• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unrealistic treatment of detrained water substance in FGOALS-s2 and its influence on the model's climate sensitivity

    2016-11-23 01:12:56HEBian
    關鍵詞:水云水球對流

    HE Bian

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;bKey Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

    Unrealistic treatment of detrained water substance in FGOALS-s2 and its influence on the model's climate sensitivity

    HE Biana,b

    aState Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics,Chinese Academy of Sciences, Beijing 100029, China;bKey Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China

    Based on a series of aqua-planet and air-sea coupled experiments, the influence of unrealistic treatment of water substance in the Flexible Global Ocean-Atmosphere-Land System Model,spectral version 2 (FGOALS-s2), on the model's climate sensitivity is investigated in this paper. Because the model does not adopt an explicit microphysics scheme, the detrained water substance from the convection scheme is converted back to the humidity. This procedure could lead to an additional increase of water vapor in the atmosphere, which could strengthen the model's climate sensitivity. Further sensitivity experiments confirm this deduction. After removing the water vapor converted from the detrained water substance, the water vapor reduced significantly in the upper troposphere and the high clouds also reduced. Quantitative calculations show that the water vapor reduced almost 10% of the total water vapor, and 50% at 150 hPa, when the detrained water substance was removed, contributing to the 30% atmospheric surface temperature increase. This study calls for an explicit microphysics scheme to be introduced into the model in order to handle the detrained water vapor and thus improve the model's simulation skill.

    ARTICLE HISTORY

    FGOALS-s2; climate

    sensitivity; cloud radiation;global warming

    在CMIP5的歷史情景試驗中,F(xiàn)GOALS-s2模擬的地表溫度趨勢遠大于觀測和其他氣候系統(tǒng)模式,表現(xiàn)出較高的氣候敏感性。本文通過一系列水球試驗和海氣耦合試驗,研究了FGOALS-s2大氣分量模式對流-輻射過程中對流參數(shù)化卷出云水云冰的處理問題,發(fā)現(xiàn)了模式診斷出的次網(wǎng)格尺度的云水云冰輻射效應過強,導致熱帶地區(qū)對流層高層水汽反饋和長波云輻射反饋過程偏強,是模式高敏感性的主要原因。文章強調(diào)了需要引入顯式的云微物理過程來克服這種不確定性。

    1. Introduction

    Cloud formation processes span scales from the sub-micrometer scale of cloud condensation nuclei, to cloud systems of up to thousands of kilometers. This range of scales is impossible to resolve in climate models (IPCC 2013), and various clouds schemes are applied to simulate the cloud macro- and micro-properties and the associated radiative forcings. Despite decades of advancement, cloud parameterization schemes, especially microphysics schemes,still contain many uncertainties, which lead to the largest uncertainty in simulating cloud feedbacks and to a wide range of climate sensitivity in state-of-the-art climate models (Wang et al. 1976; Hall and Manabe 1999; Kristin et al. 1999; Schneider et al. 1999; Gettelman et al. 2012).

    The Flexible Global Ocean-Atmosphere-Land System Model, spectral version 2 (FGOALS-s2), is a climate system model developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP)(Bao et al. 2010, 2013) in which the atmospheric model Spectral Atmosphere Model developed at LASG/IAP, version 2 (SAMIL2) is applied. SAMIL2 uses a diagnostic method to estimate the effective radius of cloud droplets for both the liquid and ice phase, which is based on the detrained liquid water content in the convection scheme and assumed droplet concentrations in the cloud (Martin et al. 1994). Because the model does not employ an explicit microphysics scheme to simulate cloud condensation nuclei and the associated radiative forcings, the detrained water substance (cloud water and cloud ice) in the convection scheme is evaporated back to the water vapor in the atmosphere after deep convection occurs. This treatment will potentially cause excessive water vapor in the upper troposphere and lead to an excessively strong water vapor feedback and high climate sensitivity.

    Recently, two studies (Zhou et al. 2013; Chen et al. 2014)have revealed that FGOALS-s2 shows quite high climate sensitivity in response to increasing greenhouse gases(GHGs) in both historical simulations and future projections, which may be related to the excessively strong water vapor feedback in the model. Whether or not the unrealistic treatment of converting detrained water substance to the water vapor is related to the model's high climate sensitivity remains unclear. Therefore, in this study, based on a series of aqua-planet experiments and an air-sea coupled experiment, the influence of the unrealistic treatment of detrained water vapor in SAMIL2 on the radiation forcing is investigated. The contribution of the unrealistic treatment to the model's high climate sensitivity is measured quantitatively. Additionally, an eventual solution to the high climate sensitivity of FGOALS-s2 is also discussed. The remainder of the paper is organized as follows: Section 2 introduces the datasets, the model configurations, and the experimental design. Section 3 reports the results. Section 4 presents the final conclusions and a discussion.

    2. Datasets and model configuration

    2.1. Datasets

    The Goddard Institute for Space Studies (GISS) Surface Temperature Analysis dataset is used for observation in the present study (Hansen et al. 2010). This dataset is on a 2° × 2° grid and covers the period 1880 to the present day with monthly mean anomalies. More details of the documentation of the datasets can be found at http://data.giss.nasa.gov/ gistemp/.

