• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    納米三氧化鎢復(fù)合催化劑的制備及對(duì)甲醇電催化性能

    2013-09-17 06:58:36劉委明胡仙超褚有群馬淳安
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:浙江工業(yè)大學(xué)淳安電催化

    周 陽 劉委明 胡仙超,3 褚有群 馬淳安,*

    (1浙江工業(yè)大學(xué)化工材料學(xué)院,綠色化學(xué)合成技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室培育基地,科技部能源材料及應(yīng)用國(guó)際科技合作基地,杭州310032;2江西理工大學(xué)冶金與化學(xué)工程學(xué)院,江西贛州341000;3浙江工業(yè)大學(xué)分析測(cè)試中心,杭州310032)

    1 Introduction

    Direct methanol fuel cells(DMFCs)have recently attracted considerable attentions due to their excellent features such as high-energy density,convenient fuel storage,green emission,and ambient operating conditions etc.1,2However,DMFCs usually use lots of expensive platinum as anodic catalysts that tend to be poisoned by reaction intermediates such as COads.3Thus considerable efforts have been devoted to making metallic alloy,such as PtRu,4,5PtPd,6,7and PtRuSn8,9etc.,with low amount of platinum and high activity toward methanol oxidation.But the dissolution of transition metals in the alloys during the DMFC operation would be the main challenge since the dissolved transition metals may span the membrane and experience reduction on the cathode,finally leading to the unexpected performance degradation of DMFCs.10,11

    The second way to design Pt-based composite catalysts is metal oxides modified Pt particles,such as Pt/RuO2,12,13Pt/SnO2,14,15and Pt/MnO2,16etc.Tungsten trioxide(WO3)is known to be able to form a hydrogen tungsten bronze(HxWO3)compound in acid solution which is both nonstoichiometric and electrically conducting.The compound can facilitate dehydrogenation during methanol oxidation and lighten the CO poisoning of Pt catalyst.Previous studies have shown that Pt and PtRu catalysts supported on WO3have extremely high activity towards the electro-oxidation of CO,17methanol,18-21ethanol,22and formic acid.23,24However,WO3has a low specific surface area and conductivity,which limits its application in DMFC.

    Recently WO3/C hybrid material was used as the support of Pt-WO3/C catalysts.25,26Compared with Vulcan XC-72 carbon black,carbon nanotubes(CNTs)have better specific surface area and conductivity.Rajesh et al.27reported a composite catalyst of methanol electro-oxidation by depositing Pt nanoparticles on WO3-modified CNT,in which CNT was synthesised by the template carbonisation of polypyrrole on alumina membrane.In this paper CNT was further disposed by strong acid so that Pt and WO3nanoparticles were homogenously deposited on the surface of CNT.Results show that WO3-modification improves significantly electrocatalytic activity towards methanol oxidation.

    2 Experimental

    2.1 Preparation of WO3modified acid treated CNTs

    Carbon nanotubes(Shenzhen Nanoharbor Co.,China)were functionalized in nitric acid(65%-68%)under refluxing at 150°C for 5 h,washed by distilled water and dried in vacuum at 85°C.28WO3-modified carbon nanotubes(WO3-CNTs)were prepared by the conventional means with sodium tungstate as the precursor.Briefly,50 mg of CNTs was added into 5 mmol·L-1aqueous solution of sodium tungstate.After ultrasonic dispersed for 30min,the solution were stirred vigorously at 60°C for 1 h,then excessive 1 mol·L-1hydrochloric acid was dropwised into the above solution.After the reaction proceeded for 6 h,the suspension was filtered,washed and dried at 80°C in a vacuum oven.The resultant was transferred into a tubular oven and heat-treated at 500°C for 6 h under the protection of a nitrogen atmosphere.The ideal ratio of WO3to CNTs was calculated as 25%(w),but for comparison,ratio of WO3to CNTs with 10%,25%,50%,and 75%(w)were also prepared following same procedures as above.

