• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of the individual allocation scheme and its impacts in a dynamic global vegetation model

    2016-11-23 01:12:55SONGXingZENGXioDongbndLIFng
    關(guān)鍵詞:成熟林時間尺度水循環(huán)

    SONG Xing, ZENG Xio-Dong,bnd LI Fng

    aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

    Evaluation of the individual allocation scheme and its impacts in a dynamic global vegetation model

    SONG Xianga, ZENG Xiao-Donga,band LI Fanga

    aInternational Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029,China;bCollaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, China

    The strategies of plant growth play an important role not only in ecosystem structure, but also in global carbon and water cycles. In this work, the individual carbon allocation scheme of tree PFTs and its impacts were evaluated in China with Institute of Atmospheric Physics-Dynamic Global Vegetation Model, version 1.0 (IAP-DGVM1.0) as a test-bed. The results showed that, as individual growth, the current scheme tended to allocate an increasing proportion of annual net primary productivity (NPP) to sapwood and decreasing proportions to leaf and root accordingly, which led to underestimated individual leaf biomass and overestimated individual stem biomass. Such biases resulted in an overestimation of total ecosystem biomass and recovery time of mature forests, and an underestimation of ecosystem NPP and tree leaf area index in China.

    ARTICLE HISTORY

    Accepted 29 July 2015

    IAP-DGVM1.0; individual

    allocation scheme; biomass;carbon residence time; China

    植物的生長策略不僅影響生態(tài)系統(tǒng)結(jié)構(gòu),而且對全球碳、水循環(huán)也起著至關(guān)重要的作用。本文以中國科學(xué)院大氣物理研究所研發(fā)的第一代全球植被動力學(xué)模式IAP-DGVM1.0為平臺,考察森林生態(tài)系統(tǒng)中樹的個體生長方案及其影響。結(jié)果表明,與觀測相比,模式高估了個體莖生物量,低估了個體葉生物量,從而進一步高估了中國森林生態(tài)系統(tǒng)的總生物量和成熟林受干擾后恢復(fù)的時間尺度,低估了生態(tài)系統(tǒng)凈初級生產(chǎn)力和葉面積指數(shù)。

    1. Introduction

    In recent years, dynamic global vegetation models(DGVMs) have been developed to simulate the distribution of various PFTs and to depict land-atmospheric interactions (Cox 2001; Krinner et al. 2005; Levis et al. 2004; Sitch et al. 2003; Woodward, Lomas, and Lee 2000). However,some studies have shown that existing DGVMs produce a wide variety of simulations or predictions regarding the strength and direction of climate-carbon cycle feedback(Sitch et al. 2008), which may be due to uncertainties and biases from models' dynamic behaviors. In this context,we discuss the individual carbon allocation scheme and its impacts on ecosystem characteristics.

    In nature, how plants allocate carbon among different organs is important not only for plant growth but also for decomposition, carbon and nitrogen sequestration, and plant-atmosphere water exchange (Aber et al. 1991). Previous work has shown that light and nutrient competition are the most important factors determining growth strategies (Tilman 1988): individuals growing in regions with high light competition should allocate more of their net primary productivity (NPP) to the stem in order to grow taller and outcompete others for light; while in resource-poor regions, individuals tend to be in favor of germinating new fine roots to acquire belowground resources. Meanwhile, other work has shown that biomass allocation patterns are not too different among species(Chapin 1980). Therefore, based on the dependences of individual allocation in resources, allocation schemes in commonly-used DGVMs fall into three classes: (1)Complete dynamic allocation, such as in the adaptive Dynamic Global Vegetation Model (aDGVM) (Scheiter and Higgins 2009) and Canadian Terrestrial Ecosystem Model(CTEM) (Arora and Boer 2005). In aDGVM, the proportions of allocated annual NPP to leaf, stem, and fine root are relative to the ratio between leaf and total individual biomass,target individual height, and the competitor's height, as well as the water content in root zones, respectively. CTEM adopts a similar allocation scheme as aDGVM, in which allocation is determined by the availability of water insoil layers and the availability of light measured by leaf area index (LAI). (2) Partial dynamic allocation, such as in Community Land Model version 4.5-Carbon-Nitrogen Dynamic Vegetation model (CLM4.5-CNDV) (Oleson et al. 2013). CLM4.5-CNDV adds several carbon pools to distinguish fine root and coarse root, and different parts of the stem, but all of the ratios concerned with allocation are constant except the allocation ratio of new stem and new leaf carbon, which are dependent on annual NPP.(3) Individual allocation based on fixed ratios, such as in the Lund-Potsdam-Jena DGVM (LPJ) (Sitch et al. 2003),Integrated Biosphere Simulator (IBIS) (Kucharik et al. 2000),Organizing Carbon and Hydrology in Dynamic Ecosystems(ORCHIDEE) (Krinner et al. 2005), Ecosystem Demography model (Moorcroft, Hurtt, and Pacala 2001), and CLM3.0-DGVM (Levis et al. 2004), among others. In these DGVMs,annual NPP is allocated to the individual leaf, sapwood,and root based on some fixed ratios or relationships at each time step.

    Table 1.Parameters for the individual allocation scheme.

    To address the impacts of tree individual growth,Institute of Atmospheric Physics-Dynamic Global Vegetation Model, version 1.0 (IAP-DGVM1.0) (Zeng, Li, and Song 2014) was chosen as a test-bed to discuss the impacts of the individual carbon allocation scheme on ecosystem characteristics in China. Section 2 introduces IAP-DGVM1.0 and its individual carbon allocation scheme, and describes the observational data used in this study. The results are analyzed in Section 3, and further discussion and conclusions are presented in Section 4.

