劉慧娟,胡若愚,戴王娟,劉元果,閔 波,蔣 犁
東南大學(xué)附屬中大醫(yī)院 1兒科 2心胸外科,南京 210009
?
·論著·
綠色熒光蛋白轉(zhuǎn)基因大鼠骨髓間充質(zhì)干細(xì)胞培養(yǎng)及鑒定
劉慧娟1,胡若愚2,戴王娟1,劉元果2,閔波2,蔣犁1
東南大學(xué)附屬中大醫(yī)院1兒科2心胸外科,南京 210009
摘要:目的體外分離、培養(yǎng)和鑒定增強(qiáng)型綠色熒光蛋白(EGFP)轉(zhuǎn)基因大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)。方法取EGFP轉(zhuǎn)基因大鼠脛、股骨骨髓,全骨髓貼壁法分離培養(yǎng)、純化BMSCs;熒光顯微鏡觀察細(xì)胞形態(tài);流式細(xì)胞儀分析細(xì)胞表型;CCK- 8法繪制細(xì)胞生長曲線并與野生型BMSCs增殖情況相比較;分別向成脂、成骨、成軟骨誘導(dǎo)分化鑒定;將細(xì)胞經(jīng)鼠尾靜脈移植入大鼠體內(nèi),觀察其在體內(nèi)定植情況。結(jié)果獲得穩(wěn)定表達(dá)EGFP的BMSCs,以長梭形為主,融合后呈漩渦狀排列;生長曲線示EGFP-BMSCs增殖能力旺盛,與野生型BMSCs相比差異無統(tǒng)計學(xué)意義(t=-0.023,P=0.982);細(xì)胞CD29、CD90、CD34、CD49d、CD45表達(dá)率分別為99.4%、96.4%、0.171%、0.049%、0.038%;成脂、成骨、成軟骨誘導(dǎo)后,分別給予油紅O、茜素紅、甲苯胺藍(lán)染色,結(jié)果均呈陽性;在肺組織內(nèi)可檢測到穩(wěn)定的綠色熒光。結(jié)論成功獲得高純度、穩(wěn)定表達(dá)EGFP的BMSCs,干細(xì)胞特性不受EGFP影響。細(xì)胞定植后,示蹤效果良好,可用于后續(xù)實驗研究。
關(guān)鍵詞:骨髓間充質(zhì)干細(xì)胞;綠色熒光蛋白;誘導(dǎo)分化
ActaAcadMedSin,2016,38(1):9-15
間充質(zhì)干細(xì)胞(mesenchymal stem cells,MSCs)是來源于中胚層的一類多能干細(xì)胞,主要存在于結(jié)締組織和器官間質(zhì)中[1- 3]。MSCs有維持組織和器官動態(tài)平衡、修復(fù)再生等重要作用[3- 9],而來源于骨髓的MSCs(bone marrow mesenchymal stem cells,BMSCs)因其易于分離獲取、較強(qiáng)的多向分化潛能、低免疫原性及免疫調(diào)節(jié)等優(yōu)點而被重點關(guān)注[9- 12]。同時也因為其低免疫原性,缺乏特異分子標(biāo)志物,使得實驗中定位和標(biāo)記BMSCs成為工作難點[10,13]。目前應(yīng)用較多標(biāo)記BMSCs的方法包括超順磁性氧化鐵標(biāo)記、基因或慢病毒轉(zhuǎn)染熒光標(biāo)記及熒光轉(zhuǎn)基因技術(shù)等[14- 17],其中熒光轉(zhuǎn)基因技術(shù)因其直觀、敏感、清晰可定量的信號,及低本底優(yōu)勢在生命科學(xué)研究中應(yīng)用愈加廣泛[17- 20]。
綠色熒光蛋白(green fluorescent protein,GFP)是在熒光示蹤技術(shù)中廣泛應(yīng)用標(biāo)記細(xì)胞的一種蛋白,具有高效、穩(wěn)定、無毒、易于檢測等特性[15- 20]。與GFP修飾的質(zhì)?;蚵《巨D(zhuǎn)染及超順磁性氧化鐵等標(biāo)記方法相比,通過GFP轉(zhuǎn)基因標(biāo)記細(xì)胞更加穩(wěn)定、敏感、損傷小,篩選細(xì)胞更加精確、快捷[17- 21]。本研究體外分離、培養(yǎng)和純化了增強(qiáng)型綠色熒光蛋白(enhanced green fluorescent protein,EGFP)轉(zhuǎn)基因大鼠BMSCs,并對其進(jìn)行生物學(xué)行為研究,以期為后續(xù)實驗研究提供實驗及理論基礎(chǔ)。