    2.2 Synthesis of Pt nanoparticles on WO3-CNTs

    Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.In brief,5.7 mL of 5 mmol·L-1chloroplatinic acid was well mixed with 15 mL ethylene glycol(EG)in a special reaction tube,and then 50.0 mg of as-prepared WO3/CNTs was added into the mixture.After the pH of the mixture was adjusted to 10 using 1.0 mol·L-1NaOH aqueous,well-dispersed slurry was obtained after being stirred in an ultrasonic bath for 30 min.Thereafter,the slurry was microwave-heated at 160°C for 30 min in the microwave synthesizer(Initiator Biotage,Sweden).The resulting solution was filtered,washed and dried at 85°C for 10 h in a vacuum oven,yielding 10%(w)Pt loading on the supports.As contrast samples,Pt nanoparticles(10%(w)metal content)on acid treated CNTs(Pt/CNTs)was prepared using similar procedures as described above.

    2.3 Characterizations

    The morphology,crystal phase,structure and element distribution of the samples were respectively characterized by XRD,XPS,and TEM.XRD was performed with a Thermo ARL SCINTAG X?TRA X-ray at room temperature,using quartz monochromatic Cu Kα1radiation source(λ=0.1541 nm)under a voltage of 45 kV and a current of 40 mA.The XRD patterns were recorded with a step size of 0.04°from 10°to 80°at the speed of 2.4(°)·min-1.TEM was carried out on a Tecnai G2 F30 S-Twin(Philips-FEI).XPS was carried out on Kratos AXIS Ultra DLD.

    2.4 Electrochemical measurements

    Electrochemical measurements were performed on Ivium electrochemical workstation.A standard three-electrode cell with separate anode and cathode compartments was used.A Pt foil and saturated calomel electrode(SCE)were used as counter and reference electrodes,respectively.For electrode preparation,2.5 mg of electrocatalyst sample was ultrasonically mixed in 400 μL of ethanol-water solution(1:1,V/V)to form a homogeneous ink followed by dropping 5 μL of the electrocatalyst ink onto the surface of a glassy carbon electrode(GCE,with a diameter of 3 mm),and 7 μL of Nafion solution of 1.0%(DuPont,USA)in ethanol was added to fix the electrocatalyst on the GCE surface.The electrochemical active surface(EAS)assessed in a nitrogen-saturated 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1and the electrocatalytic activity for the methanol oxidation reaction was measured in a nitrogensaturated 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1.

    The CO stripping experiments were performed in a 0.5 mol·L-1H2SO4solution.Along with the continuous CO bubbling for 30 min,the anode electrode was controlled at-0.14 V for CO adsorption.The solution was then purged with N2for 30 min to remove the dissolved CO before the stripping test.

    3 Results and discussion

    3.1 XRD and TEM analysis of samples

    Fig.1 shows the typical XRD patterns of the samples.The diffraction peak at 2θ=26.2°is characteristic of the graphite(002)plane,demonstrating the graphitization of carbon in the sample.The distinct diffraction peaks at 2θ of 23.09°,23.58°,24.33°,33.25°,34.12°,and 41.44°are indexed as the(002),(020),(200),(022),(202),and(222)planes of monoclinic WO3phase.29Those slight diffraction peaks at 2θ of 39.76°,46.28°,and 67.53°are attributed to the Pt(111),(200),and(220)planes,which are not obvious for Pt/WO3-CNTs,indeed,the broaden peak centered at 41.45°is the overlapped peak of the(111)peak of Pt and the(222)peak of WO3.

    Fig.1 XRD patterns of(a)WO3-CNTs,(b)Pt/WO3-CNTs,and(c)Pt/CNTs catalysts

    Fig.2 shows scanning transmission electron microscope(STEM)images of Pt/CNTs and Pt/WO3-CNTs catalyst.The black and white picture is sample particle morphology and color pictures are samples?elements distribution density by energy dispersive spectrometer(EDS)surface scan.As can be seen from Fig.2(a),W,Pt,and O elements are distributed on the outer surface of CNTs.Combined with XRD characterization of results,Pt/WO3-CNTs catalyst is composed of Pt,WO3,and CNTs.