    2. Materials

    2.1. Model description

    IAP-DGVM1.0 was developed by the Institute of Atmospheric Physics, Chinese Academy of Sciences, and adopted concepts from the LPJ DGVM (Sitch et al. 2003)and CLM-DGVM (Levis et al. 2004). It considers photosynthesis, respiration, phenology, individual carbon allocation,competition, survival and establishment, mortality, litter decomposition, soil respiration, and fire disturbance. The main characteristics are the new developments of a shrub sub-model (Zeng 2010; Zeng, Zeng, and Barlage 2008),establishment parameterization scheme (Song 2012; Song and Zeng 2014), and a process-based fire parameterization of intermediate complexity (Li, Zeng, and Levis 2012). A detailed description of IAP-DGVM1.0 is available in Zeng, Li, and Song (2014), and so is repeated here. Because the processes of individual growth are the key points in this work, the corresponding schemes are described in the following subsection.

    2.2. Individual allocation scheme for woody PFTs

    IAP-DGVM1.0 uses a similar individual carbon allocation scheme as CLM3.0-DGVM, but removes the effects of the water stress factor on the ratio of the individual leaf and root biomasses. In the model, the leaf is the sole organ that produces photosynthesis. In each year, due to turnover, plants will lose half or all of their leaves and roots. Meanwhile, 1/20 of sapwood biomass will be transformed into heartwood (heartwood has no turnover). At the end of each year, the summed NPP in the whole year is allocated to leaf, sapwood, and root after deducting the reproduction cost. The allocation for woody PFTs(including trees and shrubs) follows (Zeng, Li, and Song 2014)

    where Aland Asare the individual leaf area and sapwood cross sectional area; Cleafand Crootdenote individual leaf and root biomass, respectively; H, D, and Ω (Ω ≤ 15 m2)represent individual height, stem diameter and crown area, respectively; and kls, klr, ka1, ka2, ka3, and krpare PFT-dependent parameters (Table 1). Furthermore, Aland Cleafmeet:

    where ζ is the specific leaf area, a PFT-dependent parameter; and the stem biomass (Cstem) is calculated by:

    where ρ is wood density, and Vstemis the stem volume.

    2.3. Data

    Figure 1.The relationships between individual stem volume (Vstem; m3per individual) and annual allocation proportions of NPP to (a) leaf(Fleaf; %), (c) sapwood (Fsap; %), and (e) root (Froot; %); as well as (g) the frequency distribution of Fleaf(σ; %) from simulation. Panels (b, d, f,and h) are the results from CERN observation data.

    Products from the Chinese Ecosystem Research Network(CERN) were used for analysis. The observational methods and analytical standards regarding this dataset are described briefly in Dong et al. (1997). In this study,the observational data were from 1246 quadrats and published in the year 2004 (Luo 1994) (http://159.226.111.42/ pingtai/cernc/). Because IAP-DGVM1.0 considers only natural ecosystems and does not refer to human activities,only data regarding natural forests were selected. The filtered data covered tropical rainforest and monsoon forest, subtropical evergreen broadleaf/coniferous forest,temperate deciduous broadleaf forest, boreal evergreen/ deciduous coniferous forest, and so forth. The forest stand ages ranged from 10 to 350 years, and the mean annual temperature and annual total precipitation were -6.6 to 25.2 °C and 27.6-2989.1 mm, respectively.

    3. Results

    To evaluate the individual growth dynamics and its effects in IAP-DGVM1.0 coupled with CLM3.0 (CLM-IAP-DGVM1.0),an 800-year regional offline simulation at T-62 resolution was performed, forced with 16 repetitions of 50 years of reanalysis of surface atmospheric fields (1950-1999) from Qian et al. (2006). The variables were averaged over the last 50 simulation years (steady states) for statistical analysis.

    Figure 2.Comparisons of (a) PFT-average individual leaf biomass and (b) stem biomass, (c) the relationship between individual stem volume (Vstem; m3per individual) and the ratio of individual stem biomass and leaf biomass (Cstem/Cleaf); and (d) the zonal mean of tree maximum total leaf area index (TLAImax; m2m-2) between simulation and observation.

    3.1. The dynamic behaviors of the individual allocation scheme

    Stem volume is an important index describing individual size and depicting the net growth rate of a tree. Therefore, the relationships between individual stem volume (Vstem; m3per individual) and annual allocation proportions of NPP to leaf (Fleaf; %), sapwood (Fsap; %),and root (Froot; %) were investigated. In order to focus on the core area of forests, only the cases with the summed fractional coverage of all tree PFTs in each grid cell (Ftree)greater than 20% were considered. It was found that,along with individual growth, Fleafdecreased from 45% to around 28% (Figure 1a), while Fsapgrew from 10% to almost 43% (Figure 1c). However, in the observational data, Fleafand Fsapranged from about 8% to 88% and 8% to 78%, respectively. Furthermore, the indication was that larger individuals could have higher Fleafand lower Fsap(Figures 1b and 1d). In addition, based on the frequency distribution of Fleaf(σ; %), about 86% of the simulated core forest areas had individuals with Fleafbelow 35% in China (Figure 1g), while only about 36% of observational forests had a mean Fleafbelow 35%(Figure 1h). Such results implied that Fleafwas seriously underestimated, and this may be because, in the current allocation scheme, Fleafis inversely related to individual size. As for root, Frootis assumed to be equivalent to Fleafin the model. Compared with observational data (Figure 1f), both the simulated Frootand the observational Frootdecreased with Vstem, but the simulation was higher than the observation.