材料和方法
材料雄性綠色熒光轉(zhuǎn)基因大鼠5只,100~120 g,4~5周齡,由香港科技大學(xué)創(chuàng)新藥物實驗室提供。野生型SD大鼠5只,4周齡,由東南大學(xué)動物實驗中心提供。胎牛血清(fetal bovine serum,F(xiàn)BS)、胰酶-EDTA(美國Gibco公司),α-MEM培養(yǎng)基、青霉素-鏈霉素、PBS(美國Hyclone公司),成骨、成脂、成軟骨誘導(dǎo)試劑盒(美國Cyagen公司),CD29、CD90、CD34、CD49d、CD45小鼠抗大鼠流式單抗(美國eBioscience公司),流式細(xì)胞儀(美國BD公司),CCK8試劑盒(日本同仁),細(xì)胞培養(yǎng)箱、離心機(jī)(美國Thermo公司),倒置相差熒光顯微鏡(日本Olympus公司),激光掃描共聚焦顯微鏡(德國Carl Zeiss公司)。
EGFP轉(zhuǎn)基因大鼠BMSCs體外分離及培養(yǎng)異氟烷吸入麻醉大鼠,75%酒精浸泡5 min。無菌條件下,取雙側(cè)股骨、脛骨浸入PBS中。注射器抽取PBS反復(fù)沖洗至髓腔發(fā)白,沖洗過程中見紅色渾濁液體流出,按上述方法沖洗剩余股骨、脛骨。收集混合液,室溫條件下,300×g離心7 min,棄上清,用完全培養(yǎng)基(α-MEM培養(yǎng)基+10%FBS+1%雙抗)重懸沉淀,細(xì)胞計數(shù),按照細(xì)胞密度4000/cm2接種于75 cm2培養(yǎng)瓶,置于37℃、5%CO2培養(yǎng)箱中培養(yǎng)。24 h首次半量換液,72 h全量換液,之后每2 d換液1次,待細(xì)胞融合70%~80%,0.25%胰酶-EDTA消化,等量完全培養(yǎng)基中和胰酶,收獲細(xì)胞,300×g離心7 min,完全培養(yǎng)基重懸細(xì)胞,1∶3比例接種于新培養(yǎng)瓶。倒置熒光顯微鏡下觀察細(xì)胞生長情況。
細(xì)胞增殖測定取P3代生長良好的細(xì)胞,消化后細(xì)胞計數(shù),取8塊96孔板,以2×103/孔接種于96孔板中,置于細(xì)胞培養(yǎng)箱中培養(yǎng)。每天取1個孔板,加入10 μl/孔CCK8溶液,孵育4 h后,用酶標(biāo)儀測定其在450 nm處的吸光度并記錄。對照組野生型BMSCs測定方法同上。以培養(yǎng)時間為橫坐標(biāo),對應(yīng)時間測定的吸光度值為縱坐標(biāo),繪制細(xì)胞生長曲線。
細(xì)胞表型鑒定取P3代細(xì)胞,按傳代方法收獲細(xì)胞,調(diào)整細(xì)胞密度為1×106/ml后,分裝各管并標(biāo)記,分別加入流式單抗CD29、CD90、CD34、CD49d、CD45,室溫避光孵育1 h,流式細(xì)胞儀檢測。
體外誘導(dǎo)多向分化實驗
成脂分化:取P3代BMSCs消化后,以2×104/cm2接種于六孔板,常規(guī)培養(yǎng)基培養(yǎng)至細(xì)胞100%融合,換成誘導(dǎo)液培養(yǎng)3 d,再換成維持液培養(yǎng)1 d,如此3個循環(huán)周期后,加上述維持液培養(yǎng)7 d,每3 d換1次液,19 d后,油紅O染色檢測脂滴。
成骨分化:取P3代細(xì)胞消化后,以3×104/cm2接種到0.1%明膠包被的六孔板,常規(guī)培養(yǎng)基培養(yǎng)24 h后,吸去原培養(yǎng)基,加入成骨誘導(dǎo)分化培養(yǎng)基培養(yǎng),每3 d換液1次,3周后茜素紅染色。
成軟骨分化:取P3代細(xì)胞消化后,予不完全培養(yǎng)基洗滌細(xì)胞1次,以2.5×105/孔接種至六孔板,用成軟骨完全培養(yǎng)基誘導(dǎo),每2 d換1次液,28 d后,將形成的軟骨盤進(jìn)行甲苯胺藍(lán)染色。以上步驟涉及的各種培養(yǎng)基均按照試劑使用說明書配置。
