplicity, we take the mean wind direction as the x-axis, so thatu-(t)is equal to the wind speed, and v-(t)=0.

    2. Data Processing

    2.1 Data

    The multilevel ultrasonic anemometer-thermometers (UAT-1)with frequency of 10 Hz are located at 47m, 120m, and 280m levels on 325m meteorological tower in Beijing, measuring(u,v,w) the three components of velocity and the sonic virtual temperature Ts.

    In this paper, 10 h data per month, total 120 h data in 2003 were analyzed. According to Beaufort wind scale, wind speed of 2 m/s is light breeze. So, 2 m/s is chosen as the threshold of velocity data. In all cases of 120 h data, the mean wind speed at the all the three levels are less than 2 m/s. Special atmospheric stratification is not chosen in this paper. And spikes removal is used for quality control of data.

    2.2 Extraction of gusty wind by spectral analysis

    First of all we simply use the Fourier spectral analysis to decompose the single point time series f into two parts: the low frequency part, whose period is larger than a timescale; and the high frequency part, f′, whose period is equal to and smaller than τ1. So, we have:

    Here we take τ= 10 min, call as basic or mean flow, andf′as1′the fluctuation. Next,fis decomposed further into two parts by Fourier spectral analysis with another timescale τ0=1 min,call lower frequency part as gusty wind disturbance,fg(t), and the higher frequency part as turbulences,ft(t). Thus, we haveFor example, of its three components, eiu, eiv, and eiw, andeiuand so on. Further more, we calculate the average of eiu,ivand eiwfor every 1 h (ensemblemean for one case or one hour) and denoted them as Eiu, Eiv, and Eiw, respectively.

    Figure 1. Time series of u′(t)=u(t)-u-(t),w′(t)=w(t)-w-(t)(blue), the gusty wind disturbancesug(t),wg(t)(red), and the turbulent fluctuationsu(t),w(t)(green), at 47 m at 12:00 pm-13:00 pm 5 February 2003.

    Etu, Etv, and Etware shown in Figure 2. It can be seen that in most cases they are <0.07 m2s-2. They are nearly equal in these cases; that is turbulence is nearly isotropic whenEtu< 0.07 m2s-2. But the turbulence is anisotropic whenEtu> 0.07 m2s-2.

    Egu, Egv, and Egware shown in Figure 3. It can be seen that point are not just located in the vicinity of lineEgu=Egvor Egu=Egw. Therefore, gusty wind disturbances are not isotropic but the turbulent fluctuation is near isotropic.

    Figure 4 shows ug(t)andwg(t). Time series ofug(t)and wg(t)are gusty wind wave packets, but disturbed by strong turbulence or convective eddies. In this picture, it can be seen that gusty wind at every level possesses the coherent structure: the vertical velocity is downward when horizontal velocity is in the peak phase, but upward when horizontal velocity is in the valley phase. Sometimes, convection disturbs the gusty wind and violates the coherent structure.

    where the timescale ofu- is larger than 10 min; Time scale of gusty wind disturbances is between 1 min and 10 min; and the turbulent fluctuations,ut, is less than 1 min. Zeng et al.(2010) indicated that the period of gusty wind is 3-6 min. To be prudent, we take τ0=1 min and τ1= 10 min. And this matches the definition of gusty given by WMO (2008).

    Figure 1 shows an example of time series off-, f,fg, and (f=u,w). Neglecting the rapid fluctuations, the wind gustiness in f′can be very clearly seen and well represented byfg. Series ftshows more rapid fluctuations.

    3. The Characteristics of gusty wind disturbances and turbulences

    Considering e =eg+et, where egand etcorrespond to gusty wind and turbulence, respectively. Here ei(i=t, g) is the sum

    Figure 1. (Continued).

    Figure 2.Three components of turbulence kinetic energy Etu, Etv, and Etwat three levels. (a)EtvversusEtu. (b)Etwversus Etu.