    The monthly mean outputs of atmospheric surface temperature (AST) of 24 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models (ACCESS1-0, BCC-CSM1-1,CanESM2, CCSM4, CESM1-CAM5, CMCC-CM, CNRM-CM5,CSIRO-Mk3-6-0, EC-EARTH, FGOALS-g2, GFDL-CM3, GFDLESM2G, GISS-E2-H, GISS-E2-R, HadGEM2-AO, HadGEM2-ES,INMCM4, IPSL-CM5A-LR, MIROC5, MIROC-ESM, MPI-ESM-LR,MPI-ESM-MR, MRI-CGCM3, and NorESM1_M) are used to obtain the multi-model ensemble (MME). The datasets covers the period from 1880 to 2005 and are derived from the website http://pcmdi9.llnl.gov/esgf-web-fe/.

    2.2. Model configuration

    The climate system model FGOALS-s2 is composed of four individual components: SAMIL2 (Wu et al. 1996; Bao et al. 2010); version 2 of the LASG/IAP Climate System Ocean Model, LICOM2 (Liu et al. 2013); version 3 of the Community Land Model, CLM3 (Oleson et al. 2004); and version 5 of the Community Sea Ice Model, CSIM5 (Briegleb et al. 2004). The exchanged fluxes among these components are connected by the National Center for Atmospheric Research(NCAR) coupler module 6 (Collins et al. 2006). The basic performances of the models are described in Bao et al.(2013).

    The atmospheric model SAMIL2 has an R42 horizontal resolution (2.81° longitude × 1.66° latitude) with 26 vertical layers in a σ-p hybrid coordinate, extending from the surface to 2.19 hPa. The mass flux cumulus parameterization of Tiedtke (1989) is used to calculate convective precipitation. The cloud scheme is a diagnostic method based on relative humidity (RH), vertical velocity, atmospheric stability, and the convective mass flux associated with parameterized moist convection (Slingo 1987; Kiehl et al. 1996), while a statistic low cloud method is also applied(Dai et al. 2004). A nonlocal scheme is employed in the boundary layer to calculate the eddy-diffusivity profile and turbulent velocity scale, and the model incorporates nonlocal transport effects for heat and moisture (Holtslag and Boville 1993). The radiation scheme employed is an updated Edwards-Slingo scheme (Edwards and Slingo 1996; Sun and Rikus 1999).

    2.3. Experimental design

    To investigate the possible influence of the unrealistic treatment of detrained water substance on the model's climate sensitivity, a series of sensitivity experiments were designed, as summarized in Table 1. For simplicity,the detrained water substance in the convection scheme is defined as Δqcl. An aqua-planet control run was performed first, with the default SAMIL2 physics configuration(CON_A) and with the sea surface temperature (SST) forced as in Equation (1):

    Table 1.Experimental design.

    Figure 1.(a) Cross section of water vapor difference (units: g kg-1) between RMQ_A and CON_A. (b) As in (a) but for the water vapor percentage (units: %). (c) Cross section of water vapor percentage change (units: %) between CON_B and CON_A, and (d) between RMQ_B minus RMQ_A.

    whereλdenotes the longitude and ? denotes the latitude. The Maximum SST was 27 °C at the equator. Poleward of both 60°N and 60°S the SST remained at 0 °C with sea-ice switched off. More details of the experimental settings can be found in Neale and Hoskins (2001). The sensitivity run named RMQ_A removed the Δqclin the model's physics but kept other forcings the same as in CON_A. The influences of theΔqclon the model's climate sensitivity were investigated by conducting additional experiments,CON_B and RMQ_B, which were the same as CON_A and RMQ_A, respectively, but a uniform 4 °C addition on the SST for the perturbation. Thus, quantitative measurement of the model's climate sensitivity parameter could be calculated from Equation (2). Lastly, the possible influence ofΔqclon the evolution of AST in the fully coupled model FGOALS-s2 was estimated. The historical run (CON_CP)was performed from 1850 to 2005, while a sensitivity run(RMP_CP) was performed with the same configuration as CON_CP but with Δqclremoved from the model's physical package.

    3. Results

    The influence of detrained water substance in the convection scheme on the total water vapor simulation in the model is first examined. The water vapor differences between RMQ_A and CON_A for the mass ratio unit are shown in Figure 1a, and for the percentage in Figure 1b. It is clear that once the Δqclhas been removed the water vapor decreases significantly throughout the troposphere,especially in the tropics (Figure 1a). Because the radiative effect of absorption by water vapor is roughly proportional to the logarithm of its concentration (IPCC 2013),the change of water vapor in percentage terms is shownin Figure 1b, revealing that the water vapor percentage decreases significantly in the upper troposphere, which would weaken the greenhouse effect from water vapor(Yang and Tung 1998; Minschwaner and Dessler 2004).

    Figure 2.Zonal mean value of (a) clear-sky outgoing longwave radiation (units: W m-2), (b) 150 hPa relative humidity (units: %), (c)500 hPa vertical velocity (units: 100 × Pa s-1), (d) high cloud fraction (units: %), (e) longwave cloud radiation forcing (units: W m-2), and(f) shortwave cloud radiation forcing (units: W m-2), in the four aqua-planet experiments.

    Next the change in the vertical water vapor percentage is examined under the uniform +4 °C warming by comparing CON_B minus CON_A and RMQ_B minus RMQ_A (Figures 1c and 1d). When the increase in upper tropospheric water vapor still contains the amount ofΔ qcl(Figure 1c), the ratio of the increase of water vapor shows a maximum over the tropics at 100-200 hPa, which exceeds 180%. However, when the Δqclis removed in the second group (RMQ_B minus RMQ_A), the simulated water vapor change in the upper troposphere weakens significantly(Figure 1d). The percentage of increased water vapor in the upper troposphere reduces to 150% over the tropics, while remaining almost unchanged at other latitudes. The results of the global mean water vapor change and the vertical distribution indicate that the Δqclaccounts for about 10% of the total water vapor and is more sensitive in the upper troposphere where the convection occurs.