體內(nèi)示蹤檢測取P3代EGFP-BMSCs,調(diào)整細(xì)胞濃度(2×106/ml),經(jīng)鼠尾靜脈注射1 ml細(xì)胞懸液于健康野生型大鼠體內(nèi),3 d后取大鼠肺組織,常規(guī)冰凍切片,DAPI復(fù)染胞核,激光掃描共聚焦顯微鏡下觀察細(xì)胞定植情況。
統(tǒng)計學(xué)處理采用SPSS 19.0統(tǒng)計軟件,正態(tài)分布計量資料以均數(shù)±標(biāo)準(zhǔn)差表示,兩組間比較采用獨立樣本t檢驗,P<0.05為差異有統(tǒng)計學(xué)意義。
結(jié)果
細(xì)胞形態(tài)和EGFP表達(dá)觀察細(xì)胞接種24 h后,部分細(xì)胞即可貼壁,半量換液后鏡下觀察呈圓形或短梭形。72 h后全量換液,細(xì)胞貼壁明顯,出現(xiàn)多個葵花樣細(xì)胞集落,呈克隆樣生長(圖1A),且EGFP強(qiáng)陽性表達(dá)(圖1B)。隨后細(xì)胞生長迅速,逐漸成紡錘形,P3代后,細(xì)胞形成趨于均一,呈旋渦狀生長(圖1C),細(xì)胞純度高并強(qiáng)陽性表達(dá)GFP(圖1D)。
細(xì)胞增殖測定結(jié)果P3代EGFP-BMSCs與野生型BMSCs的生長曲線均為S形。在接種第1、2 d為細(xì)胞潛伏適應(yīng)期,增殖較少;第3~6 d細(xì)胞密度明顯增加;7 d后曲線逐漸變得平緩,細(xì)胞增殖明減慢,進(jìn)入平臺期(圖2)。兩組細(xì)胞同一時間點測定的OD值差異無統(tǒng)計學(xué)意義(t=-0.023,P=0.982)。
GFP:綠色熒光蛋白
GFP:green fluorescent protein
A. P0代細(xì)胞呈葵花樣集落生長;B.GFP表達(dá);C. P3代細(xì)胞呈梭形、漩渦狀生長;D. GFP穩(wěn)定表達(dá)
A. cells at P0 formed the sunflower- like colonies;B. expressed green fluorescent protein gene;C. cells at P3 presented with the fusiform-shaped appearance and the forming of circinate cell colonies;D. stably expressing green fluorescent protein gene
圖1倒置顯微鏡下的細(xì)胞形態(tài)(×100)
Fig1Cell morphology under inverted microscope(×100)
EGFP:增強(qiáng)型綠色熒光蛋白;BMSCs:骨髓間充質(zhì)干細(xì)胞
EGFP:enhanced green fluorescent protein;BMSCs:bone marrow mesenchymal stem cells
圖2P3代EGFP-BMSCs與野生型BMSCs生長曲線
Fig2The growth curve of EGFP-BMSCs and wild-type BMSCs at P3
細(xì)胞表型鑒定結(jié)果流式細(xì)胞儀檢測結(jié)果顯示,P3代BMSCs陽性表達(dá)CD29、CD90,表達(dá)率分別為99.4%、96.4%;CD34、CD49d、CD45陰性表達(dá),表達(dá)率分別為0.171%、0.049%、0.038%(圖3)。
體外誘導(dǎo)多向分化結(jié)果
成脂分化:經(jīng)成脂誘導(dǎo)后,細(xì)胞增殖減慢,胞形態(tài)變?yōu)闄E圓形或多邊形,胞漿內(nèi)脂滴聚集,油紅O染色后呈鮮紅色(圖4A)。