    According to Zeng, Hu, and Cheng (2007), Zeng et al.(2010), Cheng et al. (2007), and Cheng, Zeng, and Hu (2011),the coherent structure of the gusty wind disturbances is also very well represented quantitatively by the correlation coefficient,Rugwgor simply denoted as Rg:

    Table 1 gives Rg. As the same, the correlation coefficient for turbulent fluctuationis given in Table 2, and It can be seen from these tables that most ofare between 0.2 and 0.5, but most ofare less than 0.1. This clearly indicates that the structure of gusty wind disturbances is coherent,and that of turbulences is near random. Very few cases in Table 1 have<0.2, maybe they are disturbed by convection or suppressed by strong stable stratification, hence structurededdies can occur only random. These results also show, that the coherency of gusty wind disturbance under weak wind is less than that under strong wind (|Rg|>0.5, see Cheng, Zeng,and Hu (2011) ).

    Figure 3.Three components of gust kinetic energy Egu, Egv, and Egwat three levels. (a)EgvversusEgu. (b)Egwversus Egu.

    Next, the vertical flux of momentum can be directly calculated byThe direction of vertical flux contributed by the gusty disturbances even can be determined by the sign of Rg.means, that there is Rg<0and downward flux of momentum. And in our cases it is the case.

    4. The vertical profiles of turbulences and gusty disturbances

    Gust kinetic energy,eg=egu+egv+egw, turbulent kinetic energy,et=etu+etv+etw. The one-hour averages ofeg, etare denoted as Eg, Et. The vertical profiles ofEg, Etare given in Fig. 5, respectively. It can be seen that (1)Egis approximately constant with height; (2)Eg>Etat every height. Our calculations show gust kinetic energy accounted for 65% at 47 m height,64% at 120 m height, and 55% at 280 m height of total eddy kinetic energy (E′).

    Figure 4.(a) Time series ofug(t)andwg(t). (b) Time series ofut(t)andwt(t)at 47 m at 12:00 pm-13:00 pm 5 February 2003.

    Table 1.Correlation coefficients,Rg, between the two components of gusty disturbances, (ug, wg), and some basic quantity at three heights in November 2003.

    The vertical kinematic eddy flux of horizontal momentum(τx, τy) is Here ρ is the air density. The fluxes are decomposed into two parts, corresponding to gusty wind and turbulence with isotropic motion. So, we have:Program of China (2010CB951804), and the Research Program of the Chinese Academy of Sciences (XDA10010403).

    Table 2.Correlation coefficients,Rt, between the two components of turbulent fluctuations, (ut, wt) , and some basic quantity at three heights in November 2003.

    Figure 5.The vertical profile ofE, E, andE′.tg

    Figure 6.The vertical profile of ut*, ug*, andu?.

    Andug*is the friction velocities relate to gusty wind,ut*is the friction velocities relate to turbulence. The vertical profiles ofug*and ut*are given in Fig. 6, respectively.ug*and ut*are the average for 120 h.

    It can be seen that 1)ug*is approximately constant with height between 47 m and 280 m. Hence, the downward momentum flux relate to gusty wind are approximately constant with height under weak wind; 2)ut*is approximately constant with height also; 3) The downward momentum flux is approximately constant with height in the surface layer under weak wind; 4)ug*are larger than ut*at every height. Our calculations showaccounted for 85% at 47 m height, 84% at 120 m height, and 73% at 280 m height of. Hence, the gusty wind contributes about 80% downward flux of momentum under weak wind.

    5. Conclusion

    Through analyses of multilevel ultrasonic anemometerthermometer monitoring data during the weak winds period,it is revealed:

    (1) Superimposed on the basic air flow, there are gusty wind wave packets with a period between 1 min and 10 min.

    (2) Even during the weak winds period, the gusty wind is characterized by a coherent structure, and the corresponding vertical velocity is downward when horizontal velocity is in the peak phase, but upward when horizontal velocity is in the valley phase. It is the same during the strong winds period, but it is more regular during the strong winds period.

