高 敏 陳天雷 吳 琳 趙秀芬 邢昌贏 毛慧娟
吡格列酮通過(guò)Wnt/β-catenin信號(hào)通路減輕大鼠血管平滑肌細(xì)胞鈣化
高 敏1,2陳天雷3吳 琳1趙秀芬1邢昌贏1毛慧娟1
目的:探討過(guò)氧化物酶體增殖物活化受體γ(PPARγ)激動(dòng)劑吡格列酮(PIO)對(duì)高磷誘導(dǎo)大鼠血管平滑肌細(xì)胞(VSMC)鈣化的作用及其相關(guān)機(jī)制。 方法:利用10 mmol/L β甘油磷酸(β-GP)誘導(dǎo)大鼠VSMC鈣化,建立鈣化模型(即鈣化組);同時(shí)以完全培養(yǎng)基培養(yǎng)大鼠VSMC為正常對(duì)照組,并分別以不同濃度(5 μmol/L、10 μmol/L、15 μmol/L、20 μmol/L)PIO干預(yù),觀察培養(yǎng)12d,用茜素紅染色法檢測(cè)細(xì)胞鈣沉積并檢測(cè)細(xì)胞外基質(zhì)鈣離子濃度來(lái)觀察VSMC鈣化程度。Western Blot檢測(cè)大鼠VSMC的α平滑肌動(dòng)蛋白(α-SMA)、Runx2、BMP2、Wnt/β-catenin通路相關(guān)蛋白(β-catenin、GSK-3β、p-GSK-3β)及核蛋白cyclin- D1的表達(dá)情況。選擇合適的PIO濃度(20 μmol/L)并以PPARγ拮抗劑GW9662(20 μmol/L)干預(yù),觀察以上指標(biāo)的變化。 結(jié)果:(1)鈣化組鈣離子濃度較正常對(duì)照組明顯增高(P<0.05),而不同濃度PIO均可減輕VSMC細(xì)胞外基質(zhì)的鈣離子濃度(P<0.05),同時(shí)鈣化組茜素紅染色較正常對(duì)照組明顯,而20 μmol/L PIO干預(yù)組茜素紅染色較鈣化組減輕最為明顯;(2)鈣化組大鼠VSMC表達(dá)Runx2、β-catenin、p-GSK-3β、BMP2、cyclin-D1較正常對(duì)照組升高;20 μmol/L PIO可顯著下調(diào)鈣化大鼠VSMC表達(dá)Runx2、β-catenin、p-GSK-3β、BMP2和cyclin-D1,并上調(diào)α-SMA的表達(dá);(3)PPARγ拮抗劑GW9662可部分阻斷PIO對(duì)鈣化大鼠VSMC的干預(yù)作用。 結(jié)論:PPARγ激動(dòng)劑PIO可減輕β-GP誘導(dǎo)的大鼠VSMC的鈣化,其作用機(jī)制與下調(diào)Wnt/β-catenin信號(hào)通路活性有關(guān)。
過(guò)氧化物酶體增殖物活化受體γ 血管鈣化 血管平滑肌細(xì)胞 Wnt/β-catenin信號(hào)通路
慢性腎臟病(CKD)患者的鈣磷代謝失調(diào)驅(qū)動(dòng)血管鈣化,而血管鈣化被公認(rèn)為是終末期腎病(ESRD)患者心血管疾病(CVD)的主要因素[1]。因此,如何減緩血管鈣化進(jìn)程對(duì)于CKD,尤其ESRD患者有重要意義。血管鈣化既往被認(rèn)為是鈣鹽在細(xì)胞外基質(zhì)的被動(dòng)沉積過(guò)程,然而近年來(lái)越來(lái)越多的研究發(fā)現(xiàn)血管鈣化是一個(gè)類似于骨形成的受多因素調(diào)控的主動(dòng)調(diào)節(jié)過(guò)程,其中心環(huán)節(jié)是血管平滑肌細(xì)胞(VSMC)向成骨樣細(xì)胞轉(zhuǎn)化[2]。骨骼和血管系統(tǒng)在礦化作用中有著相似及相互的變化,稱之為骨-血管軸[3]。而過(guò)氧化物酶體增殖物活化受體γ(PPARγ)在骨重塑中是一個(gè)重要的調(diào)節(jié)因子。近年來(lái),有部分文獻(xiàn)報(bào)道改變PPARγ活性可通過(guò)降低晚期糖基化終產(chǎn)物(AGE)受體(RAGE)的活性、抑制炎癥因子的產(chǎn)生及減少氧化應(yīng)激減輕AGE誘導(dǎo)糖尿病狀態(tài)下的血管鈣化[4]。吡格列酮(PIO)是新一代的PPARγ激動(dòng)劑,其能否減輕高磷誘導(dǎo)的VSMC的鈣化,及其可能的機(jī)制尚待闡明。