成骨分化:經(jīng)分化培養(yǎng)基成骨誘導(dǎo)3周后,細(xì)胞形態(tài)由紡錘形變成多角形,排列密集,經(jīng)茜素紅染色見紅色鈣鹽結(jié)節(jié)(圖4B)。
成軟骨分化:成軟骨誘導(dǎo)分化28 d后,六孔板中出現(xiàn)數(shù)個細(xì)胞盤狀物(圖4C),經(jīng)甲苯胺藍(lán)染色后呈陽性(圖4D)。
體內(nèi)示蹤檢測結(jié)果經(jīng)靜脈將EGFP-BMSCs植入大鼠體內(nèi)3 d后,可在大鼠肺組織內(nèi)檢測到EGFP-BMSCs定植,綠色熒光蛋白表達(dá)較強(qiáng)(圖5)。
圖3綠色熒光蛋白轉(zhuǎn)基因大鼠BMSCs表面標(biāo)志物
Fig3Surface markers expression of EGFP-transgenic rat BMSCs
A. 成脂誘導(dǎo)后,油紅O染色(×200);B.成骨誘導(dǎo)后,茜素紅染色(×200);C. 成軟骨誘導(dǎo)后,形成軟骨盤;D. 甲苯胺藍(lán)染色(×40)
A. adipogenic induction of cells at P3 by oil red O staining(×200);B.osteogenic induction by alizarin red staining(×200);C. after chondrogenic induction,cells formed some cartilage discs;D. stained by toluidine blue(×40)
圖4體外誘導(dǎo)BMSCs向脂肪、骨、軟骨轉(zhuǎn)分化
Fig4The transdifferentiation of bone marrow stem cells into fat,bone,and cartilage tissueinvitro
A.綠色熒光蛋白表達(dá);B.DAPI復(fù)染細(xì)胞核;C.合并圖
A.greenfluorescentproteinexpression;B.stainingnucleiwithDAPI;C.merginggraph
圖5EGFP-BMSCs在野生型大鼠的肺組織定植 (×200)
Fig5EGFP-BMSCs engrafted in the lung tissue of wild-type rats (×200)
討論
由于胚胎干細(xì)胞的應(yīng)用受到了嚴(yán)格的法律和倫理限制,廣泛存在于成體組織器官中的間充質(zhì)干細(xì)胞越來越受到關(guān)注。作為最常見的MSCs之一,BMSCs最早被發(fā)現(xiàn)并應(yīng)用于實驗及臨床[1- 3]。在實驗中,BMSCs分離最常采用密度梯度離心法和全骨髓貼壁法。密度梯度離心法獲取的細(xì)胞純度較高,但量少,且步驟較為繁雜,污染機(jī)率較高;骨髓貼壁法分離BMSCs雖混有紅細(xì)胞,但骨髓液中的滋養(yǎng)細(xì)胞和營養(yǎng)因子可提供細(xì)胞生長所需的微環(huán)境,有助于細(xì)胞存活和功能維持,因此貼壁迅速,狀態(tài)良好,經(jīng)多次傳代純化后,可獲得大量的BMSCs。
當(dāng)前MSCs鑒定尚無統(tǒng)一標(biāo)準(zhǔn),主要通過觀察細(xì)胞形態(tài)學(xué)特征、分析增殖能力、檢測表面標(biāo)志物、鑒定多向分化潛能等方法予以鑒定。本實驗獲取的EGFP轉(zhuǎn)基因大鼠BMSCs經(jīng)換液、傳代純化后呈長梭形或多角形等,融合后呈漩渦狀細(xì)胞排列;增殖能力旺盛,與野生型BMSCs無明顯差異;經(jīng)流式細(xì)胞儀檢測,分離純化的細(xì)胞高表達(dá)CD29、CD90,而低表達(dá)骨髓造血干細(xì)胞/祖細(xì)胞的重要標(biāo)志CD34、CD45和CD49d,提示分離獲取的細(xì)胞純度高,具有MSCs表型特征,且很少混有造血干細(xì)胞/祖細(xì)胞。