    Because the water vapor decreases significantly in the upper troposphere, its own radiative forcing and the associated cloud radiation forcing (CRF) will both change. These two kinds of radiative forcing changes are estimated in the following paragraph. The longwave CRF (LWCRF) is defined as the difference between clear-sky net upward longwave flux and upward longwave flux at the top of the atmosphere (TOA). The shortwave CRF (SWCRF) is defined as the difference between net downward shortwave fluxes and clear-sky net downward shortwave fluxes.

    Because the GHGs are all prescribed in the model,except the water vapor, the change of the clear-sky longwave radiation (LWCS) is mainly induced by the changes of water vapor. It shows clearly that LWCS increases significantly when Δqclis removed (Figure 2a), and the difference of LWCS between CON_B and RMQ_B is larger when the surface is warming.

    The zonal mean RH at 150 hPa is shown in Figure 2b,revealing clearly that the RH decreases from about 80% in CON_A and CON_B to 50% in RMQ_A and RMQ_B. Because the model diagnoses the cloud fraction based on the air temperature and RH (Kiehl et al. 1996), Figure 2b also indicates that the removal of the radiative effect fromΔqclwill largely reduce the generation of the high cloud fraction in the convective regions, as shown in Figure 2d, while the vertical ascending motion does not change (Figure 2c). Consequently, the LWCRF (Figure 2e) reduces significantly by about 10 W m-2in the tropics, where convection mainly occurs, while it changes little at other latitudes. This is quite different with the changes in SWCRF (Figure 2f).

    The combined radiative effect of theΔqclon the climate sensitivity can be quantitatively measured by calculating the climate sensitivity parameter. Following Cess et al. (1990), the climate sensitivity parameterλcan be expressed as

    where F and Q denote the global-mean emitted infrared and net downward solar fluxes at the TOA. Thus, ΔF and ΔQ represent the climate change TOA responses to the direct radiative forcing, which are impacted by climate feedback mechanisms.ΔTsdenotes the change in global-mean surface temperature.

    In the aqua-planet experiments, the change of surface temperature was equal to 4 °C in both CON_B minus CON_A (CON group) and RMQ_B minus RMQ_A (RMQ group). Therefore,λis determined by the change in the denominator on the right side of Equation (2). Equation (2)was calculated in both the CON and RMQ group, revealing λto be 0.65 °C m2W-1in CON and 0.44 °C m2W-1in RMQ.Compared to the results of Cess et al. (1990), in which a typicalλvalue of 0.5 °C m2W-1was shown, theλfor the CON group is too high. However, when theΔqclis removed in the model's physical package, theλshows a reasonable value that is close to Cess et al. (1990), indicating a reduction in the model's climate sensitivity. Therefore, from the aqua-planet sensitivity experiments, it is revealed that if the detrained water substance is converted back to water vapor, it can strengthen the water vapor feedback to increase the model's climate sensitivity.

    Lastly, the possible influence of Δqclon the evolution of AST is measured directly in the fully coupled model FGOALS-s2. The historical run (named RMQ_CP) was repeated in the same way as CON_CP (Table 1) but with the Δqclremoved from the model's physical package. The linear trends in the vertical water vapor percentage from 1880 to 2005 for CON_CP and RMQ_CP are shown in Figures 3a and 3b, respectively. The ratio of increased water vapor in the upper troposphere reduces to 20-25% in RMQ_CP(Figure 3b), less than CON_CP (Figure 3a) in which the ratio of increased water vapor is up to 40%. The trend in the absolute amount of water vapor at 150 hPa is 0.63 ppm/126 yr in RMQ_CP, reduced from 1.29 ppm/126 yr in CON_CP. The results indicate that the positive bias of water vapor in the upper troposphere is largely suppressed by removing Δqcl. It also indicates that the greenhouse effect due to water vapor is reduced in RMQ_CP, which will lead to a more realistic simulation in the evolution of global AST.

    Figure 3c shows the time series of the annual mean global AST evolution from 1880 to 2005 simulated by CON_CP, RMQ_CP, and the MME, and that observed. After reducing the Δqclin each model step, the evolution of global AST in RMQ_CP is lower than CON_CP and closer to the MME's results. The linear trend of AST during 1880 to 2005 is 1.32 °C/126 yr in RMQ_CP; compared to the 1.79 °C/126 yr in CON_CP, RMQ_CP reduces 30% of the global warming trend. Note that this linear trend is still larger than the MME value of 0.91 °C/126 yr and the observed value of 0.66 °C/126 yr, which demonstrates that the unrealistic treatment of the water substance in the model physics is not the only source of the model's high climate sensitivity. Other possible reasons are to be studied further.

    4. Summary and discussion

    This study investigates the influence of the unrealistic treatment of detrained water substance in SAMIL2 on the model's climate sensitivity, by carrying out a series of sensitivity experiments. Because the model does not adopt an explicit microphysics scheme, the detrained water vapor from the convection is converted back to the humidity. This procedure leads to an additional increase of water vapor in the upper troposphere, which could strengthen the model's climate sensitivity. Further sensitivity experiments show that the unrealistic treatment increases the water vapor content in the upper troposphere, leading to more high cloud and thus causing an increase in the cloud longwave radiative forcing. Quantitative calculations show that, after removing the detrained water substance in the model's physics, the climate sensitivity parameterλ reduces from 0.65 to 0.44 °C m2W-1. In the historical simulation, the water vapor reduces by almost 50% at 150 hPa when the detrained water substance is removed, contributing to the 30% AST increase.