    (3) There are pronounced differences between gusty wind disturbances and turbulent fluctuations, the gusty wind disturbances are always anisotropic with moderate coherency, while the turbulent fluctuations are isotropic and nearly random.

    (4) The gusty wind disturbances (periods in the range[1 min, 10 min]) carry most of the eddy kinetic energy and play a major role in downward momentum flux. Turbulent fluctuations (period < 1 min) only contribute a few of these.

    (5) The kinetic energies of turbulent fluctuations grow with height under 280 meters. The friction velocities relate to turbulence fluctuations and gusty wind disturbances are approximately constant with height between 47 and 280 meters.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (40830103 and 41375018), the National Basic Research

    References

    Agustsson, H., and H. Olafsson. 2009. “Forecasting wind gusts in complex terrain.” Meteorology and Atmospheric Physics 103: 173-185.

    Boettcher, F., C. Renner, H. P. Waldl, and J. Peinke. 2003. “On the statistics of wind gusts.” Boundary-Layer Meteorology 108: 163-173.

    Brasseur, O. 2001. “Development and application of a physical approach to estimating wind gusts.” Monthly Weather Review 129: 5-25.

    Cheng, X. L., Q. C. Zeng, F. Hu, and Z. Peng. 2007. “Gustness and coherent structure of strong wind in the atmospheric boundary layer.” Climatic and Environmental Research (in Chinese) 12: 227-243.

    Cheng, X. L., Q. C. Zeng, and F. Hu. 2011. “Characteristics of gusty wind disturbances and turbulent fluctuations in windy atmospheric boundary layer behind cold fronts.” Journal of Geophysical Research 116: D06101. doi: 10.1029/2010JD015081.

    Cheng, X. L., F. Hu, and Q. C. Zeng. 2012. “Simulation of wind gust structure in the atmospheric boundary layer with Lattice Boltzmann Method.” Chinese Science Bulletin 57: 1196-1203.

    Cheng, X. L., L. Wu, F. Hu, and Q. C. Zeng. 2012. “Parameterizations of some important characteristics of turbulent fluctuations and gusty wind disturbances in the atmospheric boundary layer.” Journal of Geophysical Research 117: D08113. doi:10.1029/2011JD017191.

    Goyette, S., O. Brasseur, and M. Beniston. 2003. “Application of a new wind gust parameterization: Multiscale case studies performed with the Canadian regional climate model.” Journal of Geophysical Research 108: 4374. doi:10.1029/2002JD002646.

    Guo, Y. Q., R. M. Yuan, T. Luo, J. N. Sun, and W. W. Jiang. 2012. “Research on relationships between high-speed coherent structure and turbulence flux.” Chinese Journal of Atmospheric Sciences (in Chinese) 36: 733-743.

    Jungo, P., S. Goyette, and M. Beniston. 2002. “Daily wind gust speed probabilities over Switzerland according to three types of synoptic circulation.” International Journal of Climatology 22: 485-499.

    Paulsen, B. M., and J. L. Schroeder. 2005. “An examination of tropical and extratropical gust factors and the associated wind speed histograms.” Journal of Applied Meteorology 44: 270-280.

    Peinke, J., S. Barth, F. Bottcher, D. Heinemann, and B. Lange. 2004.“Turbulence, a challenging problem for wind energy.” Physica A 338: 187-193.

    Thorarinsdottir, T. L., and M. S. Johnson. 2012. “Probabilistic wind gust forecasting using nonhomogeneous Gaussian regression.”Monthly Weather Review 140: 889-897.

    WMO (World Meteorological Organization). 2008. Guide to Meteorological Instruments and Methods of Observation. 7th ed. Chapter 5, Part I. WMO.

