袁 沛,童杰文,潘聯(lián)云,龔雨順
(湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,湖南 長(zhǎng)沙 410128)
?
秀麗隱桿線蟲調(diào)節(jié)滲透平衡機(jī)制的研究進(jìn)展
袁沛,童杰文,潘聯(lián)云,龔雨順
(湖南農(nóng)業(yè)大學(xué)園藝園林學(xué)院,湖南 長(zhǎng)沙 410128)
摘要:維持生物體內(nèi)滲透壓平衡對(duì)生物生長(zhǎng)發(fā)育十分重要。秀麗隱桿線蟲(Caenorhabditis elegans)被廣泛用于研究生物在不利環(huán)境的抗性機(jī)制;同時(shí),由于其進(jìn)化的保守性,可為研究高等生物的體內(nèi)滲透壓調(diào)節(jié)提供參考。對(duì)秀麗隱桿線蟲感知體外滲透壓的相關(guān)基因和組織進(jìn)行了介紹,分析了秀麗隱桿線蟲調(diào)節(jié)體積的相關(guān)通路,綜述了維持蛋白質(zhì)穩(wěn)態(tài)對(duì)滲透壓的調(diào)節(jié)作用。
關(guān)鍵詞:秀麗隱桿線蟲;滲透平衡;TRP通路;WNK/GCK-Ⅶ信號(hào)通路;蛋白質(zhì)穩(wěn)態(tài)
保持生物體內(nèi)鹽分和水分的平衡是生物生長(zhǎng)發(fā)育的基本要求[1]。研究表明,啤酒酵母的單個(gè)真核細(xì)胞檢測(cè)和滲透壓信號(hào)轉(zhuǎn)導(dǎo)要通過許多高度復(fù)雜的結(jié)構(gòu)和途徑,這些途徑串?dāng)_一起調(diào)節(jié)體內(nèi)滲透壓。關(guān)于脊椎動(dòng)物細(xì)胞調(diào)節(jié)體積變化機(jī)制雖然有諸多發(fā)現(xiàn),但其感知滲透壓變化的分子機(jī)制還不清楚[2],檢測(cè)和轉(zhuǎn)導(dǎo)滲透壓信號(hào)及細(xì)胞間相互聯(lián)系方式更加復(fù)雜[3]。
作為無脊椎動(dòng)物的模式生物,秀麗隱桿線蟲(Caenorhabditis elegans)用于研究動(dòng)物調(diào)節(jié)體內(nèi)滲透壓的相關(guān)機(jī)制(包括確定參與調(diào)節(jié)滲透壓相關(guān)基因)有許多顯著優(yōu)勢(shì):容易培養(yǎng),成年秀麗隱桿線蟲可以產(chǎn)約300個(gè)卵;容易觀察,秀麗隱桿線蟲身體透明,用高倍顯微鏡可以觀察到單一細(xì)胞分辨率大小;秀麗隱桿線蟲進(jìn)化保守,為研究其它高等動(dòng)物調(diào)節(jié)滲透壓的機(jī)制提供借鑒;易操作,實(shí)驗(yàn)室條件下容易控制細(xì)胞內(nèi)滲透壓的高低[4];棲息在表層土壤中,能夠感知和避免土壤環(huán)境中腐爛有機(jī)物質(zhì)周期性變化導(dǎo)致的高滲透壓環(huán)境。作者在此就秀麗隱桿線蟲如何調(diào)節(jié)體內(nèi)滲透壓來適應(yīng)環(huán)境的相關(guān)機(jī)制進(jìn)行概述。
1調(diào)節(jié)滲透壓的相關(guān)組織
皮下組織和腸道對(duì)秀麗隱桿線蟲調(diào)節(jié)體內(nèi)滲透壓相當(dāng)重要。皮下組織是由膠原蛋白組成的較厚的膠質(zhì)層[5],其中的成纖維細(xì)胞生長(zhǎng)因子調(diào)節(jié)秀麗隱桿線蟲體液平衡[6]。成年秀麗隱桿線蟲腸道由上皮細(xì)胞構(gòu)成,具有消化、吸收、儲(chǔ)存能量和解毒等功能。在高滲透壓環(huán)境下,腸道可合成有機(jī)滲透調(diào)節(jié)物質(zhì)[7]。