油紅O和茜素紅染色進(jìn)一步證實,在不同的誘導(dǎo)條件下,其分別具有向脂肪細(xì)胞、骨細(xì)胞分化的潛能。筆者在誘導(dǎo)BMSCs成軟骨分化過程中,采用的方法與傳統(tǒng)的細(xì)胞三維微球法不同,將細(xì)胞接種于六孔板中進(jìn)行成軟骨誘導(dǎo)分化,細(xì)胞能更充分地與誘導(dǎo)培養(yǎng)基接觸,且有效避免換液時的細(xì)胞丟失,提高成軟骨誘導(dǎo)分化成功率。甲苯胺藍(lán)染色陽性證實了此法在誘導(dǎo)成軟骨分化中行之有效。以上結(jié)果均證實本研究提取的EGFP-MSCs符合動物來源的MSCs生物學(xué)標(biāo)準(zhǔn)[22]。
MSCs缺少有效特異性標(biāo)記,傳統(tǒng)示蹤方法,如通過慢病毒、質(zhì)粒轉(zhuǎn)染熒光染料標(biāo)記等均需在離體狀態(tài)下鑒定,而且轉(zhuǎn)染效率難以控制,且對MSCs活力、歸巢及分泌等功能有影響[17- 18]。以超順磁性氧化鐵標(biāo)記為代表的的放射標(biāo)記法通過非特異性吸收標(biāo)記物進(jìn)入胞內(nèi),細(xì)胞的標(biāo)記率與標(biāo)記物濃度、孵育時間有關(guān),胞內(nèi)標(biāo)記物濃度過高對細(xì)胞的活力、增殖、分化、功能以及其他生物活性均有不利影響,難以同時兼顧標(biāo)記率與示蹤效果。且因其具有可降解性,隨著細(xì)胞傳代,胞內(nèi)濃度會相應(yīng)降低,標(biāo)記率和時間均難以滿足實驗中長期檢測觀察細(xì)胞的需求[21]。EGFP轉(zhuǎn)基因純合子大鼠的所有體細(xì)胞均有穩(wěn)定綠色熒光表達(dá),在研究MSCs的生物學(xué)行為及移植體內(nèi)動態(tài)觀察其在體內(nèi)增殖分化、歸巢等方面有著天然優(yōu)勢,EGFP對明確外源性MSCs在實驗中的作用和機(jī)制具有重要意義。本研究結(jié)果顯示,從EGFP轉(zhuǎn)基因大鼠骨髓提取的BMSCs能穩(wěn)定表達(dá)EGFP,體外擴(kuò)增傳代和分化誘導(dǎo)沒有導(dǎo)致EGFP的表達(dá)衰減、失活,細(xì)胞傳至第15代時仍具有強(qiáng)綠色熒光表達(dá)。細(xì)胞經(jīng)靜脈移植到大鼠體內(nèi)3 d后,可在肺組織檢測到強(qiáng)綠色熒光表達(dá),示蹤效果良好。此外,與其他傳統(tǒng)方法相比,此法對細(xì)胞活力、增殖、分化潛能以及其他生物活性沒有影響,使得細(xì)胞示蹤更為簡便、直觀、穩(wěn)定。
關(guān)于MSCs應(yīng)用于動物實驗病理模型中已十分普遍[23- 25],也有臨床試驗報道主要集中在利用其分化潛能促進(jìn)組織修復(fù)與重建,如肌細(xì)胞、神經(jīng)元、退變椎間盤,以及旁分泌功能減輕炎癥反應(yīng)、抑制腫瘤生長等方面[26- 28]。EGFP轉(zhuǎn)基因BMSCs應(yīng)用于細(xì)胞療法,可用于細(xì)胞定位,動態(tài)觀察BMSCs生物學(xué)行為變化,以探究BMSCs治療疾病的機(jī)制。本研究采用全骨髓貼壁法成功體外分離培養(yǎng)出穩(wěn)定表達(dá)EGFP的轉(zhuǎn)基因大鼠BMSCs,并經(jīng)流式細(xì)胞術(shù)及成骨、成脂、成軟骨分化鑒定符合BMSCs的特性,有較強(qiáng)增殖、分化能力,可為后續(xù)實驗研究提供大量狀態(tài)良好、以EGFP為示蹤因子的種子細(xì)胞。
參考文獻(xiàn)
[1]Kagami H,Agata H,Inoue M,et al. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering:basic science to clinical translation[J]. Tissue Eng Part B Rev,2014,20(3):229- 232.