    Zeng, Q. C., F. Hu, and X. L. Cheng. 2007. “The mechanism of dust entrainment by gustwind.” Climatic and Environmental Research(in Chinese) 12: 251-255.

    Zeng, Q. C., X. L. Cheng, F. Hu, and Z. Peng. 2010. “Gustiness and coherent structure of strong winds and their role in dust emission and entrainment.” Advance in Atmospheric Science 27: 1-13.

    Zhu, P. 2008. “A multiple scale modeling system for coastal hurricane wind damage mitigation.” Natural Hazards 47: 577-591.

    29 May 2015 Accepted 13 July 2015

    CONTACT Cheng Xue-Ling chengxl@mail.iap.ac.cn

    ? 2015 The Author(s). Published by Taylor & Francis.

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) which permits unrestricted use, distribution,and reproduction in any medium, provided the original work is properly cited.

    肉色欧美久久久久久久蜜桃| 久久这里只有精品19| 免费女性裸体啪啪无遮挡网站| 色5月婷婷丁香| 自线自在国产av| av视频免费观看在线观看| 99久久人妻综合| 韩国高清视频一区二区三区| 美女中出高潮动态图| 深夜精品福利| 看免费成人av毛片| 精品熟女少妇av免费看| 看非洲黑人一级黄片| av一本久久久久| 色吧在线观看| 精品一区二区免费观看| 纵有疾风起免费观看全集完整版| 18+在线观看网站| 精品一品国产午夜福利视频| 午夜影院在线不卡| 国产午夜精品一二区理论片| 亚洲精品久久成人aⅴ小说| 一个人免费看片子| 精品一品国产午夜福利视频| 一区二区日韩欧美中文字幕 | 捣出白浆h1v1| 日韩熟女老妇一区二区性免费视频| 人人妻人人爽人人添夜夜欢视频| 99re6热这里在线精品视频| 亚洲人成网站在线观看播放| 免费看不卡的av| 国产精品国产av在线观看| 日韩精品免费视频一区二区三区 | 最近最新中文字幕大全免费视频 | 热99久久久久精品小说推荐| 亚洲av欧美aⅴ国产| 国产黄频视频在线观看| 婷婷色综合大香蕉| 亚洲欧洲国产日韩| 国产av国产精品国产| 啦啦啦啦在线视频资源| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 国产亚洲欧美精品永久| 国产老妇伦熟女老妇高清| 亚洲国产毛片av蜜桃av| 久久久久精品人妻al黑| 国产av精品麻豆| 日韩人妻精品一区2区三区| 26uuu在线亚洲综合色| 国国产精品蜜臀av免费| 日韩大片免费观看网站| 精品第一国产精品| 丝袜在线中文字幕| 久久久久国产网址| 日本与韩国留学比较| 久久久国产一区二区| 99久久精品国产国产毛片| 亚洲图色成人| 99国产综合亚洲精品| 免费高清在线观看视频在线观看| 国国产精品蜜臀av免费| 国产日韩欧美视频二区| 久久这里有精品视频免费| 亚洲欧美一区二区三区黑人 | 久久午夜福利片| 纯流量卡能插随身wifi吗| 日韩欧美一区视频在线观看| 永久网站在线| 国产精品人妻久久久影院| 嫩草影院入口| 精品人妻一区二区三区麻豆| 久久久国产精品麻豆| 日韩中字成人| 黄色毛片三级朝国网站| 精品亚洲成国产av| 男女免费视频国产| 色哟哟·www| 国产精品久久久久久精品电影小说| 国产亚洲精品第一综合不卡 | 亚洲精品第二区| 