秀麗隱桿線蟲具有類似人體“腎”功能的簡(jiǎn)單組織,由排泄細(xì)胞、導(dǎo)管細(xì)胞和孔細(xì)胞構(gòu)成。如果破壞這些細(xì)胞,秀麗隱桿線蟲體內(nèi)滲透壓就會(huì)改變,最終導(dǎo)致秀麗隱桿線蟲死亡[8]。排泄細(xì)胞是復(fù)雜的“H”形上皮細(xì)胞,構(gòu)成體內(nèi)2條平行運(yùn)輸管道,排泄細(xì)胞表達(dá)在調(diào)控滲透壓的相關(guān)組織中,如Cl-通道、Na+/H+交換器和水通道蛋白等[9]。導(dǎo)管細(xì)胞和孔細(xì)胞表達(dá)在秀麗隱桿線蟲咽喉根部附近的角質(zhì)層處,排泄細(xì)胞通過它們與外部環(huán)境連接[10]。當(dāng)秀麗隱桿線蟲在高滲透壓和低滲透壓間轉(zhuǎn)換時(shí),其排泄管會(huì)擴(kuò)展[11]。水通量和離子運(yùn)輸在調(diào)節(jié)排泄系統(tǒng)中起重要作用[12]。
2滲透回避行為及相關(guān)通路
自然環(huán)境條件下鹽分和水分含量變化極大。秀麗隱桿線蟲易被低濃度鹽、糖和其它化學(xué)物質(zhì)吸引,但在感知到高滲透壓時(shí)會(huì)立即改變爬行方向,這個(gè)行為被稱為“滲透回避”[12]。這種回避行為與溶質(zhì)濃度的高低相關(guān),而與溶質(zhì)的種類沒有關(guān)系[13]。秀麗隱桿線蟲頭部角質(zhì)層處有一對(duì)頭感器,里面充滿感知神經(jīng)元樹突的纖毛末梢,對(duì)感測(cè)熱感應(yīng)、化學(xué)感應(yīng)和機(jī)械感應(yīng)等外部環(huán)境有重要作用[14]。
滲透回避行為需要ASH神經(jīng)元[15]。在滲透回避行為方面有缺陷的秀麗隱桿線蟲被稱為滲透避免缺陷(osmoticavoidancedefective,OSM)突變體[3]。OSM突變體可以分為3類,一類是頭感器感受神經(jīng)元發(fā)育不完全,如OSM-3(mt3631)突變體;一類是體內(nèi)有大量有機(jī)溶質(zhì)的積累,如OSM-7(mt3564)、OSM-8(mt371)和OSM-11(mt3643)突變體;還有一類直接參與滲透感知和信號(hào)轉(zhuǎn)導(dǎo)神經(jīng)元發(fā)育,如OSM-9(cx10)、OSM-10(mt241)和OCR-2(cx4544)突變體[16]。
在哺乳動(dòng)物中,瞬時(shí)感受器電位(transientreceptorpotential,TRP)通路上的跨膜蛋白參與感知體外滲透壓、信號(hào)轉(zhuǎn)導(dǎo)、上皮離子運(yùn)輸和Ca2+信號(hào)等生理過程。TRP通路根據(jù)氨基酸序列同源性被分為TRPC、TRPV、TRPM、TRPML、TRPP、TRPN和TRPA等7個(gè)亞家族[17]。OSM-9和OCR-2屬于瞬時(shí)感受器電位離子通道香草素受體亞家族(transientreceptorpotential-vanilloid,TRPV)通路,在頭感器感受神經(jīng)元中編碼蛋白發(fā)送信號(hào)[18]。TRPV-4在哺乳動(dòng)物中樞神經(jīng)系統(tǒng)器官中表達(dá),在檢測(cè)血漿滲透壓和調(diào)控滲透壓激素中起重要作用[19]。雖然TRPV-4與OSM-9都參與調(diào)節(jié)滲透壓,但是它們只有26%氨基酸同一性,它們感知高滲透壓的作用機(jī)制還不清楚[20]。同時(shí),OCR-2、OSM-9、ODR-3、TRPV-4與OSM-10都表達(dá)在頭感器神經(jīng)元中,在滲透回避行為中起重要作用[21]。其中ODR-3編碼Ga蛋白質(zhì),作用于ASH神經(jīng)元,OSM-10編碼一種檢測(cè)高滲透壓必不可少的新胞質(zhì)蛋白[22],它們可能參與OSM-9和OCR-2感知滲透壓機(jī)制,但OSM-9、OCR-2、ODR-3、TRPV-4和OSM-10共同調(diào)控滲透回避行為的機(jī)制目前還不清楚[23]。
3調(diào)節(jié)體積的相關(guān)通路