    The present study suggests that it is necessary to implement a physical-based microphysics scheme in SAMIL2. This will mean that the detrained water substance can be directly handled, which is conducive to reducing the model's high climate sensitivity. In fact, the accurate treatment of clouds and their radiative properties should be widely considered as one of the most important issues facing global climate modeling (Hack 1998). While some of the changes in cloud, cloud water, cloud ice, and cloud distribution provide positive feedback, others provide negative feedback. Therefore, improving radiative effects of the cloud properties in FGOALS-s2 should be the primary approach to improving the model's simulation skill in the future.

    Acknowledgments

    The author would like to thank the anonymous reviewers for their constructive suggestions, which were indispensable for the improvement of the manuscript.

    Funding

    This work was jointly supported by the National Basic Research Program of China [grant number 2014CB953904], the National Natural Science Foundation of China [grant numbers 41405091 and 91337110], the Open Projects of the Key Laboratory of Meteorological Disaster of the Ministry of Education [grant number KLME1405], and the Strategic Leading Science Projects of the Chinese Academy of Sciences [grant number XDA11010402].

    References

    Bao, Q., P. F. Lin, T. J. Zhou, Y. M. Liu, Y. Q. Yu, G. X. Wu, B. He, et al. 2013. “The Flexible Global Ocean-Atmosphere-Land System Model, Spectral Version 2: FGOALS-s2.” Advances in Atmospheric Sciences 30: 561-576.

    Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou. 2010. “An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia.” Advances in Atmospheric Sciences 27: 1131-1142. doi:10.1007/s00376-010-9177-1.

    Briegleb, B. P., W. H. Lipscomb, M. M. Holland, J. L. Schramm, R. E. Moritz. 2004. Scientific Description of the Sea Ice Component in the Community Climate System Model, Version Three. NCAR Tech. Note NCAR/TN-463+STR, 70pp.

    Cess, R. D., G. L. Potter, J. P. Blanchet, G. J. Boer, A. D. Del Genio,M. Deque, V. Dymnikov, et al. 1990. “Intercomparison and Interpretation of Climate Feedback Processes in 19 Atmospheric General Circulation Models.” Journal of Geophysical Research 10 (16): 601-615.

    Chen, X. L., T. J. Zhou, and Z. Guo. 2014. “Climate Sensitivities of Two Versions of FGOALS Model to Idealized Radiative Forcing.” Science China Earth Sciences 57 (6): 1363-1373.

    Collins, W. D., C. M. Bitz, M. L. Blackmon, G. B. Bonan, C. S. Bretherton, J. A. Carton, P. Chang, et al. 2006. “The Community Climate System Model Version 3 (CCSM3).” Journal of Climate 19: 2122-2143.

    Dai, F. S., R. C. Yu, X. H. Zhang, Y. Q. Yu. 2004. “A Statistical Lowlevel Cloud Scheme and its Tentative Application in a General Circulation Model.” Acta Meteorologica Sinica 62 (4): 385-394(in Chinese).

    Edwards, J. M., and A. Slingo. 1996. “Studies with a Flexible New Radiation Code. I: Choosing a Configuration for a Large-scale Model.” Quarterly Journal of the Royal Meteorological Society 122: 689-719.

    Gettelman, A., J. E. Kay, and K. M. Shell. 2012. “The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model.” Journal of Climate 25 (5): 1453-1469.

    Hack, J. J. 1998. “Sensitivity of the Simulated Climate to a Diagnostic Formulation for Cloud Liquid Water.” Journal of Climate 11: 1497-1515.

    Hall, A. M., and S. Manabe. 1999. “The Role of Water Vapor Feedback in Unperturbed Climate Variability and Global Warming.” Journal of Climate 12: 2327-2346.

    Hansen, J., R. Ruedy, M. Sato, and K. Lo. 2010. “Global Surface Temperature Change.” Reviews of Geophysics. 48 (4): RG4004. doi:10.1029/2010RG000345.

    Holtslag, A. A. M., and B. A. Boville. 1993. “Local Versus Nonlocal Boundary-layer Diffusion in a Global Climate Model.” Journal of Climate 6: 1825-1842.

    Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang. 2013. “The Baseline Evaluation of LASG/IAP Climate System Ocean Model(LICOM) Version 2.” Acta Meteorologica Sinica 26 (3): 318-329. doi:10.1007/s13351-012-0305-y.

    IPCC. 2013. “Summary for Policymakers.” In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker, D. Qin, G.-K. Plattner,M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley, 3-32. Cambridge: Cambridge University Press. Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch. 1996. Description of the NCAR Community Climate Model (CCM3). NCAR Technical Note NCAR/TN-420+STR. doi:10.5065/D6FF3Q99.

    Kristin, L. H., D. L. Hartmann, and S. A. Klein. 1999. “The Role of Clouds, Water Vapor, Circulation, and Boundary Layer Structure in the Sensitivity of the Tropical Climate.” Journal of Climate 12: 2359-2374.

    Martin, G. M., D. W. Johnson, and A. Spice. 1994. “The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds.” Journal of the Atmospheric Sciences 51 (13): 1823-1842.

    Minschwaner, K., and A. E. Dessler. 2004. “Water Vapor Feedback in the Tropical Upper Troposphere: Model Results and Observations.” Journal of Climate 17 (6): 1272-1282.