主要材料 大鼠VSMCs(美國(guó)ATCC),培養(yǎng)基為高糖無(wú)血清(DMEM)(Gibco),PIO(美國(guó)Selleck),PPARγ拮抗劑 GW9662(美國(guó)Selleck),β甘油磷酸(β-GP)(美國(guó)Sigma),鈣離子定量檢測(cè)試劑盒(南京建成生物工程研究所)。細(xì)胞核/細(xì)胞質(zhì)蛋白抽提試劑盒(內(nèi)含Cytosol Extraction Buffer A,Cytosol Extraction Buffer B,Nuclear Extraction Buffer N)(弗德生物)。一抗α平滑肌動(dòng)蛋白(α-SMA)(武漢Proteintech)稀釋倍數(shù)為1∶ 1 000,Runx2(武漢Proteintech)稀釋倍數(shù)為1∶ 500,BMP2(英國(guó)Abcam)稀釋倍數(shù)為1∶ 1 000,GSK-3β(英國(guó)Abcam)稀釋倍數(shù)為1∶ 1 000,p-GSK-3β(英國(guó)Abcam)稀釋倍數(shù)為1∶ 1 000,β-catenin(英國(guó)Abcam)稀釋倍數(shù)為1∶ 2 000,cyclin-D1(美國(guó)CST)稀釋倍數(shù)為1∶ 1 000,核蛋白內(nèi)參HDAC1(美國(guó)Thermo)稀釋倍數(shù)為1∶ 1 000,內(nèi)參GAPDH(武漢Proteintech)稀釋倍數(shù)為1∶ 5 000。以上一抗均為兔抗大鼠。山羊抗兔二抗(北京中杉金橋)稀釋倍數(shù)為1∶ 8 000。
方法
細(xì)胞培養(yǎng)與分組 大鼠VSMCs常規(guī)培養(yǎng),37℃、5%CO2培養(yǎng)箱孵育。實(shí)驗(yàn)前予以DMEM培養(yǎng)12h同步化處理。分組(1)空白對(duì)照組:予常規(guī)培養(yǎng)基;(2)空白對(duì)照+二甲基亞砜(DMSO)組:在常規(guī)培養(yǎng)基中加入25 mg/ml DMSO;(3)鈣化組:含10 mmol/L β-GP鈣化培養(yǎng)基;(4)鈣化+DMSO組:在鈣化培養(yǎng)基中加入25 mg/ml DMSO;(5)鈣化+PIO組:在鈣化培養(yǎng)基中分別加入5 μmol/L、10 μmol/L、15 μmol/L和20 μmol/L的PIO,PIO粉末以DMSO溶解,DMSO濃度為25 mg/ml;(6)鈣化+PIO+GW9662組:在鈣化+20 μmol/L PIO組基礎(chǔ)上加入20 μmol/L PPARγ拮抗劑 GW9662。其中空白對(duì)照組即為血清高糖DMEM培養(yǎng)基,鈣化組為常規(guī)培養(yǎng)基+10 mmol/L β-GP+50 mg/ml維生素C+1×10-7mol/L胰島素。每3d換液一次,細(xì)胞培養(yǎng)時(shí)間為12d。
鈣化程度的檢測(cè)
茜素紅染色法鑒定細(xì)胞的鈣鹽沉積 光鏡下觀察細(xì)胞外基質(zhì)呈現(xiàn)橙色著色、細(xì)胞呈淡紫色著色為鈣鹽沉積染色陽(yáng)性。
細(xì)胞外基質(zhì)鈣含量的定量檢測(cè) 棄去上層培養(yǎng)基,PBS緩沖液洗滌細(xì)胞3次,0.6 mol/L鹽酸去鈣化、37℃脫鈣24h。收集上清用鈣離子定量檢測(cè)試劑盒測(cè)定鹽酸懸液中的鈣含量。剩余細(xì)胞提取細(xì)胞總蛋白,BCA法測(cè)定蛋白含量。用蛋白含量校正鈣含量。