秀麗隱桿線蟲能調(diào)節(jié)自身體積大小來適應(yīng)不同的滲透壓環(huán)境。秀麗隱桿線蟲外表皮的角質(zhì)層能有效抵抗許多毒素和藥理化合物,但不能阻擋水的擴(kuò)散[24]。Lamitina等[24]通過RNA干擾實(shí)驗(yàn)篩選出與角質(zhì)層形成相關(guān)的DPY基因,如DPY-7、DPY-8、DPY-9與DPY-10等。DPY基因突變會(huì)導(dǎo)致秀麗隱桿線蟲角質(zhì)層結(jié)構(gòu)變化從而造成矮胖的秀麗隱桿線蟲表型,DPY基因表達(dá)強(qiáng)弱會(huì)影響體內(nèi)甘油的積累和甘油三磷酸脫氫酶(glycerol-3-phosphate dehydrogenase-1,GPDH-1)的表達(dá)[25]。
成年秀麗隱桿線蟲體內(nèi)滲透壓比體外滲透壓稍高,當(dāng)改變體外滲透壓時(shí)體內(nèi)滲透壓需相應(yīng)改變,使內(nèi)外膨脹壓力保持平衡[26]。正常實(shí)驗(yàn)室條件下,秀麗隱桿線蟲培養(yǎng)在51 mmol·L-1NaCl瓊脂培養(yǎng)皿上。將秀麗隱桿線蟲從500 mmol·L-1NaCl瓊脂培養(yǎng)皿上快速轉(zhuǎn)到51 mmol·L-1NaCl瓊脂培養(yǎng)皿上時(shí),會(huì)導(dǎo)致秀麗隱桿線蟲體積膨脹和暫時(shí)性癱瘓,部分秀麗隱桿線蟲的腸和性腺會(huì)從外陰處突出來,10~15 min后秀麗隱桿線蟲調(diào)節(jié)自身體積并慢慢恢復(fù)運(yùn)動(dòng)。研究表明,水通道蛋白和排泄系統(tǒng)在收縮秀麗隱桿線蟲體積方面發(fā)揮重要作用,但恢復(fù)秀麗隱桿線蟲體積的機(jī)制有待進(jìn)一步研究[27]。將秀麗隱桿線蟲從51 mmol·L-1NaCl瓊脂培養(yǎng)皿轉(zhuǎn)到500 mmol·L-1NaCl瓊脂培養(yǎng)皿時(shí),20~30 min后秀麗隱桿線蟲體積會(huì)收縮50%,幾乎喪失運(yùn)動(dòng)能力;轉(zhuǎn)到51 mmol·L-1NaCl瓊脂培養(yǎng)皿上24 h后,秀麗隱桿線蟲體積和運(yùn)動(dòng)能力慢慢恢復(fù),但是秀麗隱桿線蟲生長(zhǎng)發(fā)育較慢,產(chǎn)卵數(shù)量減少且爬行能力下降[11]。
哺乳動(dòng)物細(xì)胞中存在一個(gè)由無賴氨酸蛋白激酶(with no lysine,WNK)和生發(fā)中心蛋白激酶(germinal center kinase,subfamily seven,GCK-Ⅶ)構(gòu)成的信號(hào)級(jí)聯(lián)來調(diào)節(jié)離子運(yùn)輸過程。秀麗隱桿線蟲中也有此激酶途徑[28]。沉默秀麗隱桿線蟲中WNK(WNK-1)和GCK-Ⅶ(GCK-3)基因會(huì)讓秀麗隱桿線蟲在高滲透壓環(huán)境下體積恢復(fù)能力和存活率下降[29]。Choe等[2]研究發(fā)現(xiàn),GCK-3表達(dá)于皮下組織和腸道中來調(diào)節(jié)秀麗隱桿線蟲體積恢復(fù),于是提出WNK-1和GCK-3協(xié)同管理秀麗隱桿線蟲滲透壓機(jī)制的模型。但目前只知道GCK-3直接磷酸化底物CLH-3,它是被GCK-3調(diào)控抑制的體積敏感Cl-通道,目前還不知道CLH-3是否作用于秀麗隱桿線蟲的體積恢復(fù)[30]。最近研究還發(fā)現(xiàn),GCK-3參與秀麗隱桿線蟲上皮管道和精子形成等多個(gè)生理過程[31]。
4維持體內(nèi)蛋白質(zhì)穩(wěn)態(tài)及相關(guān)通路
維持蛋白質(zhì)穩(wěn)態(tài)能保持生物各項(xiàng)生理活動(dòng)的正常進(jìn)行,提高生物抵抗各種不利環(huán)境的能力。高濃度無機(jī)離子會(huì)破壞蛋白質(zhì)二級(jí)結(jié)構(gòu),降低酶活性[32]。此外,大分子之間相互擁擠會(huì)導(dǎo)致外來蛋白質(zhì)的相互作用,從而促進(jìn)蛋白質(zhì)間聚合而破壞蛋白質(zhì)穩(wěn)態(tài)[33]。在高滲透壓環(huán)境下,秀麗隱桿線蟲am140突變體的體內(nèi)細(xì)胞會(huì)收縮,從而促進(jìn)谷氨酰胺蛋白Q35::YFP的聚集,蛋白質(zhì)從10 min開始聚集且聚集是不可逆的[34]。研究表明,哺乳動(dòng)物體內(nèi)細(xì)胞收縮也會(huì)誘導(dǎo)多聚谷氨酰胺蛋白的聚合[35]。