日韩一区二区视频免费看| 亚洲一码二码三码区别大吗| 亚洲av福利一区| 一本久久精品| 精品人妻一区二区三区麻豆| 欧美日韩一区二区视频在线观看视频在线| 99香蕉大伊视频| 桃花免费在线播放| 婷婷色综合www| av线在线观看网站| 久久女婷五月综合色啪小说| 日日撸夜夜添| 女性被躁到高潮视频| 亚洲国产毛片av蜜桃av| 纵有疾风起免费观看全集完整版| 国产亚洲欧美精品永久| 激情视频va一区二区三区| 免费看不卡的av| 国产黄色免费在线视频| 看免费av毛片| 午夜精品国产一区二区电影| 伦理电影大哥的女人| 国产国语露脸激情在线看| 午夜福利视频精品| av在线老鸭窝| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 久热久热在线精品观看| 国产av精品麻豆| 亚洲av福利一区| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 视频在线观看一区二区三区| 国产成人av激情在线播放| 欧美丝袜亚洲另类| 国产在线免费精品| 精品久久久久久电影网| 亚洲国产精品成人久久小说| 久久久欧美国产精品| 婷婷色麻豆天堂久久| av一本久久久久| 激情视频va一区二区三区| 十八禁网站网址无遮挡| 日韩制服骚丝袜av| a级毛片黄视频| 男女无遮挡免费网站观看| 精品福利永久在线观看| 男女高潮啪啪啪动态图| 黄色 视频免费看| 精品少妇黑人巨大在线播放| 欧美bdsm另类| 9191精品国产免费久久| 久热这里只有精品99| 丝袜人妻中文字幕| 亚洲成人手机| 两个人免费观看高清视频| 亚洲av国产av综合av卡| 免费大片18禁| 伊人久久国产一区二区| 日韩人妻精品一区2区三区| 狂野欧美激情性xxxx在线观看| 建设人人有责人人尽责人人享有的| 亚洲国产精品999| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 高清毛片免费看| 亚洲av电影在线进入| 各种免费的搞黄视频| 老司机影院成人| 午夜视频国产福利| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 在线观看一区二区三区激情| 欧美日本中文国产一区发布| 国产免费福利视频在线观看| 久久久a久久爽久久v久久| 国产在线免费精品| 国产熟女欧美一区二区| 国产精品秋霞免费鲁丝片| 亚洲色图 男人天堂 中文字幕 | av国产精品久久久久影院| 黄网站色视频无遮挡免费观看| 黑人巨大精品欧美一区二区蜜桃 | 制服诱惑二区| 免费在线观看黄色视频的| 中国国产av一级| a 毛片基地| 国产亚洲精品第一综合不卡 | 9色porny在线观看| 大香蕉97超碰在线| 国产深夜福利视频在线观看| 国产高清三级在线| 香蕉丝袜av| av片东京热男人的天堂| 久久韩国三级中文字幕| 人妻人人澡人人爽人人| 老熟女久久久| 亚洲,欧美精品.| 精品国产一区二区三区久久久樱花| 国产男女超爽视频在线观看| 国产探花极品一区二区| 1024视频免费在线观看| av又黄又爽大尺度在线免费看| 精品国产国语对白av| 国产 精品1| 国产欧美日韩一区二区三区在线| 考比视频在线观看| 久久99一区二区三区| 国产一区二区在线观看av| 亚洲情色 制服丝袜| 建设人人有责人人尽责人人享有的| 久久狼人影院| 在线天堂最新版资源| 成人国产麻豆网| 色视频在线一区二区三区| 国产乱来视频区| 亚洲精华国产精华液的使用体验| 国产探花极品一区二区| 亚洲一码二码三码区别大吗| 我的女老师完整版在线观看| 久久韩国三级中文字幕| 中文字幕免费在线视频6| 欧美老熟妇乱子伦牲交| 满18在线观看网站| 国产成人精品婷婷| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久久免| 夜夜爽夜夜爽视频| 99国产综合亚洲精品| 91aial.com中文字幕在线观看| 久久久久久久精品精品| 9热在线视频观看99| 老女人水多毛片| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 伊人久久国产一区二区| 欧美日韩成人在线一区二区| av电影中文网址| 