    Neale, R. B., and B. J. Hoskins. 2001. “A Standard Test for AGCMs Including Their Physical Parametrizations I: The Proposal.”Atmospheric science Letters 1 (2): 101-107.

    Oleson, K. W., M. L. David, G. B. Bonan, M. G. Flanner, E. Kluzek,P. J. Lawrence, S. Levis, et al. 2004. Technical Description of the Community Land Model (CLM). NCAR/TN-461+STR, 173pp.

    Schneider, E. K., B. P. Kirtman, and R. S. Lindzen. 1999.“Tropospheric Water Vapor and Climate Sensitivity.” Journal of the Atmospheric Sciences 56 (11): 1649-1658.

    Slingo, J. M. 1987. “The Development and Verification of a Cloud Prediction Scheme for the ECMWF Model.” Quarterly Journal of the Royal Meteorological Society 113: 899-927.

    Sun, Z. A., and L. Rikus. 1999. “Parametrization of Effective Sizes of Cirrus-cloud Particles and Its Verification Against Observations.” Quarterly Journal of the Royal Meteorological Society 125: 3037-3055.

    Tiedtke, M. 1989. “A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-scale Models.” Monthly Weather Review 117: 1779-1800.

    Wang, W. C., Y. L. Yung, A. A. Lacis, T. Mo, and J. E. Hansen. 1976.“Greenhouse Effects Due to Man-made Perturbations of Trace Gases.” Science 194: 685-690.

    Wu, G. X., H. Liu, and Y. C. Zhao. 1996. “A Nine-layer Atmospheric General Circulation Model and Its Performance.” Advances in Atmospheric Sciences 13: 1-18.

    Yang, H., and K. K. Tung. 1998. “Water Vapor, Surface Temperature,and the Greenhouse Effect - A Statistical Analysis of Tropical - Mean Data.” Journal of Climate 11: 2686-2697.

    Zhou, T. J., F. F. Song, and X. L. Chen. 2013. “Historical Evolution of Global and Regional Surface Air Temperature Simulated by FGOALS-s2 and FGOALS-g2: How reliable are the Model Results?” Advances in Atmospheric Sciences 30 (3): 638-657.