甘油是具有平衡滲透壓和穩(wěn)定蛋白質(zhì)結(jié)構(gòu)功能的有機(jī)滲透質(zhì)。在高滲透壓環(huán)境下秀麗隱桿線蟲會(huì)合成較多的甘油[20,36]。GPDH-1基因能催化甘油的合成,秀麗隱桿線蟲在非致死高滲透壓環(huán)境下1 h后GPDH-1基因會(huì)顯著上調(diào)表達(dá)[37]。只有滲透應(yīng)激能誘導(dǎo)GPDH-1基因上調(diào)表達(dá),而熱應(yīng)激、氧化應(yīng)激等不會(huì)誘導(dǎo)GPDH-1基因上調(diào)表達(dá)[38]。目前秀麗隱桿線蟲體內(nèi)調(diào)節(jié)有機(jī)滲透質(zhì)積累的相關(guān)信號(hào)通路還不清楚,Kamath等[39]進(jìn)行了全基因組RNA干擾篩選出122個(gè)調(diào)節(jié)GPDH表達(dá)的基因。GPDH基因在細(xì)胞外基質(zhì)、信號(hào)、代謝、蛋白質(zhì)運(yùn)輸、調(diào)控轉(zhuǎn)錄與維持蛋白質(zhì)穩(wěn)態(tài)方面起重要作用,其中最大一類的GPDH基因有54個(gè)與維持蛋白質(zhì)穩(wěn)態(tài)相關(guān)的基因[39]。
研究發(fā)現(xiàn),將秀麗隱桿線蟲在200 mmol·L-1NaCl瓊脂培養(yǎng)皿培養(yǎng)24 h后再轉(zhuǎn)到500 mmol·L-1NaCl瓊脂培養(yǎng)皿上,能提高秀麗隱桿線蟲在500 mmol·L-1NaCl瓊脂培養(yǎng)皿上的存活率[40]。此過程可能增加了甘油積累,使得秀麗隱桿線蟲內(nèi)部滲透壓提高從而維持蛋白質(zhì)穩(wěn)態(tài)。也有人認(rèn)為可通過減少蛋白質(zhì)聚集和新蛋白質(zhì)合成來維持蛋白質(zhì)穩(wěn)態(tài)[41]。Lee等[42]在研究調(diào)節(jié)蛋白質(zhì)合成機(jī)制和維持蛋白質(zhì)穩(wěn)態(tài)相關(guān)基因表達(dá)的信號(hào)通路時(shí)發(fā)現(xiàn),在酵母和哺乳動(dòng)物細(xì)胞中GCN-2(general control nonderepressible)基因通過真核翻譯起始因子(eukaryotic translation initiation factors,eIFs)磷酸化來調(diào)節(jié)RNA翻譯,從而提高它們抵抗?jié)B透應(yīng)激的能力。此外,沉默GPDH-1基因能減少同源基因GCN-2的表達(dá),GCN-2是蛋白質(zhì)合成中不可缺少的[43]。WNK-1和GCK-3可以誘導(dǎo)GPDH-1上調(diào)表達(dá),這表明WNK/GCK-Ⅶ級(jí)聯(lián)可激活調(diào)控蛋白質(zhì)合成和滲透壓調(diào)節(jié)相關(guān)基因的表達(dá)[44]。但是目前只在秀麗隱桿線蟲體內(nèi)發(fā)現(xiàn)WNK/GCK-Ⅶ級(jí)聯(lián)與蛋白質(zhì)合成有關(guān),未來還需要進(jìn)一步研究WNK/GCK-Ⅶ級(jí)聯(lián),來確定其是否在其它動(dòng)物中也有同樣的功能。
5展望
秀麗隱桿線蟲已被廣泛應(yīng)用于遺傳學(xué)、發(fā)育和進(jìn)化生物學(xué)、復(fù)雜的疾病研究等諸多領(lǐng)域。秀麗隱桿線蟲生活在滲透壓不穩(wěn)定的土壤環(huán)境,非常適合研究滲透感應(yīng)相關(guān)的信號(hào)轉(zhuǎn)導(dǎo)機(jī)制。目前,對(duì)秀麗隱桿線蟲體內(nèi)調(diào)節(jié)滲透壓的生理過程(圖1)如TRP通道、有機(jī)滲透質(zhì)積累、WNK/GCK-Ⅶ信號(hào)通路等有所了解,但如何發(fā)現(xiàn)更多調(diào)節(jié)滲透壓的相關(guān)機(jī)制、如何將這些通路與其它動(dòng)物相關(guān)聯(lián)還需進(jìn)一步研究。相信,通過對(duì)秀麗隱桿線蟲的深入研究,會(huì)對(duì)其它動(dòng)物如何抵抗?jié)B透應(yīng)激提供新的認(rèn)識(shí)和發(fā)現(xiàn)。