    3.2. Impacts of the individual allocation scheme on individual biomass and tree LAI simulation in China Figures 2a and 2b show the PFT-average level comparisons with respect to individual stem biomass (Cstem; kgC per individual) and leaf biomass (Cleaf; kgC per individual)between simulations and observations in China, respectively. Note that the simulated tree PFTs in China were NEB-Tr (boreal needleleaf evergreen tree), BDB-Tr (boreal broadleaf deciduous tree), NEM-Tr (temperate needleleaf evergreen tree), BDM-Tr (temperate broadleaf deciduous tree), and BEM-Tr (temperate broadleaf evergreen tree),in which BDB-Tr and BEM-Tr did not have associated field measurements. Our analysis (figures omitted) found that the regions dominated by simulated BEM-Tr were mainly subtropical broadleaf evergreen forests (BEST) in observations, so the observational data for BEST were used to evaluate BEM-Tr in this study. As for BDB-Tr, the forest area was small in the simulation and the information about this forest type in CERN data was limited; therefore, only the simulated results are shown. The results showed that IAPDGVM1.0 underestimated Cleaffor all tree PFTs (Figure 2a),and overestimated Cstemfor most of them except NEB-Tr(Figure 2b). According to the statistics, the absolute biases(|observation - simulation|) in Cleafranged from 1.88 kgC per individual for NEM-Tr to 2.16 and 2.79 kgC per individual for BDM-Tr and NEB-Tr, to 3.49 kgC per individual for BEM-Tr; while the relative biases (|observation - simulation|/observation) in Cleafranged from 42.53% for NEM-Tr to 79.50% for NEB-Tr. Furthermore, the biases in Cstemseemed much larger, where the absolute biasesranged from 25.14 kgC per individual for NEB-Tr to 317.62 kgC per individual for BEM-Tr, and the relative biases were from 34.20% for NEB-Tr to 534.61% for BDM-Tr. Such large biases in Cleafand Cstemmay mainly result from higher Fsapand lower Fleaf(Figure 1). Because root has the same allocated proportion of annual NPP and turnover rate as leaf in the model, the result for root biomass was similar to Cleaf;therefore, it is omitted here.

    As described above, IAP-DGVM1.0 follows the classical‘pipe model', which assumes sapwood functions as a set of pipes to support root water uptake and canopy transpiration, and its cross-sectional area (conductance) is proportional to total leaf area. Meanwhile, cross-sectional area and leaf area are proportional to sapwood biomass and leaf biomass, respectively, in the model. So, the ratio between individual sapwood biomass (Cstem; kgC per individual) and leaf biomass (Cleaf; kgC per individual) can reasonably reflect Equation (1), to some extent.

    However, in the CERN data, the whole stem is divided into branch and trunk (not distinguishing sapwood and heartwood), while the model assumes the individual stem includes sapwood and heartwood. Therefore, the ratio between the biomass of the whole stem (e.g. the summation for sapwood and heartwood in the model vs. the summation for trunks and branches in the observations) and the leaf biomass was used for one-to-one comparisons.

    From Figure 2c, the ratio Cstem/Cleafincreased with individual growth, i.e. larger individuals needed more stem biomass to support leaf biomass in unit mass, which was in accordance with observations. However, the simulated ratio Cstem/Cleafwas obviously larger and had faster growth,with Vstemin common interval (2 × 10-3≤ Vstem≤ 10 m3per individual), which may also result from high Fsapas well as low Fleaf.

    Furthermore, LAI was also evaluated. Because the main research object in this work was forest, tree LAIs of Chinese forests, rather than ecosystem LAIs, were investigated. Figure 2d shows the zonal mean of tree maximum total LAIs (TLAImax; m2m-2) for Chinese forests. Due to underestimated Cleaf, TLAImaxwas extensively underestimated for all forest types in China. The differences in TLAImaxbetween simulations and observations were relatively smaller over 48-53°N, where NEB-Tr was dominant, but much larger in other regions, and the maximum difference reached 8.5 m2m-2at around 20°N. Furthermore, the model did not capture the observed TLAImaxpeaks around 20°N, 28-33°N,42.5°N, and 47°N.

    3.3. Impacts of the individual allocation scheme on ecosystem characteristics in China

    Next, ecosystem biomass (Ceco; kgC m-2), ecosystem net primary production (NPPeco; kgC m-2yr-1) and the residence time of carbon in living biomass (Teco; yr) were evaluated (Figure 3). It was found that both the simulated Cecoand NPPecoincreased with increasing mean annual precipitation (MAP; mm) and temperature (MAT; °C), i.e. warm and humid subtropical or tropical forests had higher ecosystem biomass and NPP per unit area, which was consistent with observations (Figure 3a vs. 3b; Figure 3c vs. 3d). However, as IAP-DGVM1.0 remarkably overestimated Cstemin general, especially for BEM-Tr and BDM-Tr, the simulated Cecowas higher than observed, and the largest bias existed in temperate regions where MAT and MAP were around 6 °C-12 °C and 1000-1400 mm, respectively (Figure 3a vs. 3b). Meanwhile, leaf is the sole organ that produces photosynthesis in the model. So, underestimating Cleafmay result in an underestimation of gross primary production,and subsequently NPP. From Figures 3c and 3d, the biases in NPP were also mainly from temperate and subtropical forests. The results shown in Figures 3a and 3c together lead to relatively higher residence times of carbon in living biomass (Teco), defined by (Ricklefs 2008).

    Overall, the simulated Tecowas larger than observed,except in arid regions, where Tecowas underestimated. Furthermore, in simulations, subtropical or tropical forests had the longest Teco(around 30-50 years), while boreal forests had the shortest one (around 25 years). This was contrary to the results calculated from the CERN data, in which the Tecoof subtropical or tropical forests was about 10-15 years, and the Tecoof boreal forests was about 15-25 years (Figure 3e vs. 3f).

    4. Conclusion and discussion

    In this paper, IAP-DGVM1.0 was used to investigate the individual carbon allocation scheme and its impacts on forest ecosystem traits (e.g. individual biomass, LAI, etc.). Results showed that, compared with observations, the current individual allocation scheme resulted in low Fleafand high Fsap, which easily led to individuals with low leaf biomass and high stem biomass. Consequently, there was an overestimation of ecosystem biomass as well as carbon residence time in living biomass, and an underestimation of ecosystem NPP and tree TLAI. Such results imply that,although the model can roughly capture the distribution of the percentage coverage of forests (Zeng, Li, and Song 2014), it is incapable of capturing forest ecosystem characteristics and structure, which may lead to biases in landatmosphere interactions.