    18 May 2015 Accepted 20 July 2015

    CONTACT HE Bian heb@lasg.iap.ac.cn

    ? 2016 The Author(s). Published by Taylor & Francis

    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    猜你喜歡
    水云水球對流
    水球
    微波水云間
    保健與生活(2023年6期)2023-03-17 08:39:54
    好玩兒的太空水球實驗
    軍事文摘(2022年14期)2022-08-26 08:14:24
    齊口裂腹魚集群行為對流態(tài)的響應
    水云間
    “水球”實驗再次亮相“天宮課堂”
    古琴曲《瀟湘水云》的題解流變考
    藝術品鑒(2019年10期)2019-11-25 07:10:10
    胡忌先生讀《水云村稿》札記一則
    中華戲曲(2017年2期)2017-02-16 06:53:16
    水球比賽
    小學生導刊(2016年1期)2016-12-01 06:02:17
    基于ANSYS的自然對流換熱系數(shù)計算方法研究
    一级av片app| 久久久久久久久久成人| 国产免费又黄又爽又色| 久久99热6这里只有精品| 男女啪啪激烈高潮av片| 欧美三级亚洲精品| 久久亚洲国产成人精品v| 联通29元200g的流量卡| 99热这里只有精品一区| 男人和女人高潮做爰伦理| 日韩av免费高清视频| 99热网站在线观看| 亚洲欧美精品专区久久| 亚洲精品,欧美精品| 久久99蜜桃精品久久| 男女边摸边吃奶| 街头女战士在线观看网站| 日韩中字成人| 美女主播在线视频| 精品久久久久久久久亚洲| 亚洲av成人精品一二三区| 99热网站在线观看| 97在线视频观看| 18禁在线播放成人免费| 在线观看美女被高潮喷水网站| 午夜激情久久久久久久| 亚洲av男天堂| 国产精品国产三级专区第一集| 2021天堂中文幕一二区在线观| 国产精品无大码| www.色视频.com| 麻豆国产97在线/欧美| www.色视频.com| 久久精品久久久久久噜噜老黄| 中文字幕av成人在线电影| 肉色欧美久久久久久久蜜桃 | 亚洲熟女精品中文字幕| 青春草视频在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 高清欧美精品videossex| 韩国av在线不卡| 成年人午夜在线观看视频| 综合色丁香网| 麻豆国产97在线/欧美| 精品一区在线观看国产| 久久久久精品性色| 欧美变态另类bdsm刘玥| 婷婷色麻豆天堂久久| 国产精品国产三级国产av玫瑰| 亚洲欧美日韩卡通动漫| 特大巨黑吊av在线直播| 亚洲经典国产精华液单| 亚洲精品日韩在线中文字幕| 中文天堂在线官网| 美女脱内裤让男人舔精品视频| av在线亚洲专区| 91精品一卡2卡3卡4卡| 你懂的网址亚洲精品在线观看| 亚洲欧洲国产日韩| 久久6这里有精品| 99热这里只有是精品在线观看| 精品一区二区三卡| 国内少妇人妻偷人精品xxx网站| 亚洲av免费在线观看| 18禁在线无遮挡免费观看视频| 国产精品国产三级国产专区5o| 色婷婷久久久亚洲欧美| 欧美成人一区二区免费高清观看| 久久午夜福利片| 水蜜桃什么品种好| 国产伦精品一区二区三区四那| 亚洲欧美精品自产自拍| 亚洲精品乱久久久久久| 99久国产av精品国产电影| 国产乱人偷精品视频| 国产精品一区二区三区四区免费观看| 亚洲精品视频女| 国产高潮美女av| 国产高清不卡午夜福利| 成人午夜精彩视频在线观看| 国产淫语在线视频| a级一级毛片免费在线观看| 一个人看视频在线观看www免费| 人人妻人人澡人人爽人人夜夜| 成人毛片60女人毛片免费| 深夜a级毛片| 18禁在线播放成人免费| 欧美丝袜亚洲另类| 国产欧美亚洲国产| 99热网站在线观看| 日韩欧美精品免费久久| 三级国产精品片| 国产久久久一区二区三区| 超碰av人人做人人爽久久| av免费观看日本| 国产黄频视频在线观看| 免费观看av网站的网址| av播播在线观看一区| 国产成人91sexporn| 成人漫画全彩无遮挡| 男插女下体视频免费在线播放| 亚洲精品第二区| 亚洲国产精品国产精品| 久久精品国产亚洲av天美| 天堂网av新在线| 欧美日本视频| 精品国产露脸久久av麻豆| 日韩av不卡免费在线播放| www.色视频.com| 午夜福利视频精品| 国产v大片淫在线免费观看| 91精品一卡2卡3卡4卡| av在线观看视频网站免费| 日韩强制内射视频| 一级av片app| 亚洲在久久综合| 日韩欧美精品v在线| 欧美一区二区亚洲| 蜜桃亚洲精品一区二区三区| 黄色配什么色好看| 精华霜和精华液先用哪个| av在线播放精品| 亚洲人成网站在线播| 三级经典国产精品| 久久久成人免费电影| 欧美成人a在线观看| 亚洲久久久久久中文字幕| 亚洲色图av天堂| 少妇人妻久久综合中文| 男人爽女人下面视频在线观看| 精品一区二区三卡| 午夜日本视频在线| 久久99热这里只频精品6学生| 男人狂女人下面高潮的视频| 国产男女超爽视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国语对白做爰xxxⅹ性视频网站| 黄色欧美视频在线观看| 亚洲精品成人久久久久久| 精品久久久久久久末码| 少妇的逼水好多| av国产免费在线观看| 亚洲精品影视一区二区三区av| 又黄又爽又刺激的免费视频.| 国产爱豆传媒在线观看| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| av在线观看视频网站免费| 亚洲国产精品成人综合色| 国产色爽女视频免费观看| 亚洲精品视频女| av国产精品久久久久影院| av黄色大香蕉| 久久99精品国语久久久| 最近手机中文字幕大全| 亚洲国产精品999| 又大又黄又爽视频免费| 亚洲人与动物交配视频| 国产精品一区二区在线观看99| 亚洲精品乱久久久久久| 免费观看无遮挡的男女| 天堂网av新在线| 久久99蜜桃精品久久| 亚洲精品影视一区二区三区av| 精品一区二区三卡| 日韩精品有码人妻一区| 人妻少妇偷人精品九色| 亚洲性久久影院| 免费av毛片视频| 精品人妻熟女av久视频| 久久女婷五月综合色啪小说 | 精品少妇久久久久久888优播| 精品久久久精品久久久| 少妇人妻 视频| 中文资源天堂在线| 国产综合懂色| 乱码一卡2卡4卡精品| 亚洲人成网站在线播| 国产高清有码在线观看视频| 少妇人妻精品综合一区二区| 啦啦啦啦在线视频资源| 