檢測(cè)細(xì)胞 Western印跡法檢測(cè)α-SMA、BMP2、Runx2、GSK-3β、p-GSK-3β、β-catenin的表達(dá),常規(guī)方法裂解細(xì)胞,提取細(xì)胞總蛋白。10%SDS-PAGE電泳、電轉(zhuǎn)膜;封閉后相對(duì)應(yīng)的一抗4℃孵育過(guò)夜,加二抗。ECL化學(xué)發(fā)光法,自動(dòng)曝光機(jī)曝光并進(jìn)行蛋白條帶的吸光度分析。以GAPDH為內(nèi)參照。
核蛋白cyclin-D1的檢測(cè) 收集細(xì)胞,計(jì)數(shù)。按細(xì)胞核/細(xì)胞質(zhì)蛋白抽提試劑盒說(shuō)明書操作,提取胞質(zhì)蛋白。Western印跡法檢測(cè)cyclin-D1的表達(dá)。內(nèi)參為HDAC1。
統(tǒng)計(jì)學(xué)方法 采用SPSS19.0統(tǒng)計(jì)軟件進(jìn)行數(shù)據(jù)處理。每組實(shí)驗(yàn)均重復(fù)3次。實(shí)驗(yàn)結(jié)果計(jì)量資料數(shù)據(jù)采用均數(shù)±標(biāo)準(zhǔn)差表示,組間差異用單因素方差分析,P<0.05為差異有統(tǒng)計(jì)學(xué)意義,P<0.01為統(tǒng)計(jì)學(xué)差異顯著。
各組鈣化情況 茜素紅染色結(jié)果顯示,空白對(duì)照組細(xì)胞基質(zhì)未著色,細(xì)胞呈褐色,可見細(xì)胞基質(zhì)鈣鹽沉積染色不明顯;鈣化組細(xì)胞外基質(zhì)呈暗紅色,可見明顯鈣化結(jié)節(jié),細(xì)胞仍為褐色,細(xì)胞外基質(zhì)鈣鹽沉積染色陽(yáng)性。與鈣化組相比,鈣化+5 μmol/L PIO組及鈣化+10 μmol/L PIO組細(xì)胞外基質(zhì)中有鈣鹽沉積,其程度較鈣化組輕;鈣化組+15 μmol/L PIO及鈣化組+20 μmol/L PIO 細(xì)胞外基質(zhì)鈣鹽幾乎無(wú)沉積,未見著色(圖1)。四種不同濃度的PIO均可顯著降低大鼠VSMC細(xì)胞外基質(zhì)鈣鹽沉積染色,且DMSO對(duì)VSMC的鈣化無(wú)明顯影響。
圖1 各組茜素紅染色結(jié)果PIO:吡格列酮;VSMC:血管平滑肌細(xì)胞;DMSO:二甲基亞砜;A:空白對(duì)照組;B:空白對(duì)照組+25 mg/ml DMSO;C:鈣化組;D:鈣化組+25 mg/ml DMSO;E:鈣化組+5 μmol/L PIO;F:鈣化組+10 μmol/L PIO;G:鈣化組+15 μmol/L PIO;H:鈣化組+20 μmol/L PIO
大鼠VSMC培養(yǎng)12d后,細(xì)胞外基質(zhì)鈣鹽含量鈣化組(1.751±0.036 mmol/g)較空白對(duì)照組(1.321±0.196 mmol/g)增高,差異有統(tǒng)計(jì)學(xué)意義(P<0.001)。分別以5 μmol/L、10 μmol/L、15 μmol/L和20 μmol/L PIO干預(yù)12d后,細(xì)胞外基質(zhì)鈣鹽含量顯著低于鈣化組。四種不同濃度的PIO均可顯著降低大鼠VSMC外基質(zhì)鈣鹽含量(P<0.01)(圖2A)。
不同濃度PIO對(duì)α-SMA、BMP2、Runx2及β-catenin蛋白表達(dá)的影響 與空白對(duì)照組相比,鈣化組細(xì)胞α-SMA表達(dá)量明顯降低[(2.33±0.42)vs(0.96±0.44),P<0.01]。與鈣化組相比,20 μmol/L PIO干預(yù)組細(xì)胞α-SMA表達(dá)量(2.34±0.62)顯著增高(P<0.01)。鈣化組BMP2、Runx2及β-catenin蛋白的相對(duì)表達(dá)量,分別為(1.12±0.01)、(1.05±0.06)和(3.31±0.82),顯著高于空白對(duì)照組(P<0.05)。與鈣化組相比,20 μmol/L PIO干預(yù)組,細(xì)胞BMP2、Runx2及β-catenin蛋白的相對(duì)表達(dá)量下降,分別為(0.72±0.15)、(0.45±0.11)和(1.00±0.45),組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)(圖3)。