    Figure 3.The distribution of the simulated (a) ecosystem biomass (Ceco; kgC m-2), (c) ecosystem net primary production (NPPeco; kgC m-2yr-1), and (e) residence time of carbon in living biomass for the ecosystem (Teco; yr). Panels (b, d, f) refer to the Ceco, NPPeco, and Tecoobtained from CERN data, respectively.

    As described above, the bias in individual biomass derives mainly from the overestimated Cstem. In order to reduce Cstem, one approach is to introduce the turnover of heartwood, as in other DGVMs (Scheiter and Higgins 2009). However, we found that, without changing the current allocation scheme, whilst indeed reducing Cstem, only introducing the turnover rate of heartwood also further reduces Cleaf. That is to say, when Cstemreaches reasonable values, Cleafwill become very small, and consequently NPP will be further underestimated and the distributions of fractional coverage for simulated PFTs also will become unreasonable. Therefore, only considering the turnover rate is insufficient.

    To improve the simulation of individual biomass,another approach is dynamic individual carbon allocation. Compared with Equation (1), the dynamic individual allocation scheme can change Fleaf, Fsap, and Frootbased on environmental conditions (water stress, light competition, etc.), and the essential difference is that Fleafincreases with individual total biomass in the dynamic individual allocation scheme (e.g. aDGVM). Our work (unpublished data) shows that, when adopting the dynamic allocation scheme and retaining the current turnover rates, a higher proportion of annual NPP would be allocated to leaf or root in the regions with weak light competition. Therefore,high Fleafleads to reasonable Cleaf, while low Fsapdecreases the accumulation rate of stem biomass, and then results in reasonable Cstemfor tree PFTs (similar to the results of Friedlingstein et al. (1999)). Accordingly, the simulated Tecois also improved. However, the underestimation of NPP (Figure 3c) is not improved much when using this scheme. In addition, globally, LAI may be further overestimated in regions with overwhelmingly larger TLAI due to increasing Cleafand underestimated individual crown area. Therefore, individual morphology should also be considered.

    Lastly, it should be emphasized that, given this study is based only on IAP-DGVM1.0, it should also be repeated in other DGVMs with similar individual allocation schemes,such as LPJ-DGVM, CLM3.0-DGVM, IBIS, and ORCHIDEE.

    Funding

    This work was supported by a project of the National Natural Science Foundation of China [grant number 41305098]; Strategic Priority Research Program of the Chinese Academy of Sciences [grant numbers XDA05110103 and XDA05110201].

    References

    Aber, J. D., J. M. Melillo, K. J. Nadelhoffer, J. Pastor, and R. D. Boone. 1991. “Factors Controlling Nitrogen Cycling and Nitrogen Saturation in Northern Temperate Forest Ecosystems.”Ecological Applications 1(3): 303-315. doi: 10.2307/1941759.

    Arora, V., and G. J. Boer. 2005. “A Parameterization of Leaf Phenology for the Terrestrial Ecosystem Component of Climate Models.” Global Change Biology 11: 39-59. doi: 10.1111/j.1365-2486.2004.00890.x.

    Chapin, F. S. 1980. “The Mineral Nutrition of Wild Plants.” Annual Review of Ecology and Systematics 11: 233-260.

    Cox, P. 2001. Description of the TRIFFID Dynamic Global Vegetation Model. Bracknell: Hadley Centre Tech. Note 24, Hadley Centre,16 pp.

    Dong, M., G. M. Jiang, F. Z. Kong, Y. F. Wang, and Z. B. Zhang. 1997. The Observation and Analysis Standards of the Chinese Ecosystem Research Network: The Investigations, Observation and Analysis about Terrestrial Biomes. Beijing: Standards Press of China (in Chinese).

    Friedlingstein, P., G. Joel, C. B. Field, and I. Y. Fung. 1999. “Toward an Allocation Scheme for Global Terrestrial Carbon Models.”Global Change Biology 5: 755-770. doi: 10.1046/j.1365-2486.1999.00269.x.

    Krinner, G., N. Viovy, N. de Noblet-Ducoudré, J. Ogée, J. Polcher,P. Friedlingstein, P. Ciais, S. Sitch, and I. C. Prentice. 2005. “A Dynamic Global Vegetation Model for Studies of the Coupled Atmosphere-biosphere System.” Global Biogeochemical Cycles 19: GB1015. doi: 10.1029/2003GB002199.

    Kucharik, C. J., J. A. Foley, C. Delire, V. A. Fisher, M. T. Coe, J. D. Lenters,C. Young-Molling, et al. 2000. “Testing the Performance of a Dynamic Global Ecosystem Model: Water Balance, Carbon Balance, and Vegetation Structure.” Global Biogeochemical Cycles 14 (3): 795-825. doi: 10.1029/1999GB001138.

    Levis, S., G. B. Bonan, M. Vertenstein, and K. W. Oleson. 2004. The Community Land Model's Dynamic Global Vegetation Model(CLM-DGVM): Technical Description and User's Guide. NCAR Technical Note, NCAR/TN-459+IA. Boulder, CO: National Center for Atmospheric Research, 50 pp.

    Li, F., X. D. Zeng, and S. Levis. 2012. “A Process-based Fire Parameterization of Intermediate Complexity in a Dynamic Global Vegetation Model.” Biogeosciences 9: 2761-2780. doi: 10.5194/bg-9-2761-2012.

    Luo, T. X. 1994. “Patterns of Net Primary Productivity for Chinese Major Forest Types and Their Mathematical Models.” PhD diss., Chinese Academy of Sciences, 230 pp. (in Chinese).

    Moorcroft, P. R., G. C. Hurtt, and S. W. Pacala. 2001. “A Method for Scaling Vegetation Dynamics: The Ecosystem Demography Model (Ed).” Ecological Monographs 71 (4): 557-586.

    Oleson, K. W., D. M. Lawrence, G. B. Bonan, B. Drewniak, M. Y. Huang, C. D. Koven, S. Levis, et al. 2013. Technical Description of Version 4.5 of the Community Land Model (CLM). NCAR Technical Note, NCAR/TN-503+STR. Boulder, CO: National Center for Atmospheric Research, 434 pp.