直男gayav资源| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| 自拍欧美九色日韩亚洲蝌蚪91 | 男人舔奶头视频| 国产av码专区亚洲av| 男的添女的下面高潮视频| 99久久精品热视频| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区 | 国产亚洲精品久久久com| 丝袜美腿在线中文| 黄色视频在线播放观看不卡| 在线亚洲精品国产二区图片欧美 | 欧美区成人在线视频| 国产老妇女一区| 久久99蜜桃精品久久| 欧美性猛交╳xxx乱大交人| 最后的刺客免费高清国语| 欧美性感艳星| 久久精品综合一区二区三区| 国产 一区精品| 国产真实伦视频高清在线观看| 26uuu在线亚洲综合色| 久久精品国产自在天天线| 亚洲av福利一区| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 色综合色国产| 97人妻精品一区二区三区麻豆| 国产精品精品国产色婷婷| 日韩欧美精品免费久久| 日本欧美国产在线视频| 久久人人爽av亚洲精品天堂 | 观看免费一级毛片| 夜夜爽夜夜爽视频| 欧美高清成人免费视频www| 欧美激情国产日韩精品一区| 人人妻人人看人人澡| 男的添女的下面高潮视频| 欧美少妇被猛烈插入视频| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 亚洲色图av天堂| 丰满乱子伦码专区| 国产高清有码在线观看视频| 免费观看无遮挡的男女| 亚洲av一区综合| 亚洲av电影在线观看一区二区三区 | 视频区图区小说| xxx大片免费视频| 欧美国产精品一级二级三级 | 亚洲av日韩在线播放| 在线观看三级黄色| 亚洲aⅴ乱码一区二区在线播放| 中文字幕免费在线视频6| 国产伦理片在线播放av一区| 精品国产露脸久久av麻豆| 黄色一级大片看看| 中文资源天堂在线| 高清视频免费观看一区二区| 国产又色又爽无遮挡免| 亚洲成色77777| 午夜福利网站1000一区二区三区| 只有这里有精品99| 亚洲怡红院男人天堂| 黑人高潮一二区| 一本久久精品| 狂野欧美白嫩少妇大欣赏| 天天躁日日操中文字幕| 91aial.com中文字幕在线观看| 在线观看一区二区三区| 日产精品乱码卡一卡2卡三| 成人国产av品久久久| 别揉我奶头 嗯啊视频| 久久精品久久久久久久性| 国产一区有黄有色的免费视频| 国产成人一区二区在线| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区三区综合在线观看 | 欧美日韩综合久久久久久| 男女边摸边吃奶| 97超视频在线观看视频| 成年人午夜在线观看视频| 高清毛片免费看| 看黄色毛片网站| 国产黄片美女视频| 成人毛片a级毛片在线播放| 亚洲av国产av综合av卡| 3wmmmm亚洲av在线观看| 只有这里有精品99| 成年女人看的毛片在线观看| 91久久精品电影网| 亚洲天堂av无毛| 777米奇影视久久| 18禁在线无遮挡免费观看视频| 国产精品99久久99久久久不卡 | 国产精品精品国产色婷婷| 国产伦在线观看视频一区| 麻豆乱淫一区二区| 国产国拍精品亚洲av在线观看| 国产精品精品国产色婷婷| 日本欧美国产在线视频| 国产成人aa在线观看| 国产乱人偷精品视频| 亚洲性久久影院| 欧美区成人在线视频| 亚洲av成人精品一二三区| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 观看免费一级毛片| 夜夜看夜夜爽夜夜摸| 26uuu在线亚洲综合色| 国精品久久久久久国模美| 美女高潮的动态| 91久久精品电影网| 最近最新中文字幕免费大全7| 成年人午夜在线观看视频| 啦啦啦啦在线视频资源| 国产乱人视频| 亚洲国产色片| 欧美区成人在线视频| 丝袜美腿在线中文| av在线亚洲专区| 国产男女内射视频| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 在线亚洲精品国产二区图片欧美 | 一二三四中文在线观看免费高清| 18+在线观看网站| 亚洲精品aⅴ在线观看| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 国产高潮美女av| 久久久久久久久久成人| 深夜a级毛片| 久久精品国产亚洲网站| 亚洲国产精品999| 一区二区av电影网| 听说在线观看完整版免费高清| 亚洲精品日韩在线中文字幕| 黑人高潮一二区| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 少妇人妻 视频| 亚洲欧美一区二区三区国产| 亚洲欧美日韩东京热| 在线观看三级黄色| 成年免费大片在线观看| 亚洲一区二区三区欧美精品 | 内地一区二区视频在线| 日本午夜av视频| 婷婷色综合www| 黄色欧美视频在线观看| 中国三级夫妇交换| 日本黄色片子视频| 亚洲第一区二区三区不卡| 一本久久精品| 熟女av电影| 久久久久久久国产电影| 99精国产麻豆久久婷婷| 精品少妇久久久久久888优播| 欧美日韩国产mv在线观看视频 | 精品久久久久久久人妻蜜臀av| 成人黄色视频免费在线看| 六月丁香七月| 午夜精品一区二区三区免费看| 日产精品乱码卡一卡2卡三| av国产久精品久网站免费入址| 亚洲人成网站在线观看播放| www.色视频.com| 国产精品蜜桃在线观看| 91久久精品电影网| 色播亚洲综合网| 99热这里只有是精品50| av免费观看日本| 91精品伊人久久大香线蕉| 丝瓜视频免费看黄片| 久久国产乱子免费精品| 最后的刺客免费高清国语| 国产精品人妻久久久久久| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 大香蕉久久网| 黑人高潮一二区| 欧美3d第一页| 寂寞人妻少妇视频99o| 综合色丁香网| 日韩欧美一区视频在线观看 | 蜜桃久久精品国产亚洲av| 国产免费一级a男人的天堂| 少妇裸体淫交视频免费看高清| 尤物成人国产欧美一区二区三区| 日日撸夜夜添| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线 | 欧美性感艳星| 亚洲人成网站高清观看| av国产免费在线观看| 国产精品熟女久久久久浪| 你懂的网址亚洲精品在线观看| 亚洲av电影在线观看一区二区三区 | 日韩一区二区三区影片| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 国产视频内射| 精品熟女少妇av免费看| 男男h啪啪无遮挡| 久久精品国产亚洲av涩爱| 在线观看三级黄色| 欧美高清性xxxxhd video| 欧美三级亚洲精品| 