    Fig.3 gives the TEM images of Pt/CNTs and Pt/WO3-CNTs catalysts and the corresponding histograms of the Pt particle diameters,as well.It can be seen from the TEM images that the Pt particles on the WO3-CNTs support are smaller and more uniformly dispersed than those on CNTs support.The average sizes of the Pt particles in Pt/CNTs and Pt/WO3-CNTs catalysts are estimated from their histograms as being approximately 4.8 and 3.6 nm,respectively,indicating that the introduction of WO3can inhibit the aggregation of Pt particles.26

    3.2 XPS analysis of samples

    Fig.4 shows the XPS spectra of Pt 4f and W 4f photoemission from Pt/WO3-CNTs,respectively.The two characteristic peaks observed in the Pt 4f region with binding energies of 71.5 and 74.8 eV should be attributed to the metallic Pt.30The two peaks in the W 4f region with binding energies centered at 35.7 and 37.9 eV,suggest the presence of tungsten in the+VI oxidation state.31Fig.5 displays the XPS spectra of Pt 4f photoemission from Pt/CNTs.It can be observed that the two peaks with binding energies of 71.5 and 74.8 eV are characteristic of the metallic Pt,and the other two peaks at 72.3 and 75.8 eV can be assigned to Pt2+in PtO and Pt(OH)2-like species.32

    3.3 Electro-catalytic performance

    Fig.2 EDS elemental mapping of(a)Pt/WO3-CNTs and(b)Pt/CNTs catalysts under STEM model

    Fig.3 TEM images of(a)Pt/WO3-CNTs and(b)Pt/CNTs,and Pt particle size distributions of(c)Pt/WO3-CNTs and(d)Pt/CNTs

    Fig.4 XPS spectra of the Pt 4f and W 4f photoemission from Pt/WO3-CNTs

    Fig.6 presents cyclic voltammograms(CVs)of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1.The platinum in Pt/WO3-CNT has a larger EAS than that in Pt/CNTs,which is reflected by the hydrogen adsorption/desorption currents at the potentials between-0.2 and 0.2 V,as shown in Fig.6.The EAS of platinum can be calculated from the integrated charge in the hydrogen adsorption region of the cyclic voltammograms(Fig.6)based on ESA=QH/0.21×[Pt],where QHis the integrated charge(mC),[Pt]is the Pt loading(mg·cm-2)on the electrode.The EAS values calculated for Pt/CNTs and Pt/WO3-CNTs are shown in Table 1,which reveals that the EAS of platinum is influenced by the particle sizes.This result is consistent with Pt particle size distributions of Pt/CNTs and Pt/WO3-CNTs(Fig.3).

    Fig.7 shows CVs of the electrodes in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution between 0.0 to 1.0 V at a scan rate of 50 mV·s-1.The electrocatalytic activity of Pt/WO3-CNTs and Pt/CNTs catalysts on the oxidation of methanol was studied in 0.5 mol·L-1H2SO4aqueous solution containing 1.0 mol·L-1CH3OH at a scan rate of 50 mV·s-1.It can be observed from Fig.7 that the onset of methanol oxidation peaks for the Pt/WO3-CNTs catalyst is at 0.25 V,which is apparently lower than that on Pt/CNTs catalysts with the onsets at 0.30 V.The negative shift on the potential onset of Pt/WO3-CNTs indicates that Pt nanoparticles on WO3-CNTs surface can effectively reduce the over potentials in the methanol electro-oxidation reaction.In addition,it can be seen that the mass specific current of Pt/WO3-CNTs(403 mA·mg-1)is 5 times that of Pt/CNT(80 mA·mg-1)at 0.69 V,indicating that WO3plays a key role in the high catalytic performance.