    Qian, T. T., A. G. Dai, K. E. Trenberth, and K. W. Oleson. 2006.“Simulation of Global Land Surface Conditions from 1948 to 2004. Part I: Forcing Data and Evaluations.” Journal of Hydrometeorology 7: 953-975. doi:http://dx.doi.org/10.1175/ JHM540.1.

    Ricklefs, R. E. 2008. The Economy of Nature. 6th ed. New York: W. H. Freeman and Company, 700 pp.

    Scheiter, S., and S. I. Higgins. 2009. “Impacts of Climate Change on the Vegetation of Africa: An Adaptive Dynamic Vegetation Modelling Approach.” Global Change Biology 15 (9): 2224-2246. doi: 10.1111/j.1365-2486.2008.01838.x.

    Sitch, S., C. Huntingford, N. Gedney, P. E. Levy, M. Lomas, S. L. Piao, R. Betts, et al. 2008. “Evaluation of the Terrestrial Carbon Cycle, Future Plant Geography and Climate-carbon Cycle Feedbacks Using Five Dynamic Global Vegetation Models (DGVMs).” Global Change Biology 14: 2015-2039. doi: 10.1111/j.1365-2486.2008.01626.x.

    Sitch, S., B. Smith, I. C. Prentice, A. Arneth, A. Bondeau, W. Cramer,J. O. Kaplan, et al. 2003. “Evaluation of Ecosystem Dynamics,Plant Geography and Terrestrial Carbon Cycling in the LPJ Dynamic Global Vegetation Model.” Global Change Biology 9: 161-185. doi:10.1046/j.1365-2486.2003.00569.x.

    Song, X. 2012. “The Research on Population Dynamics in Dynamic Global Vegetation Model.” PhD diss., Institute of Atmospheric Physics, Chinese Academy of Science, 102 pp.(in Chinese).

    Song, X., and X. D. Zeng. 2014. “Investigation of Uncertainties of Establishment Schemes in Dynamic Global Vegetation Models.” Advances in Atmospheric Sciences 31: 85-94. doi:10.1007/s00376-013-3031-1.

    Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, NJ: Princeton University Press, 360 pp.

    Woodward, F. I., M. R. Lomas, and S. E. Lee. 2000. “Predicting the Future Production and Distribution of Global Terrestrial Vegetation.” In Terrestrial Global Productivity, edited by J. Roy,B. Saugier and H. A. Moonie. Cambridge: Academic Press, 573 pp.

    Zeng, X. D. 2010. “Evaluating the Dependence of Vegetation on Climate in an Improved Dynamic Global Vegetation Model.”Advances in Atmospheric Sciences 27: 977-991. doi: 10.1007/ s00376-009-9186-0.

    Zeng, X. D., F. Li, and X. Song. 2014. “Development of the IAP Dynamic Global Vegetation Model.” Advances in Atmospheric Sciences 31: 505-514. doi:10.1007/s00376-013-3155-3.

    Zeng, X. D., X. B. Zeng, and M. Barlage. 2008. “Growing Temperate Shrubs over Arid and Semiarid Regions in the Community Land Model-dynamic Global Vegetation Model.”Global Biogeochemical Cycles 22: GB3003. doi:10.1029/2007 GB003014.