圖2 各組細(xì)胞外基質(zhì)鈣鹽含量的情況(分光光度法)PIO:吡格列酮;control:空白對(duì)照組;HP:鈣化組;control+PIO:空白對(duì)照+20 μmol/L PIO組;HP+PIO:鈣化+20 μmol/L PIO組;HP+PIO+GW9662:鈣化+20 μmol/L PIO+20 μmol/L GW9662組;*與空白對(duì)照組相比,P<0.01;**與鈣化組比較,P<0.01;#與HP+PIO組相比,P<0.01
圖3 不同濃度的吡格列酮對(duì)大鼠VSMC α-SMA、BMP-2、Runx2及β-catenin蛋白表達(dá)的影響(Western Blot)PIO:吡格列酮;VSMC:血管平滑肌細(xì)胞;A:空白對(duì)照組;B:鈣化組;C:鈣化組+5 μmol/L PIO;D:鈣化組+10 μmol/L PIO;E:鈣化組+15 μmol/L PIO;F:鈣化組+20μmol/L PIO;*:與空白對(duì)照組相比,P<0.05;**:與鈣化組比較,P<0.01
PIO對(duì)大鼠VSMC核內(nèi)蛋白cyclin-D1的影響 cyclin-D1是Wnt/β-catenin通路的下游靶蛋白。β-actin是細(xì)胞骨架微絲蛋白的主要成分,主要在胞漿質(zhì)中表達(dá),胞核也有較少表達(dá)。與空白對(duì)照組比較,鈣化組核蛋白cyclin-D1表達(dá)顯著增高;與鈣化組比較,20 μmol/L PIO處理組核蛋白cyclin-D1表達(dá)降低(圖4)。
圖4 20 μmol/L 吡格列酮對(duì)大鼠VSMC核內(nèi)蛋白cyclin-D1的影響PIO:吡格列酮;VSMC:血管平滑肌細(xì)胞;1:空白對(duì)照組;2:鈣化組;3:鈣化組+20 μmol/L PIO;*:與空白對(duì)照組相比,P<0.001;**:與鈣化組比較,P<0.001
PPARγ抑制劑GW9662對(duì)鈣化VSMC的影響
對(duì)大鼠VSMC細(xì)胞外基質(zhì)鈣含量的作用 鈣化+20 μmol/L PIO+20 μmol/L GW9662組細(xì)胞外基質(zhì)鈣鹽水平顯著高于鈣化+20 μmol/L PIO組[(2.48±0.42) mmol/gvs(1.51±0.22) mmol/g,P<0.01]。空白對(duì)照組+20 μmol/L PIO與空白對(duì)照組相比無(wú)統(tǒng)計(jì)學(xué)意義(圖2B)。
對(duì)Runx2、p-GSK-3β及GSK-3β蛋白表達(dá)的影響 鈣化+20 μmol/L PIO+20 μmol/L GW9662組細(xì)胞Runx2、p-GSK-3β/GSK-3β的相對(duì)表達(dá)量分別為(1.21±0.12)和(0.57±0.31),顯著高于鈣化+20 μmol/L PIO組(0.68±0.09)和(0.14±0.09),組間比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05);空白對(duì)照組+PIO組與空白對(duì)照組相比較,Runx2及p-GSK-3β/GSK-3β的表達(dá)無(wú)統(tǒng)計(jì)學(xué)差異(圖5)。
圖5 PPARγ抑制劑GW9662對(duì)Runx2、p-GSK-3β及GSK-3β蛋白表達(dá)的影響(Western Blot)PPARγ:過(guò)氧化物酶體增殖物活化受體γ;PIO:吡格列酮;A空白對(duì)照組;B:空白對(duì)照組+20 μmol/L PIO;C:鈣化組;D:鈣化組+10 μmol/L PIO;E:鈣化組+20 μmol/L PIO;F:鈣化組+20 μmol/L PIO+20 μmol/L GW9662;**:與空白對(duì)照組相比,P<0.001;*:與鈣化組+20 μmol/L PIO比較,P<0.05