日韩在线高清观看一区二区三区| 桃花免费在线播放| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 丝瓜视频免费看黄片| 满18在线观看网站| 毛片一级片免费看久久久久| 秋霞伦理黄片| 国产成人91sexporn| 欧美日韩av久久| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 久久人人爽人人片av| 久久久久久久久久人人人人人人| 国产日韩一区二区三区精品不卡| 乱码一卡2卡4卡精品| 免费人妻精品一区二区三区视频| 国产精品熟女久久久久浪| 深夜精品福利| 日韩av免费高清视频| 亚洲精品国产av蜜桃| 国产成人精品久久久久久| 亚洲精品av麻豆狂野| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 少妇熟女欧美另类| 国产精品 国内视频| 黄色毛片三级朝国网站| 宅男免费午夜| 各种免费的搞黄视频| 久久精品久久久久久久性| av.在线天堂| 久久99热这里只频精品6学生| 免费少妇av软件| 只有这里有精品99| 99久久精品国产国产毛片| 国产探花极品一区二区| 国产精品免费大片| 极品少妇高潮喷水抽搐| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 亚洲 欧美一区二区三区| 久久精品aⅴ一区二区三区四区 | 啦啦啦中文免费视频观看日本| 新久久久久国产一级毛片| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 宅男免费午夜| 九色成人免费人妻av| 天天躁夜夜躁狠狠躁躁| 成人手机av| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 在线观看三级黄色| 九九爱精品视频在线观看| 日韩人妻精品一区2区三区| 热re99久久国产66热| 日韩视频在线欧美| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 制服丝袜香蕉在线| 天堂8中文在线网| 国产淫语在线视频| 十分钟在线观看高清视频www| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| 久久久久精品性色| 寂寞人妻少妇视频99o| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| 视频在线观看一区二区三区| 亚洲国产精品成人久久小说| 久久人妻熟女aⅴ| 久久精品久久精品一区二区三区| 亚洲,欧美精品.| 少妇的逼好多水| 涩涩av久久男人的天堂| 人人妻人人澡人人看| 日韩一区二区三区影片| 亚洲精品自拍成人| 欧美日韩av久久| 国产一区二区激情短视频 | 日韩欧美精品免费久久| 亚洲成av片中文字幕在线观看 | 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| 亚洲综合色惰| 高清在线视频一区二区三区| 街头女战士在线观看网站| av不卡在线播放| 国产av一区二区精品久久| 黑人高潮一二区| 自线自在国产av| 在线观看免费日韩欧美大片| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 美女福利国产在线| 亚洲,欧美,日韩| 国产亚洲午夜精品一区二区久久| 午夜影院在线不卡| 十分钟在线观看高清视频www| 亚洲国产欧美日韩在线播放| 亚洲四区av| a级片在线免费高清观看视频| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 国产一区二区在线观看av| 女性被躁到高潮视频| 欧美日韩综合久久久久久| 久久99热这里只频精品6学生| 久久久精品免费免费高清| 国产精品国产三级国产av玫瑰| 亚洲精品456在线播放app| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 在线天堂最新版资源| 久久 成人 亚洲| tube8黄色片| 久久久亚洲精品成人影院| 欧美日韩视频高清一区二区三区二| 激情视频va一区二区三区| 大香蕉久久网| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 男女国产视频网站| 日韩欧美一区视频在线观看| 亚洲国产欧美在线一区| 国产精品麻豆人妻色哟哟久久| 搡女人真爽免费视频火全软件| 老司机影院成人| 亚洲精品一二三| 国产国拍精品亚洲av在线观看| 99热这里只有是精品在线观看| av有码第一页| 国产av国产精品国产| 91精品三级在线观看| 两个人看的免费小视频| 亚洲,欧美,日韩| 人人澡人人妻人| 蜜桃在线观看..