    11 May 2015

    CONTACT SONG Xiang songxiang@mail.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    成熟林時間尺度水循環(huán)
    用袋裝水模擬水循環(huán)
    時間尺度上非完整系統(tǒng)的Noether準(zhǔn)對稱性與守恒量
    江西武夷山南方鐵杉林不同階段優(yōu)勢樹種的空間分布格局與種間關(guān)聯(lián)特征
    時間尺度上Lagrange 系統(tǒng)的Hojman 守恒量1)
    江西武夷山南方鐵杉更新林與成熟林群落結(jié)構(gòu)特征比較
    硫酸法鈦白粉水洗及水循環(huán)膜處理工藝
    化工管理(2021年7期)2021-05-13 00:46:24
    交直流混合微電網(wǎng)多時間尺度協(xié)同控制
    能源工程(2021年1期)2021-04-13 02:06:12
    大連市暴雨多時間尺度研究分析
    沙地樟子松種實特征研究
    防護林科技(2016年5期)2016-09-05 01:19:50
    水循環(huán)高效礦井乏風(fēng)熱泵系統(tǒng)分析與應(yīng)用
    同煤科技(2015年4期)2015-08-21 12:51:02
    伦理电影免费视频| av视频免费观看在线观看| 欧美激情极品国产一区二区三区| 久久香蕉激情| 黄色怎么调成土黄色| 日韩 亚洲 欧美在线| 啦啦啦免费观看视频1| 国产精品自产拍在线观看55亚洲 | 80岁老熟妇乱子伦牲交| 电影成人av| 十分钟在线观看高清视频www| 窝窝影院91人妻| 欧美精品亚洲一区二区| 啦啦啦免费观看视频1| 欧美激情高清一区二区三区| 亚洲av男天堂| 午夜91福利影院| 18禁观看日本| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 亚洲中文av在线| 欧美日韩视频精品一区| 国精品久久久久久国模美| 天堂俺去俺来也www色官网| 国产免费av片在线观看野外av| 狠狠狠狠99中文字幕| 成人国语在线视频| 欧美性长视频在线观看| avwww免费| 久久精品国产亚洲av高清一级| 精品国产乱码久久久久久小说| 人人澡人人妻人| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃| 免费高清在线观看日韩| 99热网站在线观看| 国产精品熟女久久久久浪| 两个人免费观看高清视频| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 一边摸一边抽搐一进一出视频| 99久久人妻综合| 午夜福利免费观看在线| 亚洲精品乱久久久久久| 国产精品久久久久久精品电影小说| tube8黄色片| 日韩欧美免费精品| 美女扒开内裤让男人捅视频| av电影中文网址| 新久久久久国产一级毛片| 午夜福利免费观看在线| av又黄又爽大尺度在线免费看| av电影中文网址| 日本91视频免费播放| 亚洲九九香蕉| 爱豆传媒免费全集在线观看| 欧美精品亚洲一区二区| 午夜免费观看性视频| 交换朋友夫妻互换小说| 欧美久久黑人一区二区| 91字幕亚洲| 19禁男女啪啪无遮挡网站| 99热国产这里只有精品6| 一级毛片精品| 国产野战对白在线观看| 国产精品久久久久久人妻精品电影 | 亚洲精品乱久久久久久| 一二三四在线观看免费中文在| 国产淫语在线视频| 久久九九热精品免费| 高潮久久久久久久久久久不卡| 妹子高潮喷水视频| 午夜福利在线免费观看网站| 精品欧美一区二区三区在线| 亚洲精品第二区| a级片在线免费高清观看视频| 国产精品久久久久久人妻精品电影 | 欧美久久黑人一区二区| 韩国精品一区二区三区| 高清黄色对白视频在线免费看| 亚洲精品国产一区二区精华液| 国产精品久久久久久精品电影小说| av欧美777| 一级片免费观看大全| 精品一区在线观看国产| 一区二区三区激情视频| 在线天堂中文资源库| 热99re8久久精品国产| 色播在线永久视频| 精品视频人人做人人爽| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 国产99久久九九免费精品| 狠狠精品人妻久久久久久综合| 91成年电影在线观看| av片东京热男人的天堂| 亚洲精品一卡2卡三卡4卡5卡 | 性少妇av在线| 日韩 亚洲 欧美在线| 久久中文看片网| 亚洲色图 男人天堂 中文字幕| 窝窝影院91人妻| 人人妻,人人澡人人爽秒播| 国产有黄有色有爽视频| 91麻豆av在线| 国产亚洲一区二区精品| 国产av精品麻豆| 各种免费的搞黄视频| 岛国在线观看网站| www.999成人在线观看| 女警被强在线播放| 精品福利观看| 啦啦啦 在线观看视频| 日本wwww免费看| 日韩免费高清中文字幕av| 国产在线观看jvid| 国产黄频视频在线观看| 窝窝影院91人妻| 新久久久久国产一级毛片| 国产成人精品无人区| 免费av中文字幕在线| 国产精品1区2区在线观看. | 伊人久久大香线蕉亚洲五| 亚洲九九香蕉| 9色porny在线观看| 自线自在国产av| 香蕉丝袜av| www.精华液| 欧美日韩黄片免| 国产一区二区激情短视频 | 两个人免费观看高清视频| 成人手机av| 男男h啪啪无遮挡| 欧美av亚洲av综合av国产av| tocl精华| 午夜91福利影院| 精品一品国产午夜福利视频| 欧美日韩福利视频一区二区| 在线 av 中文字幕| 人妻一区二区av| 热99re8久久精品国产| av不卡在线播放| 1024香蕉在线观看| 首页视频小说图片口味搜索| 亚洲精品国产区一区二| 狠狠狠狠99中文字幕| 搡老乐熟女国产| 每晚都被弄得嗷嗷叫到高潮| 狠狠婷婷综合久久久久久88av| www.