CKD患者存在血管內(nèi)膜、中膜的鈣化加速,在透析患者鈣化進(jìn)展迅速[5],在CKD患者血管鈣化被認(rèn)為是全因死亡及心血管死亡強(qiáng)有力的預(yù)測(cè)因子[6],明顯增加患者的心血管死亡和全因死亡。CKD患者鈣化的發(fā)展與長(zhǎng)期血清磷水平及瞬時(shí)的高鈣血癥形成的礦質(zhì)代謝失調(diào)有緊密的聯(lián)系。磷酸鹽不僅是羥磷灰石不可或缺的組成部分,也是信號(hào)級(jí)聯(lián)觸發(fā)血管鈣化的重要部分[7]。高磷培養(yǎng)基培養(yǎng)VSMC會(huì)以劑量依賴性的方式發(fā)生血管鈣化,伴與骨形成相關(guān)蛋白的上調(diào)[8-9],VSMC表現(xiàn)為向成骨細(xì)胞轉(zhuǎn)分化。本研究使用10 mmol/L的β-GP干預(yù)大鼠VSMC 12d后,茜素紅染色出現(xiàn)明顯的鈣化結(jié)節(jié),細(xì)胞外基質(zhì)鈣鹽含量增加,細(xì)胞表達(dá)α-SMA較空白對(duì)照組明顯下降,BMP-2、Runx2則明顯升高,與既往研究結(jié)果一致[10-11]。
PPARs是一類屬于核激素受體超家族中的配體激活受體[12],有3種亞型,包括PPARα、PPARβ/δ、PPARγ,控制許多細(xì)胞內(nèi)代謝過(guò)程,屬于配體誘導(dǎo)的核受體。其中PPARγ是調(diào)節(jié)參與脂肪酸和能量代謝的幾個(gè)基因轉(zhuǎn)錄的核受體。激活PPARγ有廣譜生物學(xué)效應(yīng),包括調(diào)節(jié)新陳代謝,減少炎癥,影響免疫細(xì)胞的平衡,抑制細(xì)胞凋亡和氧化應(yīng)激、改善內(nèi)皮功能[13]。最新研究表明,PPARγ在骨重塑中是一個(gè)重要的調(diào)節(jié)因子。PPARγ在間充質(zhì)干細(xì)胞(MSCs)向脂肪細(xì)胞和成骨細(xì)胞的定向分化潛能上起“分子開關(guān)”的作用,促進(jìn)PPARγ表達(dá)及增強(qiáng)其活性可抑制MSCs向成骨分化、增殖,增加其向脂肪細(xì)胞分化[14],有利于脂肪形成[15]。純合子PPARγ缺陷的胚胎干細(xì)胞不能分化為脂肪細(xì)胞,但能自發(fā)向成骨細(xì)胞分化,而重新導(dǎo)入PPARγ基因則能被修復(fù)[16]。有少量研究證實(shí)PPARγ可減輕高脂高糖誘導(dǎo)的血管鈣化[17-18],那么調(diào)控PPARγ活性對(duì)高磷誘導(dǎo)的血管鈣化是否存在影響?本研究發(fā)現(xiàn)不同濃度,尤其是20 μmol/L PIO干預(yù)高磷誘導(dǎo)的大鼠VSMC,均可使細(xì)胞外鈣鹽含量顯著下降,茜素紅染色明顯減輕,同時(shí)細(xì)胞α-SMA蛋白表達(dá)上調(diào),BMP-2、Runx2的蛋白表達(dá)下調(diào)。這些均提示PIO可改善高磷誘導(dǎo)的大鼠血管平滑肌細(xì)胞的鈣化和成骨樣細(xì)胞的轉(zhuǎn)分化。
Wnt信號(hào)通路在骨形成中有著關(guān)鍵作用。低密度脂蛋白相關(guān)蛋白5(LRP5)是Wnt信號(hào)通路的輔助受體,失去LRP5功能可致伴極低骨量的骨質(zhì)疏松癥假瘤綜合征,若重新獲得LRP5功能則可導(dǎo)致高骨量表型[19-21]。另外,敲除Wnt信號(hào)通路內(nèi)源性抑制劑硬骨素編碼基因,也會(huì)導(dǎo)致硬化性表型[22-23]。部分小鼠模型證實(shí)了激活Wnt信號(hào)通路可增加骨量[23]。血管鈣化是血管平滑肌細(xì)胞表型向成骨細(xì)胞表型主動(dòng)轉(zhuǎn)化的過(guò)程[2],那么Wnt信號(hào)通路與血管鈣化有著怎樣的聯(lián)系?