| 国产亚洲午夜精品一区二区久久| 国产精品久久久av美女十八| 国产精品国产三级国产av玫瑰| av线在线观看网站| 亚洲美女视频黄频| 韩国精品一区二区三区 | 18禁观看日本| 亚洲av成人精品一二三区| 国产精品久久久久久精品古装| 汤姆久久久久久久影院中文字幕| 亚洲欧美日韩另类电影网站| 国产黄色免费在线视频| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 51国产日韩欧美| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 大话2 男鬼变身卡| 久久久久网色| 纵有疾风起免费观看全集完整版| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 国产老妇伦熟女老妇高清| 免费女性裸体啪啪无遮挡网站| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 99九九在线精品视频| videosex国产| 中文字幕av电影在线播放| 精品少妇黑人巨大在线播放| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 久久久久久久精品精品| 波野结衣二区三区在线| 春色校园在线视频观看| 国产av码专区亚洲av| 成人无遮挡网站| 国产高清不卡午夜福利| videossex国产| 欧美最新免费一区二区三区| 日韩欧美精品免费久久| 欧美日韩一区二区视频在线观看视频在线| 午夜福利影视在线免费观看| 亚洲欧美精品自产自拍| 下体分泌物呈黄色| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| 国产精品国产三级专区第一集| 久久人人爽人人片av| 2022亚洲国产成人精品| 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 一边摸一边做爽爽视频免费| 国产精品一国产av| 午夜精品国产一区二区电影| 久久这里只有精品19| 亚洲av在线观看美女高潮| 国产麻豆69| 欧美成人精品欧美一级黄| 99香蕉大伊视频| 亚洲精品国产av蜜桃| 国产黄频视频在线观看| 成人二区视频| 国产一区二区三区av在线| 国产亚洲一区二区精品| 91国产中文字幕| 免费看av在线观看网站| 欧美亚洲 丝袜 人妻 在线| 亚洲人与动物交配视频| 免费高清在线观看视频在线观看| 欧美成人午夜精品| 街头女战士在线观看网站| 热re99久久精品国产66热6| 大香蕉久久成人网| 免费看av在线观看网站| 26uuu在线亚洲综合色| 三上悠亚av全集在线观看| 七月丁香在线播放| 日韩视频在线欧美| 国产精品一区二区在线不卡| 99re6热这里在线精品视频| 91在线精品国自产拍蜜月| 国产在线免费精品| 最后的刺客免费高清国语| 欧美老熟妇乱子伦牲交| av线在线观看网站| 2022亚洲国产成人精品| 曰老女人黄片| 波野结衣二区三区在线| 青青草视频在线视频观看| 久久狼人影院| 一级毛片 在线播放| 韩国精品一区二区三区 | 男人爽女人下面视频在线观看| 欧美激情 高清一区二区三区| 久久这里只有精品19| 一二三四在线观看免费中文在 | 欧美另类一区| 精品亚洲乱码少妇综合久久| 最黄视频免费看| 欧美亚洲日本最大视频资源| 久久久亚洲精品成人影院| 久久久久网色| 欧美xxⅹ黑人| 婷婷色综合www| 日本免费在线观看一区| 一区二区三区乱码不卡18| 国产成人精品福利久久| 视频中文字幕在线观看| 免费看不卡的av| 亚洲欧洲日产国产| 