圖1 秀麗隱桿線蟲調(diào)控滲透壓的生理過程
參考文獻(xiàn):
[1]ABDUS-SABOOR I,MANCUSO V P,MURRAY J I,et al.Notch and Ras promote sequential steps of excretory tube development inC.elegans[J].Development,2011,138(16):3545-3555.
[2]CHOE K,STRANGE K.Volume regulation and osmosensing in animal cells[C]//EVANS D H.Osmotic and Ionic Regulation:Cells and Animals,2008:37-68.
[3]KLIPP E,NORDLANDER B,KRüGER R,et al.Integrative model of the response of yeast to osmotic shock[J].Nature Biotechnology,2005,23(8):975-982.
[4]陳星桃,王桂堂.秀麗隱桿線蟲抗性基因研究進(jìn)展[J].華中農(nóng)業(yè)大學(xué)學(xué)報(bào),2008,27(6):811-819.
[5]NELSON F K,ALBERT P S,RIDDLE D L.Fine structure of theCaenorhabditiseleganssecretory-excretory system[J].Journal of Ultrastructure Research,1983,82(2):156-171.
[6]HUANG P,STERN M J.FGF Signaling functions in the hypodermis to regulate fluid balance inC.elegans[J].Development,2004,131(11):2595-2604.
[7]LAMITINA T,HUANG C G,STRANGE K.Genome-wide RNAi screening identifies protein damage as a regulator of osmoprotective gene expression[J].Proceedings of the National Academy of Sciences,2006,103(32):12173-12178.
[8]LIéGEOIS S,BENEDETTO A,MICHAUX G,et al.Genes required for osmoregulation and apical secretion inCaenorhabditiselegans[J].Genetics,2007,175(2):709-724.
[9]HAHN-WINDGASSEN A,van GILST M R.TheCaenorhabditiselegansHNF4αhomolog,NHR-31,mediates excretory tube gro-wth and function through coordinate regulation of the vacuolar ATPase[J].PLoS Genetics,2009,5(7):e1000553.
[10]HUANG C G,LAMITINA T,AGRE P,et al.Functional analysis of the aquaporin gene family inCaenorhabditiselegans[J].American Journal of Physiology-Cell Physiology,2007,292(5):C1867-C1873.