經(jīng)典Wnt信號(hào)途徑也稱為 Wnt/β-catenin信號(hào)途徑。當(dāng)Wnt 配體與Fzd結(jié)合時(shí),促進(jìn)GSK-3β磷酸化,β-catenin復(fù)合體解離,使β-catenin不能被降解,游離的β-catenin在胞質(zhì)中穩(wěn)定積累,致入核的β-catenin大大增加,后進(jìn)入細(xì)胞核與T細(xì)胞因子/淋巴增強(qiáng)因子組成復(fù)合物,激活Wnt 信號(hào)靶基因使之表達(dá),參與生物體內(nèi)的多種生理機(jī)制[24]。經(jīng)典Wnt信號(hào)通路的下游靶基因包括與細(xì)胞增殖密切相關(guān)的幾個(gè)基因,如c-myc和cyclin-D1[25]。當(dāng)Wnt信號(hào)通路激活時(shí),cyclin-D1表達(dá)量增加,可用cyclin-D1表達(dá)量多少反映Wnt信號(hào)通路活性強(qiáng)弱。Woldt等[17]研究發(fā)現(xiàn)PPARγ抑制Wnt 5a信號(hào)通路可減輕LRP1誘導(dǎo)的血管鈣化,其中PPARγ在轉(zhuǎn)錄水平控制Wnt拮抗體分泌型卷曲相關(guān)蛋白2(sFRP2)的表達(dá),從而減輕血管鈣化。經(jīng)典Wnt信號(hào)通路中β-catenin效應(yīng)濃度由CTNNB1編碼,使用PPARγ激動(dòng)劑后脂肪細(xì)胞及脂肪組織的CTNNB1下調(diào),同時(shí)β-catenin也是PPARγ的一個(gè)轉(zhuǎn)錄靶基因[26],這些結(jié)果反映PPARγ也許抑制了CTNNB1的表達(dá)。Liu等[27]研究中證實(shí)PPARγ與β-catenin有著直接的交互作用,PPARγ通過(guò)參與β-catenin的TCF綁定區(qū)域來(lái)誘導(dǎo)β-catenin在蛋白酶體中降解。以上研究提示PPARγ可直接或間接影響Wnt/β-catenin通路。本研究中我們發(fā)現(xiàn)在鈣化培養(yǎng)基中加入20 μmol/L PIO干預(yù),可使β-catenin蛋白、cyclin-D1蛋白的表達(dá)及p-GSK-3β/GSK-3β比值較鈣化組減少。此外,本研究還發(fā)現(xiàn)PIO的這種抑制鈣化和抑制Wnt/β-catenin信號(hào)通路的作用在加入PPARγ拮抗劑后得以減輕。由此推測(cè)PIO改善高磷誘導(dǎo)的血管鈣化是通過(guò)其激動(dòng)PPARγ后,繼而下調(diào)Wnt/β-catenin信號(hào)通路實(shí)現(xiàn)的。
本研究通過(guò)體外實(shí)驗(yàn)證實(shí)了PIO可抑制血管平滑肌的鈣化,并提出PIO干預(yù)血管鈣化與Wnt/β-catenin信號(hào)通路有關(guān),為血管鈣化防治提供新的治療思路。但PIO激動(dòng)PPARγ后如何調(diào)節(jié)Wnt/β-catenin信號(hào)通路,其分子機(jī)制尚不清楚,仍需進(jìn)一步觀察其在體內(nèi)(如動(dòng)物模型)的作用。
1 Shanahan CM,Crouthamel MH,Kapustin A,et al.Arterial calcification in chronic kidney disease:key roles for calcium and phosphate.Circ Res,2011,109(6):697-711.