[2]Yu KR,Kang KS. Aging-related genes in mesenchymal stem cells:a mini-review[J]. Gerontology,2013,59(6):557- 563.
[3]Kagami H,Agata H,Tojo A. Bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for bone tissue engineering:basic science to clinical translation[J]. Int J Biochem Cell Biol,2011,43(3):286- 289.
[4]Dmitrieva RI,Revittser AV,Klukina MA,et al. Functional properties of bone marrow derived multipotent mesenchymal stromal cells are altered in heart failure patients,and could be corrected by adjustment of expansion strategies[J]. Aging (Albany NY),2015,7(1):14- 25.
[5]Dai LJ,Moniri MR,Zeng ZR,et al. Potential implications of mesenchymal stem cells in cancer therapy[J]. Cancer Lett,2011,305(1):8- 20.
[6]Wang YT,Wu XT,Wang F. Regeneration potential and mechanism of bone marrow mesenchymal stem cell transplantation for treating intervertebral disc degeneration[J]. J Orthop Sci,2010,15(6):707- 719.
[7]Ahn SY,Chang YS,Park WS. Mesenchymal stem cells transplantation for neuroprotection in preterm infants with severe intraventricular hemorrhage[J]. Korean J Pediatr,2014,57(6):251- 256.
[8]Donega V,Nijboer CH,van Tilborg G,et al. Intranasally administered mesenchymal stem cells promote a regenerative niche for repair of neonatal ischemic brain injury[J]. Exp Neurol,2014,261(12):53- 64.
[9]Maltman DJ,Hardy SA,Przyborski SA. Role of mesenchymal stem cells in neurogenesis and nervous system repair[J]. Neurochem Int,2011,59(3):347- 356.
[10]Sindberg GM,Lindborg BA,Wang Q,et al. Comparisons of phenotype and immunomodulatory capacity among rhesus bone-marrow-derived mesenchymal stem/stromal cells,multipotent adult progenitor cells,and dermal fibroblasts[J]. J Med Primatol,2014,43(4):231- 241.
[11]Comite P,Cobianchi L,Avanzini MA,et al. Immunomodulatory properties of porcine,bone marrow-derived multipotent mesenchymal stromal cells and comparison with their human counterpart[J]. Cell Mol Biol (Noisy-le-grand),2011,57(Suppl):L1600- L1605.
[12]Grove JE,Bruscia E,Krause DS. Plasticity of bone marrow-derived stem cells[J]. Stem Cells,2004,22(4):487- 500.
[13]Dominici M,Le Blanc K,Mueller I,et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315- 317.
[14]Odintsov B,Chun JL,Berry SE. Whole body MRI and fluorescent microscopy for detection of stem cells labeled with superparamagnetic iron oxide (SPIO) nanoparticles and DiI following intramuscular and systemic delivery[J]. Methods Mol Biol,2013,1052(13):177- 193.
[15]Guo Y,Su L,Wu J,et al. Assessment of the green florescence protein labeling method for tracking implanted mesenchymal stem cells[J]. Cytotechnology,2012,64(4):391- 401.
[16]Bauer G,Dao MA,Case SS,et al.Invivobiosafety model to assess the risk of adverse events from retroviral and lentiviral vectors[J]. Mol Ther,2008,16(7):1308- 1315.
[17]Remy S,Tesson L,Usal C,et al. New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy[J]. Transgenic Res,2010,19(5):745- 763.
[18]Livet J,Weissman TA,Kang H,et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system[J]. Nature,2007,450(7166):56- 62.
[19]Ripoll CB,Bunnell BA. Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice[J]. BMC Cell Biol,2009,10:3. DOI:10.1186/1471- 2121- 10- 3.
[20]Zheng YM,Zheng YL,He XY,et al. Multipotent differentiation of the EGFP gene transgenic stem cells derived from amniotic fluid of goat at terminal gestational age[J]. Cell Biol Int,2011,35(12):1243- 1246.
[21]Rosenberg JT,Sellgren KL,Sachi-Kocher A,et al. Magnetic resonance contrast and biological effects of intracellular superparamagnetic iron oxides on human mesenchymal stem cells with long-term culture and hypoxic exposure[J]. Cytotherapy,2013,15(3):307- 322.
[22]Dominici M,Le Blanc K,Mueller I,et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy,2006,8(4):315- 317.