[11]KHAN L A,ZHANG H,ABRAHAM N,et al.Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux[J].Nature Cell Biology,2013,15(3):335.
[12]SCHOTTENFELD-ROAMES J,GHABRIAL A S.Osmotic regulation of seamless tube growth[J].Nature Cell Biology,2013,15(2):137-139.
[13]CULOTTI J G,RUSSELL R L.Osmotic avoidance defective mutants of the nematodeCaenorhabditiselegans[J].Genetics,1978,90(2):243-256.
[14]BARGMANN C I,MORI I.Chemotaxis and thermotaxis[J].Cold Spring Harbor Monograph Archive,1997,33:717-737.
[15]BARGMANN C,THOMAS J,HORVITZ H.Chemosensory cell function in the behavior and development ofCaenorhabditiselegans[J].Cold Spring Harbor Symposia on Quantitative Biology,1990,55(55):529-538.
[16]KOMATSU H,CHAO M Y,LARKINS-FORD J,et al.OSM-11 Facilitates LIN-12 notch signaling duringCaenorhabditiselegansvulval development[J].PLoS Biol,2008,6(8):e196.
[17]LIEDTKE W.Molecular mechanisms of TRPV4-mediated neural signaling[J].Annals of the New York Academy of Sciences,2008,1144(1):42-52.
[18]TOBIN D M,MADSEN D M,KAHN-KIRBY A,et al.Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization inC.elegansneurons[J].Neuron,2002,35(2):307-318.
[19]LIEDTKE W,TOBIN D M,BARGMANN C I,et al.Mammalian TRPV4(VR-OAC) directs behavioral responses to osmotic and mechanical stimuli inCaenorhabditiselegans[J].Proceedings of the National Academy of Sciences,2003,100(S2):14531-14536.
[20]LIEDTKE W,FRIEDMAN J M.Abnormal osmotic regulation in TRPV4-/-mice[J].Proceedings of the National Academy of Sciences,2003,100(23):13698-13703.
[21]COLBERT H A,SMITH T L,BARGMANN C I.OSM-9,A novel protein with structural similarity to channels,is required for olfaction,mechanosensation,and olfactory adaptation inCaenor-habditiselegans[J].The Journal of Neuroscience,1997,17(21):8259-8269.
[22]NILIUS B,OWSIANIK G,VOETS T,et al.Transient receptor potential cation channels in disease[J].Physiological Reviews,2007,87(1):165-217.
[23]ROAYAIE K,CRUMP J G,SAGASTI A,et al.The Gαprotein ODR-3 mediates olfactory and nociceptive function and controls cilium morphogenesis inC.elegansolfactory neurons[J].Neuron,1998,20(1):55-67.
[24]LAMITINA S T,MORRISON R,MOECKEL G W,et al.Adaptation of the nematodeCaenorhabditiselegansto extreme osmotic stress[J].American Journal of Physiology-Cell Physiology,2004,286(4):C785-C791.
[25]BURNS A R,WALLACE I M,WILDENHAIN J,et al.A predictive model for drug bioaccumulation and bioactivity inCaenorhabditiselegans[J].Nature Chemical Biology,2010,6(7):549-557.
[26]FUSE M,DAVEY K,SOMMERVILLE R.Osmoregulation in the parasitic nematodePseudoterranovadecipiens[J].Journal of Experimental Biology,1993,175(1):127-142.
[27]SOLOMON A,BANDHAKAVI S,JABBAR S,et al.CaenorhabditiselegansOSR-1 regulates behavioral and physiological responses to hyperosmotic environments[J].Genetics,2004,167(1):161-170.
[28]ZHANG Y,LI W,LI L,et al.Structural damage in theC.elegansepidermis causes release of STA-2 and induction of an innate immune response[J].Immunity,2015,42(2):309-320.
[29]CHOE K P,STRANGE K.Evolutionarily conserved WNK and Ste20 kinases are essential for acute volume recovery and survival after hypertonic shrinkage inCaenorhabditiselegans[J].American Journal of Physiology-Cell Physiology,2007,293(3):C915-C927.
[30]DENTON J,NEHRKE K,YIN X,et al.GCK-3,A newly identified Ste20 kinase,binds to and regulates the activity of a cell cycle-dependent ClC anion channel[J].The Journal of General Physiology,2005,125(2):113-125.