2 Persy V,D′Haese P.Vascular calcification and bone disease:the calcification paradox.Trends Mol Med,2009,15(9):405-416.
3 Lu KC,Wu CC,Yen JF,et al.Vascular calcification and renal bone disorders.Scientific World Journal,2014,2014:637065.
4 Li F,Cai Z,Chen F,et al.Pioglitazone attenuates progression of aortic valve calcification via down-regulating receptor for advanced glycation end products.Basic Res Cardiol,2012,107(6):306.
5 Bellasi A,Kooienga L,Block GA,et al.How long is the warranty period for nil or low coronary artery calcium in patients new to hemodialysis? J Nephrol,2009,22(2):255-262.
6 Morena M,Jaussent I,Dupuy AM,et al.Osteoprotegerin and sclerostin in chronic kidney disease prior to dialysis:potential partners in vascular calcifications.Nephrol Dial Transplant,2015,30(8):1345-1356.
7 Paloian NJ,Giachelli CM.A current understanding of vascular calcification in CKD.Am J Physiol Renal Physiol,2014,307(8):F891-900.
8 Giachelli CM.The emerging role of phosphate in vascular calcification.Kidney Int,2009,75(9):890-897.
9 Shobeiri N,Adams MA,Holden RM.Phosphate:an old bone molecule but new cardiovascular risk factor.Br J Clin Pharmacol,2014,77(1):39-54.
10 Chen T,Mao H,Chen C,et al.The Role and Mechanism of α-Klotho in the Calcification of Rat Aortic Vascular Smooth Muscle Cells.Biomed Res Int,2015,2015:194362.
11 Martínez-Moreno JM, Muoz-Castaeda JR,Herencia C,et al.In vascular smooth muscle cells paricalcitol prevents phosphate-induced Wnt/β-catenin activation.Am J Physiol Renal Physiol,2012,303(8):F1136-1144.
12 Smirnov AN.Nuclear receptors:nomenclature,ligands,mechanisms of their effects on gene expression.Biochemistry (Mosc),2002,67(9):957-977.
13 Ivanova EA,Parolari A,Myasoedova V,et al.Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery.J Cardiol,2015,66(4):271-278.
14 Wan Y.PPARγ in bone homeostasis.Trends Endocrinol Metab,2010,21(12):722-728.
15 Akune T,Ohba S,Kamekura S,et al.PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors.J Clin Invest,2004,113(6):846-855.
16 El′chaninov DV,Akker LV,Fedorova IA,et al.Bone resorption and formation markers in women with climacteric syndrome in early postmenopause.Klin Lab Diagn,2009,10:21-24.
17 Woldt E,Terrand J,Mlih M,et al.The nuclear hormone receptor PPARγ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells.Nat Commun, 2012,3:1077.
18 Zhou YB,Zhang J,Peng DQ,et al.Peroxisome proliferator-activated receptor γ ligands retard cultured vascular smooth muscle cells calcification induced by high glucose.Cell Biochem Biophys,2013,66(3):421-429.
19 Boyden LM,Mao J,Belsky J,et al.High bone density due to a mutation in LDL-receptor-related protein 5.N Engl J Med,2002,346(20):1513-1521.
20 Gong Y,Slee RB,Fukai N,et al.LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development.Cell,2001,107(4):513-523.
21 Little RD,Carulli JP,Del Mastro RG,et al.A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait.Am J Hum Genet,2002,70(1):11-19.
22 Balemans W,Ebeling M,Patel N,et al.Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST).Hum Mol Genet,2001,10(5):537-543.