久久这里有精品视频免费| 亚洲欧美成人综合另类久久久| 久久久久久久大尺度免费视频| 日产精品乱码卡一卡2卡三| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 午夜91福利影院| www.av在线官网国产| 亚洲欧洲精品一区二区精品久久久 | 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| 两个人看的免费小视频| 久久毛片免费看一区二区三区| 中文精品一卡2卡3卡4更新| 最近手机中文字幕大全| 日本黄色日本黄色录像| 国产高清国产精品国产三级| 久久狼人影院| 久久人人爽人人爽人人片va| 精品人妻一区二区三区麻豆| 搡女人真爽免费视频火全软件| 飞空精品影院首页| 在线观看免费日韩欧美大片| 亚洲精品成人av观看孕妇| 亚洲精品aⅴ在线观看| 亚洲av免费高清在线观看| 日本免费在线观看一区| 精品少妇内射三级| 欧美激情极品国产一区二区三区 | 99国产精品免费福利视频| 高清av免费在线| 国产片内射在线| 午夜福利视频在线观看免费| 亚洲国产av影院在线观看| 黄色 视频免费看| 国产极品天堂在线| 最近的中文字幕免费完整| 美女大奶头黄色视频| 久久久久网色| 永久免费av网站大全| 亚洲国产色片| 满18在线观看网站| 老司机影院成人| 高清黄色对白视频在线免费看| 老司机亚洲免费影院| 精品熟女少妇av免费看| 国产亚洲精品久久久com| av.在线天堂| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| av电影中文网址| 插逼视频在线观看| 欧美日韩国产mv在线观看视频| 人人妻人人澡人人爽人人夜夜| 亚洲成人手机| 久久久久久久久久人人人人人人| 精品少妇内射三级| 人成视频在线观看免费观看| 欧美3d第一页| 一级毛片 在线播放| 久久亚洲国产成人精品v| 精品国产国语对白av| 日韩av在线免费看完整版不卡| 纯流量卡能插随身wifi吗| 午夜久久久在线观看| 亚洲国产日韩一区二区| 久久久久网色| 观看av在线不卡| 日韩视频在线欧美| av国产精品久久久久影院| 人成视频在线观看免费观看| 三上悠亚av全集在线观看| 一级片'在线观看视频| 99国产精品免费福利视频| 欧美人与性动交α欧美软件 | www日本在线高清视频| 这个男人来自地球电影免费观看 | 婷婷成人精品国产| 最近最新中文字幕免费大全7| 中国美白少妇内射xxxbb| 9191精品国产免费久久| 亚洲精品久久久久久婷婷小说| 91成人精品电影| 9色porny在线观看| 免费观看av网站的网址| 欧美亚洲日本最大视频资源| 久久久久视频综合| 国产毛片在线视频| 2021少妇久久久久久久久久久| 欧美日韩成人在线一区二区| 精品亚洲乱码少妇综合久久| 激情五月婷婷亚洲| 大陆偷拍与自拍| 亚洲五月色婷婷综合| 精品国产一区二区久久| av视频免费观看在线观看| 9191精品国产免费久久| 久久99精品国语久久久| 少妇精品久久久久久久| 国产精品女同一区二区软件| 日本免费在线观看一区| 美女视频免费永久观看网站| 高清av免费在线| 亚洲av电影在线进入| 人妻系列 视频| 亚洲国产av新网站| 热99久久久久精品小说推荐| 9191精品国产免费久久| 国产黄色免费在线视频| 久久久国产欧美日韩av| 国产精品女同一区二区软件| av.在线天堂| 黄色 视频免费看| 欧美精品国产亚洲| 99re6热这里在线精品视频| 大香蕉97超碰在线| 亚洲色图 男人天堂 中文字幕 | 国产一区二区在线观看日韩| 午夜免费观看性视频| 国产免费一区二区三区四区乱码| 大香蕉久久成人网| 国产免费又黄又爽又色| 精品少妇内射三级| 免费人妻精品一区二区三区视频| 国产精品久久久av美女十八| 日日摸夜夜添夜夜爱| 视频在线观看一区二区三区| 久久久国产欧美日韩av| 黄色毛片三级朝国网站| 国产黄色免费在线视频| 国产精品麻豆人妻色哟哟久久| 一二三四中文在线观看免费高清| 视频在线观看一区二区三区| 丝袜喷水一区| 国产成人免费无遮挡视频| 婷婷色麻豆天堂久久| 欧美精品高潮呻吟av久久| 久久韩国三级中文字幕| av在线观看视频网站免费| 亚洲少妇的诱惑av|