精华液| 美女视频免费永久观看网站| 俄罗斯特黄特色一大片| 亚洲国产精品一区三区| 午夜福利视频在线观看免费| 成人手机av| 精品卡一卡二卡四卡免费| 青春草视频在线免费观看| 欧美日韩成人在线一区二区| 99国产精品99久久久久| 80岁老熟妇乱子伦牲交| 国产区一区二久久| 妹子高潮喷水视频| 欧美精品一区二区大全| 男男h啪啪无遮挡| 精品视频人人做人人爽| 国产成人一区二区三区免费视频网站| 色婷婷久久久亚洲欧美| 日韩熟女老妇一区二区性免费视频| av又黄又爽大尺度在线免费看| 国产亚洲av高清不卡| 亚洲精品粉嫩美女一区| 法律面前人人平等表现在哪些方面 | 69av精品久久久久久 | 国产高清视频在线播放一区 | 日韩中文字幕欧美一区二区| 国产精品亚洲av一区麻豆| 一级a爱视频在线免费观看| 久久久久精品人妻al黑| 国产男人的电影天堂91| 成年av动漫网址| 69av精品久久久久久 | 国产高清视频在线播放一区 | 国产无遮挡羞羞视频在线观看| 国产三级黄色录像| 伦理电影免费视频| 午夜免费成人在线视频| 欧美日韩视频精品一区| 热99国产精品久久久久久7| 亚洲成人国产一区在线观看| 黄色片一级片一级黄色片| 亚洲自偷自拍图片 自拍| 国产91精品成人一区二区三区 | 99久久99久久久精品蜜桃| av欧美777| 操出白浆在线播放| 黑人巨大精品欧美一区二区mp4| 五月开心婷婷网| 中文精品一卡2卡3卡4更新| 妹子高潮喷水视频| a级毛片在线看网站| 国产成人免费无遮挡视频| 青春草视频在线免费观看| 69精品国产乱码久久久| 一二三四在线观看免费中文在| av有码第一页| 91大片在线观看| 极品少妇高潮喷水抽搐| 日本av免费视频播放| 久久精品亚洲熟妇少妇任你| 99国产精品免费福利视频| 亚洲免费av在线视频| 国产亚洲av高清不卡| 俄罗斯特黄特色一大片| 日日爽夜夜爽网站| 午夜福利,免费看| 爱豆传媒免费全集在线观看| 韩国精品一区二区三区| 制服诱惑二区| 99国产精品一区二区三区| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 精品亚洲成a人片在线观看| 久久精品亚洲av国产电影网| 国产精品久久久久久精品电影小说| 19禁男女啪啪无遮挡网站| 亚洲精品国产一区二区精华液| 三上悠亚av全集在线观看| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 免费在线观看完整版高清| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 久久天躁狠狠躁夜夜2o2o| 色播在线永久视频| 黄色视频不卡| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 中文欧美无线码| 热99国产精品久久久久久7| 黄色视频不卡| 我的亚洲天堂| 蜜桃在线观看..| 久久久久久亚洲精品国产蜜桃av| 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 一区二区三区乱码不卡18| 黄片小视频在线播放| 可以免费在线观看a视频的电影网站| 婷婷成人精品国产| 久久久久国内视频| 精品福利观看| 久久99一区二区三区| 亚洲精品av麻豆狂野| 人妻 亚洲 视频| 十分钟在线观看高清视频www| 国产成人欧美| 亚洲人成电影观看| 欧美精品亚洲一区二区| 国产福利在线免费观看视频| 又黄又粗又硬又大视频| 90打野战视频偷拍视频| 啦啦啦在线免费观看视频4| 一区福利在线观看| 777米奇影视久久| 中文字幕制服av| 一级,二级,三级黄色视频| 亚洲专区字幕在线| 国产精品九九99| 成人18禁高潮啪啪吃奶动态图| 日本欧美视频一区| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 少妇 在线观看| 日韩欧美免费精品| 天天躁日日躁夜夜躁夜夜| 在线精品无人区一区二区三| 久久ye,这里只有精品| 在线观看一区二区三区激情| 一区二区av电影网| 婷婷成人精品国产| 久久九九热精品免费| a 毛片基地| 91av网站免费观看| 一本久久精品| 丝袜美腿诱惑在线| 精品久久久精品久久久| 老司机影院毛片| 免费在线观看日本一区| 在线精品无人区一区二区三| 青青草视频在线视频观看| 久久精品国产亚洲av香蕉五月 | 一进一出抽搐动态| 亚洲欧美激情在线| 最新的欧美精品一区二区| 欧美性长视频在线观看| 成年美女黄网站色视频大全免费| 午夜福利影视在线免费观看| 亚洲性夜色夜夜综合| av国产精品久久久久影院| 18禁国产床啪视频网站| 伦理电影免费视频| 欧美午夜高清在线| 欧美日韩亚洲国产一区二区在线观看 | 大码成人一级视频| 国产亚洲av片在线观看秒播厂| 操出白浆在线播放| 天天躁夜夜躁狠狠躁躁| bbb黄色大片| 亚洲国产欧美日韩在线播放| 香蕉国产在线看| 久热爱精品视频在线9| 国产成人精品无人区| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| av国产精品久久久久影院| 久久av网站| 欧美精品av麻豆av| 国产免费av片在线观看野外av| 久久久国产一区二区| 国产亚洲精品第一综合不卡| 成人国语在线视频| 午夜影院在线不卡| 欧美一级毛片孕妇| 国产精品久久久av美女十八| 777米奇影视久久| 丝袜喷水一区| 亚洲精品乱久久久久久| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 亚洲成人免费av在线播放| 日本wwww免费看| 狠狠精品人妻久久久久久综合| 波多野结衣一区麻豆| 精品国产超薄肉色丝袜足j| 免费看十八禁软件| 亚洲中文字幕日韩| 国产av又大| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 激情视频va一区二区三区| 麻豆av在线久日| 欧美日韩av久久| 最近最新中文字幕大全免费视频| 亚洲一区中文字幕在线| av网站免费在线观看视频| 老司机亚洲免费影院| 亚洲欧美精品自产自拍| a 毛片基地| 欧美精品人与动牲交sv欧美| 一二三四在线观看免费中文在| 久久久久久久久久久久大奶| 亚洲五月色婷婷综合| 午夜福利在线观看吧| 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 建设人人有责人人尽责人人享有的| 1024视频免费在线观看| 国产亚洲av高清不卡| 亚洲精品久久久久久婷婷小说| 秋霞在线观看毛片| 免费高清在线观看视频在线观看| 性色av一级| 一区二区三区精品91| 一边摸一边做爽爽视频免费| 欧美精品一区二区免费开放| 中文字幕制服av| 国产极品粉嫩免费观看在线| 欧美日韩亚洲高清精品| 国产精品秋霞免费鲁丝片| 中文字幕精品免费在线观看视频| 精品国产乱码久久久久久男人| av电影中文网址| 香蕉丝袜av| av不卡在线播放| 高清黄色对白视频在线免费看| 亚洲午夜精品一区,二区,三区| 久久99一区二区三区| 亚洲午夜精品一区,二区,三区| 亚洲av欧美aⅴ国产| av免费在线观看网站| 男女边摸边吃奶| 亚洲精品成人av观看孕妇| 中国美女看黄片| 午夜两性在线视频| 国产欧美日韩一区二区精品| 狠狠精品人妻久久久久久综合| 国产成人av教育| 日韩欧美国产一区二区入口| 操美女的视频在线观看| 