23 Balemans W,Patel N,Ebeling M,et al.Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease.J Med Genet,2002,39(2):91-97.
24 MacDonald BT,Tamai K,He X.Wnt/beta-catenin signaling:components,mechanisms,and diseases.Dev Cell,2009,17(1):9-26.
25 Jansson EA,Are A,Greicius G,et al.The Wnt/beta-catenin signaling pathway targets PPARgamma activity in colon cancer cells.Proc Natl Acad Sci U S A,2005,102(5):1460-1465.
26 Girnun GD,Smith WM,Drori S,et al.APC-dependent suppression of colon carcinogenesis by PPARgamma.Proc Natl Acad Sci U S A,2002,99(21):13771-13776.
27 Liu J,Wang H,Zuo Y,et al.Functional interaction between peroxisome proliferator-activated receptor gamma and beta-catenin.Mol Cell Biol,2006,26(15):5827-5837.
(本文編輯 青 松 加 則)
Effect of pioglitazon on calcification of vascular smooth muscle cells through the down-regulation of Wnt/β-catenin signaling pathway
GAOMin1,2,CHENTianlei3,WULin1,ZHAOXiufeng1,XINGChangying1,MAOHuijuan1
1DepartmentofNephrology,JiangsuProvinceHospital,TheFirstAffiliatedHospitalofNanjingMedicalUniversity,Nanjing210029,China2DepartmentofNephrology,ChangzhouWujinPeople’sHospital,Changzhou213017,China3DepartmentofNephrology,TheFirstPeople’sHospitalofChangzhou,Changzhou213003,China
Correspondingauthor:MAOHuijuan(E-mail:huijuanmao@126.com)
T Objective:To investigate the effect and possible mechanism of pioglitazon on the calcification of rat vascular smooth muscle cells (VSMCs) in vitro. Methodology:β-glycerophosphate (10 mmol/L) was used to induce the calcification of VSMCs, with different concentrations (5 μmol/L、10 μmol/L、15 μmol/L、20 μmol/L) of PIO to intervene for 12d. The calcium deposits were tested by Alizarin red staining. The extracellular calcium content was detected by Calcium Assay Kit. Western Blot was used to measure the expressions of α-smooth muscle actin (α-SMA), runt-related transcription factor 2 (Runx2), bone morphogenetic protein 2 (BMP2), β-catenin, GSK-3β, p-GSK-3β and cyclin-D1. On the basis of 10 mmol/L β-glycerophosphate and 20 μmol/L PIO, 20 μmol/L PPARγ antagonist GW9662 was added to the cell culture media. The changes of the above indexes were observed. Results:(1) The calcium content in calcification group was increased significantly compared with that in control’s (P<0.05), and all different concentrations of PIO could reduced extracellular calcium content (P<0.05). Alizarin red staining was strong positive in calcified VSMCs, and PIO (20 μmol/L) intervention group was almost negative. (2) The expressions of Runx2, β-catenin, p-GSK-3β, BMP2 and cyclin-D1 were increased significantly in calcification group, and 20 μmol/L PIO group obviously down-regulated the expressions of all the above proteins, while up-regulated the expression of α-SMA. (3) PPARγ antagonist GW9662 could partly block the effect of PIO on calcified VSMCs. Conclusion:PPARγ agonist PIO can alleviate rat aortic VSMCs calcification induced by β-glycerophosphate via inhibiting the activity of Wnt/β-catenin signaling pathway.
peroxisome proliferator-activated receptor gamma vascular smooth muscle cells calcification Wnt/β-catenin signaling pathway
10.3969/cndt.j.issn.1006-298X.2016.04.008
江蘇省教育廳六大人才高峰(WSN-056),江蘇省臨床醫(yī)學(xué)科技專項(xiàng)(BL2014080)
1南京醫(yī)科大學(xué)第一附屬醫(yī)院腎內(nèi)科(南京,210029);2常州市武進(jìn)人民醫(yī)院腎內(nèi)科;3常州市第一人民醫(yī)院腎內(nèi)科
毛慧娟(E-mail:huijuanmao@126.com)
2016-04-05
? 2016年版權(quán)歸《腎臟病與透析腎移植雜志》編輯部所有