[31]HISAMOTO N,MORIGUCHI T,URUSHIYAMA S,et al.Ca-enorhabditiselegansWNK-STE20 pathway regulates tube formation by modulating ClC channel activity[J].EMBO Reports,2008,9(1):70-75.
[32]SOMERO G.Protons,osmolytes,and fitness of internal milieu for protein function[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,1986,251(2):R197-R213.
[33]MINTON A P.Influence of macromolecular crowding upon the stability and state of association of proteins:Predictions and observations[J].Journal of Pharmaceutical Sciences,2005,94(8):1668-1675.
[34]CHOE K P,STRANGE K.Genome-wide RNAi screen andinvivoprotein aggregation reporters identify degradation of damaged proteins as an essential hypertonic stress response[J].American Journal of Physiology-Cell Physiology,2008,295(6):C1488-C1498.
[35]MAZZEO L E M,DERSH D,BOCCITTO M,et al.Stress and aging induce distinct polyQ protein aggregation states[J].Proceedings of the National Academy of Sciences,2012,109(26):10587-10592.
[36]KHAN S H,AHMAD N,AHMAD F,et al.Naturally occurring organic osmolytes:From cell physiology to disease prevention[J].IUBMB Life,2010,62(12):891-895.
[37]LAMACCHIA J C,FRAZIER H N,ROTH M B.Glycogen fuels survival during hyposmotic-anoxic stress inCaenorhabditiselegans[J].Genetics,2015,201(1):65-74.
[38]YANCEY P H.Organic osmolytes as compatible,metabolic and counteracting cytoprotectants in high osmolarity and other stresses[J].Journal of Experimental Biology,2005,208(15):2819-2830.
[39]KAMATH R S,FRASER A G,DONG Y,et al.Systematic functional analysis of theCaenorhabditiselegansgenome using RNAi[J].Nature,2003,421(6920):231-237.
[40]BURKEWITZ K,CHOE K,STRANGE K.Hypertonic stress induces rapid and widespread protein damage inC.elegans[J].American Journal of Physiology-Cell Physiology,2011,301(3):C566-C576.
[41]BURKEWITZ K,CHOE K P,LEE E C-H,et al.Characterization of the proteostasis roles of glycerol accumulation,protein degradation and protein synthesis during osmotic stress inC.elegans[J].PLoS One,2012,7(3):1-8.
[42]LEE E C-H,STRANGE K.GCN-2 Dependent inhibition of protein synthesis activates osmosensitive gene transcriptionviaWNK and Ste20 kinase signaling[J].American Journal of Physiology-Cell Physiology,2012,303(12):C1269-C1277.
[44]LEUNG C K,DEONARINE A,STRANGE K,et al.High-thro-ughput screening and biosensing with fluorescentC.elegansstr-ains[J].Journal of Visualized Experiments,2011,(51):e2745.
Research Progress on Osmotic Balance Regulation Mechanism ofCaenorhabditisElegans
YUAN Pei,TONG Jie-wen,PAN Lian-yun,GONG Yu-shun
(CollegeofHorticultureandLandscape,HunanAgricultureUniversity,Changsha410128,China)
Abstract:It is very important for the growth and development of organism to maintain osmotic pressure balance in vivo.Caenorhabditis elegans is widely used for the research of resistance mechanism under adverse environmental conditions.In the meantime,the conservation of its evolution provides reference for the study of osmotic pressure regulation in vivo of higher organisms.In this paper,the relative genes and tissues of osmotic pressure regulation in vitro in Caenorhabditis elegans are introduced,the relative pathways of volumn regulation in Caenorhabditis elegans are analyzed,and the effects of maintain protein homeostasis on osmotic pressure regulation are reviewed.
Keywords:Caenorhabditis elegans;osmotic balance;TRP channel;WNK/GCK-Ⅶ signal channel;protein homeostasis
中圖分類號(hào):Q 945.78
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1672-5425(2016)04-0004-05
doi:10.3969/j.issn.1672-5425.2016.04.002
作者簡(jiǎn)介:袁沛(1991-),男,湖南岳陽(yáng)人,碩士研究生,研究方向:功能產(chǎn)品開發(fā)與評(píng)價(jià),E-mail:774121303@qq.com;通訊作者:龔雨順,教授,E-mail:109987632@qq.com。
收稿日期:2015-12-17