精品一区二区三卡| 国产片内射在线| 亚洲国产精品999| 久久久久久久精品精品| 视频区欧美日本亚洲| 久久精品国产综合久久久| 精品国产乱码久久久久久男人| 两性午夜刺激爽爽歪歪视频在线观看 | 啦啦啦视频在线资源免费观看| 成人免费观看视频高清| 咕卡用的链子| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 91国产中文字幕| 欧美 日韩 精品 国产| 一进一出抽搐动态| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人啪精品午夜网站| 少妇被粗大的猛进出69影院| 黄色a级毛片大全视频| 日本黄色日本黄色录像| 午夜91福利影院| 亚洲精品中文字幕一二三四区 | 国产又色又爽无遮挡免| 我的亚洲天堂| 青春草视频在线免费观看| 十分钟在线观看高清视频www| av在线app专区| 一本色道久久久久久精品综合| 欧美97在线视频| 多毛熟女@视频| 久久av网站| 啦啦啦视频在线资源免费观看| 亚洲人成77777在线视频| 搡老熟女国产l中国老女人| 国产av精品麻豆| 老司机影院成人| 日韩人妻精品一区2区三区| 麻豆乱淫一区二区| 日韩有码中文字幕| 在线观看人妻少妇| 午夜久久久在线观看| 久久中文看片网| 丁香六月欧美| 日韩欧美免费精品| 97精品久久久久久久久久精品| 两性夫妻黄色片| 欧美+亚洲+日韩+国产| 亚洲精品乱久久久久久| 久久毛片免费看一区二区三区| 淫妇啪啪啪对白视频 | 法律面前人人平等表现在哪些方面 | 操美女的视频在线观看| av欧美777| 久久久久久久久免费视频了| 国产免费现黄频在线看| 久久精品国产综合久久久| 亚洲一码二码三码区别大吗| 日韩一区二区三区影片| 日本一区二区免费在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧洲精品一区二区精品久久久| 日本精品一区二区三区蜜桃| 午夜两性在线视频| 亚洲人成电影免费在线| 丝袜喷水一区| av天堂久久9| 亚洲精品国产精品久久久不卡| 91九色精品人成在线观看| 天天操日日干夜夜撸| 韩国高清视频一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲欧美色中文字幕在线| 欧美少妇被猛烈插入视频| www.999成人在线观看| netflix在线观看网站| 在线看a的网站| 日韩一区二区三区影片| 亚洲国产av新网站| 久久精品aⅴ一区二区三区四区| 黄色a级毛片大全视频| 国产男女超爽视频在线观看| 日韩 亚洲 欧美在线| 久久久国产成人免费| 国产亚洲精品第一综合不卡| 男女高潮啪啪啪动态图| 在线天堂中文资源库| 一本大道久久a久久精品| 亚洲精品自拍成人| 老熟妇仑乱视频hdxx| 久久久久久亚洲精品国产蜜桃av| 国产不卡av网站在线观看| 91精品国产国语对白视频| 51午夜福利影视在线观看| 黄网站色视频无遮挡免费观看| 午夜老司机福利片| 精品人妻在线不人妻| 国产99久久九九免费精品| 国产亚洲精品久久久久5区| 麻豆乱淫一区二区| 日韩一卡2卡3卡4卡2021年| 一区福利在线观看| 一级毛片精品| 人成视频在线观看免费观看| 免费在线观看影片大全网站| 日韩大片免费观看网站| 久久中文看片网| 9191精品国产免费久久| 亚洲一区二区三区欧美精品| 亚洲全国av大片| 欧美另类亚洲清纯唯美| 日韩三级视频一区二区三区| 国产老妇伦熟女老妇高清| tocl精华| 巨乳人妻的诱惑在线观看| 久久人人爽av亚洲精品天堂| 精品一区在线观看国产| 成人亚洲精品一区在线观看| 国产精品99久久99久久久不卡| 欧美日韩一级在线毛片| 久久精品熟女亚洲av麻豆精品| 看免费av毛片| 99国产精品一区二区蜜桃av | 久热爱精品视频在线9| 国产极品粉嫩免费观看在线| 国产主播在线观看一区二区| 午夜福利视频精品| 欧美精品人与动牲交sv欧美| 亚洲 国产 在线| √禁漫天堂资源中文www| 亚洲国产日韩一区二区| 一边摸一边抽搐一进一出视频| 国产熟女午夜一区二区三区| 国产真人三级小视频在线观看| 青青草视频在线视频观看| 国产亚洲精品久久久久5区| 性色av一级| 国产成人欧美在线观看 | 精品一品国产午夜福利视频| 日日摸夜夜添夜夜添小说| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区三区在线| www.精华液| videosex国产| 国产精品一区二区精品视频观看| 日本wwww免费看| 久久天躁狠狠躁夜夜2o2o| 丝瓜视频免费看黄片| 午夜成年电影在线免费观看| 人人妻人人澡人人爽人人夜夜| 一二三四在线观看免费中文在| 国产麻豆69| 国产一卡二卡三卡精品| 无限看片的www在线观看| 嫁个100分男人电影在线观看| 免费黄频网站在线观看国产| 精品国产乱子伦一区二区三区 | 亚洲精品中文字幕在线视频| 成人三级做爰电影| 国产三级黄色录像| 久久久久国产精品人妻一区二区| 操美女的视频在线观看| 男女床上黄色一级片免费看| 欧美激情久久久久久爽电影 | 国产免费一区二区三区四区乱码| 亚洲人成电影观看| 欧美精品高潮呻吟av久久| 免费在线观看日本一区| 美女大奶头黄色视频| av线在线观看网站| 青春草亚洲视频在线观看| 国产伦人伦偷精品视频| 蜜桃国产av成人99| 国产激情久久老熟女| 老司机影院毛片| 激情视频va一区二区三区| 亚洲第一欧美日韩一区二区三区 | 亚洲欧美一区二区三区黑人| 纯流量卡能插随身wifi吗| 欧美中文综合在线视频| 成在线人永久免费视频| 动漫黄色视频在线观看| 大片电影免费在线观看免费| 人人妻人人澡人人爽人人夜夜| a 毛片基地| 99热网站在线观看| 国产欧美日韩精品亚洲av| 成年人午夜在线观看视频| 热99re8久久精品国产| 18禁国产床啪视频网站| 免费日韩欧美在线观看| 国产成人av教育| 免费在线观看完整版高清| 欧美激情久久久久久爽电影 | 夜夜骑夜夜射夜夜干| 美女主播在线视频| 日韩欧美一区视频在线观看| 精品卡一卡二卡四卡免费| 亚洲美女黄色视频免费看| 精品一品国产午夜福利视频| 午夜91福利影院| 亚洲天堂av无毛| 考比视频在线观看| 高清欧美精品videossex| 精品国产乱码久久久久久小说| 国产不卡av网站在线观看| 在线十欧美十亚洲十日本专区| 亚洲欧美成人综合另类久久久| 久热这里只有精品99| 亚洲色图综合在线观看| 精品免费久久久久久久清纯 | 美女福利国产在线| 男女下面插进去视频免费观看| 亚洲专区中文字幕在线| 久久午夜综合久久蜜桃| 大型av网站在线播放|