好男人在线观看高清免费视频| 女人久久www免费人成看片| 麻豆国产97在线/欧美| 直男gayav资源| 91久久精品电影网| 色播亚洲综合网| 97超碰精品成人国产| 精品一区二区免费观看| 亚洲成人一二三区av| 我的老师免费观看完整版| 亚洲高清免费不卡视频| 伊人久久精品亚洲午夜| 亚洲精品国产色婷婷电影| 乱码一卡2卡4卡精品| freevideosex欧美| 亚洲成人久久爱视频| 在线天堂最新版资源| 视频中文字幕在线观看| 成人午夜精彩视频在线观看| 亚洲国产欧美人成| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 欧美精品国产亚洲| 国产免费一区二区三区四区乱码| 精品久久久久久电影网| 日韩欧美精品v在线| 国产综合精华液| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| 男插女下体视频免费在线播放| 日韩,欧美,国产一区二区三区| 欧美日韩视频高清一区二区三区二| 欧美一级a爱片免费观看看| 黄片wwwwww| 国产爽快片一区二区三区| 2022亚洲国产成人精品| 久久午夜福利片| 欧美激情国产日韩精品一区| 少妇人妻久久综合中文| 最近最新中文字幕大全电影3| 黄片wwwwww| 在线观看免费高清a一片| 九九爱精品视频在线观看| 国产亚洲5aaaaa淫片| 亚洲国产av新网站| 国产 一区 欧美 日韩| 在线观看一区二区三区| 国产成人a区在线观看| 久久久精品94久久精品| 特级一级黄色大片| 午夜福利网站1000一区二区三区| 超碰av人人做人人爽久久| 人妻 亚洲 视频| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| 免费观看a级毛片全部| 少妇熟女欧美另类| 国产爱豆传媒在线观看| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 亚洲av一区综合| 国产一区有黄有色的免费视频| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| 国产国拍精品亚洲av在线观看| 久久久欧美国产精品| 九色成人免费人妻av| 97超碰精品成人国产| 国产日韩欧美在线精品| av在线老鸭窝| 99热网站在线观看| 秋霞伦理黄片| 亚洲内射少妇av| 免费黄频网站在线观看国产| 汤姆久久久久久久影院中文字幕| 婷婷色av中文字幕| 哪个播放器可以免费观看大片| 乱系列少妇在线播放| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 99久久九九国产精品国产免费| 欧美日韩视频高清一区二区三区二| a级一级毛片免费在线观看| 国产黄a三级三级三级人| 少妇熟女欧美另类| 日韩中字成人| 亚洲精品456在线播放app| 亚洲av国产av综合av卡| 一级毛片电影观看| 男女那种视频在线观看| 国国产精品蜜臀av免费| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 97超碰精品成人国产| 亚洲欧洲日产国产| 精品一区二区三卡| 免费av毛片视频| 成人欧美大片| 色哟哟·www| tube8黄色片| 成人国产麻豆网| av女优亚洲男人天堂| 国产极品天堂在线| 男人爽女人下面视频在线观看| 高清午夜精品一区二区三区| 精品久久久久久久末码| 国产成人精品福利久久| 五月天丁香电影| 日本黄大片高清| 插阴视频在线观看视频| 午夜福利高清视频| 亚洲人与动物交配视频| 一级毛片黄色毛片免费观看视频| 国产美女午夜福利| 国产一区二区在线观看日韩| 晚上一个人看的免费电影| 大码成人一级视频| 伦精品一区二区三区| 少妇的逼好多水| 国产精品久久久久久久久免| 亚洲天堂av无毛| 一级av片app| 国产成人免费观看mmmm| 美女被艹到高潮喷水动态| 亚洲欧美日韩卡通动漫| 日本黄大片高清| 免费看日本二区| 99久久中文字幕三级久久日本| a级一级毛片免费在线观看| 色播亚洲综合网| 国产精品一区二区性色av| 日本黄色片子视频| 亚洲av免费在线观看| 欧美3d第一页| 少妇人妻一区二区三区视频| 日日啪夜夜爽| 视频区图区小说| 国产淫语在线视频| 日韩三级伦理在线观看| 伦精品一区二区三区| 国产视频首页在线观看| .国产精品久久| 亚洲高清免费不卡视频| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 亚洲欧洲国产日韩| 尤物成人国产欧美一区二区三区| 久久影院123| kizo精华| 丰满乱子伦码专区| 亚洲av二区三区四区| 国产精品久久久久久av不卡| 99久久九九国产精品国产免费| 亚洲国产精品成人久久小说| 中文字幕av成人在线电影| 午夜爱爱视频在线播放| 少妇丰满av| 亚洲天堂国产精品一区在线| 欧美bdsm另类| 亚洲av在线观看美女高潮| 黄片无遮挡物在线观看| 久久精品综合一区二区三区| 免费看av在线观看网站| 日本黄大片高清| 久久久久久久精品精品| 国产免费又黄又爽又色| 九九久久精品国产亚洲av麻豆| 亚洲图色成人| 日韩不卡一区二区三区视频在线| 国产伦精品一区二区三区四那| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 在线观看免费高清a一片| 老司机影院毛片| 嫩草影院入口| 神马国产精品三级电影在线观看| 一级黄片播放器| 2022亚洲国产成人精品| 国产高清三级在线| 少妇的逼好多水| 秋霞伦理黄片| av卡一久久| 一个人看的www免费观看视频| 性插视频无遮挡在线免费观看| 精品酒店卫生间| 欧美性感艳星| 国产亚洲av片在线观看秒播厂| 人人妻人人看人人澡| 亚洲怡红院男人天堂| 国产美女午夜福利| 男的添女的下面高潮视频| 听说在线观看完整版免费高清| 国产成人精品一,二区| 中文精品一卡2卡3卡4更新| 极品教师在线视频| 欧美三级亚洲精品| 国产亚洲午夜精品一区二区久久 | 看十八女毛片水多多多| 精品一区在线观看国产| 极品少妇高潮喷水抽搐| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美人与善性xxx| 国产精品成人在线| 精品久久久久久久末码| 国产探花极品一区二区| 国产成人福利小说| 男女无遮挡免费网站观看| 国产精品av视频在线免费观看| 亚洲欧美日韩另类电影网站 | 夜夜爽夜夜爽视频| 午夜福利在线在线| 性色av一级| av在线蜜桃| 日韩一区二区三区影片| 国产免费一级a男人的天堂| 亚洲精品第二区| 三级国产精品欧美在线观看| 国产精品嫩草影院av在线观看| 大香蕉久久网|