[23]Li Z,Hu X,Mao J,et al. Optimization of mesenchymal stem cells (MSCs) delivery dose and route in mice with acute liver injury by bioluminescence imaging[J]. Mol Imaging Biol,2015,17(2):185- 194.
[24]Zhu LH,Bai X,Zhang N,et al. Improvement of human umbilical cord mesenchymal stem cell transplantation on glial cell and behavioral function in a neonatal model of periventricular white matter damage[J]. Brain Res,2014,1563(5):13- 21.
[25]Pereira CL,Goncalves RM,Peroglio M,et al. The effect of hyaluronan-based delivery of stromal cell-derived factor- 1 on the recruitment of MSCs in degenerating intervertebral discs[J]. Biomaterials,2014,35(28):8144- 8153.
[26]Mendicino M,Bailey AM,Wonnacott K,et al. MSC-based product characterization for clinical trials:an FDA perspective[J]. Cell Stem Cell,2014,14(2):141- 145.
[27]Pacini S. Deterministic and stochastic approaches in the clinical application of mesenchymal stromal cells (MSCs)[J]. Front Cell Dev Biol,2014,2(2):1- 13.
[28]Raynaud CM,Rafii A. The Necessity of a systematic approach for the use of MSCs in the clinical setting[J]. Stem Cells Int,2013,2013:892340.DOI:10.1155/2013/892340.
Culture and Identification of Bone Marrow Mesenchymal Stem Cells from Enhanced Green Fluorescent Protein-transgenic Rats
LIU Hui-juan1,HU Ruo-yu2,DAI Wang-juan1,LIU Yuan-guo2,MIN Bo2,JIANG Li11Department of Pediatrics,2Department of Cardiothoracic Surgery,Zhongda Hospital,
Southeast University,Nanjing 210009,China Corresponding author:JIANG LiTel:025- 83272182,E-mail:jiangli77777@126.com
ABSTRACT:ObjectiveTo isolate,culture,and identify bone marrow mesenchymal stem cells(BMSCs) from enhanced green fluorescent protein (EGFP)-transgenic rats in vitro. MethodsBone marrows were isolated from tibia and femur of healthy EGFP-transgenic rats of specific pathogen free (SPF) grade. Then,the whole bone marrow adherent method was used for isolation,culture,and purification of BMSCs. The morphological change was noted by continuous observation under inverted fluorescence microscope. The growth curve of cells was drawn through the method of CCK- 8 and the proliferation compared with wild type BMSCs. The surface markers of BMSCs were detected by flow cytometry. The BMSCs were induced to differentiate into osteoblasts,adipocytes,and chondrocytes lineages. The EGFP-BMSCs were transplanted into the rats intravenously,and the expression of GFP was detected. ResultsBMSCs stably expressing EGFP gene were obtained successfully,with the fusiform-shaped appearance and the forming of circinate cell colonies. The growth curve of EGFP-MSCs showed the characteristic of active proliferation,showing no significant difference compared with the wild-type BMSCs. The expression rates of the surface markers of BMSCs CD29,CD90,CD34,CD49d,and CD45 were 99.4%,96.4%,0.171%,0.049%,and 0.038%. The GFP were detected in lung 3 days after transplantation. After osteogenic,adipogenic,and chondrogenic induction,oil red-O and alizarin red positive signals and toluidine blue positive cells were detected. ConclusionsHigh-purity BMSCs stably expressing green fluorescent protein gene can be cultured using the whole bone marrow adherent method. EGFP does not affect the stem cell properties and expresses stably after transplantation. The cells can be used as seed cells for subsequent research.
Key words:bone marrow mesenchymal stem cells;green fluorescent protein;induction differentiation
(收稿日期:2015- 04- 15)
DOI:10.3881/j.issn.1000- 503X.2016.01.002
中圖分類號:R394.2
文獻(xiàn)標(biāo)志碼:A
文章編號:1000- 503X(2016)01- 0009- 07
通信作者:蔣犁電話:025- 83272182,電子郵件:jiangli77777@126.com
基金項目:國家自然科學(xué)基金(81370739)和江蘇省自然科學(xué)基金(BK20131303)Supported by the National Natural Sciences Foundation of China(81370739) and the Natural Science Foundation of Jiangsu Province(BK20131303)