    Fig.5 XPS spectra of the Pt 4f photoemission from Pt/CNTs

    Fig.6 Cyclic voltammograms of(a)Pt/WO3-CNTs and(b)Pt/CNTs in 0.5 mol·L-1H2SO4solution at a scan rate of 50 mV·s-1

    Table 1 Onset potential,EAS,peak current density,and forward anodic to reverse anodic peak current density ratio ofthe different catalysts for methanol oxidation

    Besides,it is well known that the ratio of the forward anodic peak current density(If)to the reverse anodic peak current density(Ib),i.e.,If/Ib,suggests a tolerance to carbonaceous species accumulation of catalysts during methanol electro-oxidation.And the high If/Ibindicates excellent oxidation of methanol during the reverse anodic scan and less accumulation of residues on the catalyst.Here the If/Ibratio for Pt/WO3-CNT is about 1.37,which is much higher than that of Pt/CNT catalyst(0.96),showing the Pt/WO3-CNT has a better tolerance to carbonaceous species accumulation.

    Fig.8(a)shows the cyclic voltammograms of Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution.In Fig.8(b),the effects of WO3content on the anodic peak current density and the If/Ibratio are shown.It can be seen that for Pt/WO3-CNTs catalyst,the peak current density of methanol oxidation increases along with the increasing of WO3content because WO3reduces the Pt nanoparticles size and improves the dispersion of Pt nanoparticles on the surface of CNTs.26However,the increasing of WO3amount would lead to a decrease of the electrode conductivity,thus decreases the reaction performance of Pt/WO3-CNTs catalyst on the contrary,finally,the content of WO3is optimized at ca 25%.

    Fig.7 Cyclic voltagrammograms of methanol oxidation on(a)Pt/WO3-CNTs,(b)Pt/CNTs,and(c)WO3/CNTs in 0.5 mol·L-1 H2SO4+1 mol·L-1CH3OH solution at a scan rate of 50 mV·s-1

    Fig.8 (a)Cyclic voltammograms of the Pt/WO3-CNTs catalyst with different mass contents of WO3in 0.5 mol·L-1H2SO4+1.0 mol·L-1CH3OH solution with a scan rate of 50 mV·s-1;(b)dependencyof anodic peak current density and the ratio ofIf/Ibto the mass fraction of WO3

    CO-stripping voltammograms is measured and the characteristic CO stripping curves of Pt/WO3-CNTs and Pt/CNTs catalysts are shown in Fig.9.The onset potential and the peak potential may directly reflect the CO oxidizing ability of the catalysts.It is revealed that the onset potential and the peak potential for the oxidation of adsorbed CO on Pt/WO3-CNTs(Fig.9(a))are much lower than those on Pt/CNTs(Fig.9(b)),so WO3efficiently reduces the overpotential of CO oxidation due to forming HxWO3-OHadsspecies at lower potentials,which is helpful to oxidize COadsthrough bi-functional mechanism.33

    Fig.9 CO-stripping voltammograms of Pt/WO3-CNTs and Pt/CNTs catalysts in 0.5 mol·L-1H2SO4solution at room temperature and a scan rate of 50 mV·s-1

    Fig.10 Chronoamperomtric curve of Pt/CNTs and Pt/WO3-CNTs in 0.5 mol·L-1H2SO4+1 mol·L-1CH3OH solution at an operation potential of 0.7 V

    The chronoamperometry(CA)curves for the three catalysts are shown in Fig.10.These curves reflect the activity and stability of the catalysts to catalyze methanol oxidation.Obviously,the decay in the methanol oxidation current with time varies.But after 100 min the current density of Pt/WO3-CNTs catalyst is 15 times higher than that of Pt/CNTs catalyst.It shows that the modification of WO3can effectively improve the resistance to toxic and stability of Pt-based catalyst for methanol oxidation.This significant improvement in the catalytic performance of the Pt/WO3-CNTs catalysts may be attributed to three factors:first,the Pt and WO3particles supported on the carbon are smaller and more uniformly distributed;second,more metallic Pt is present on Pt/WO3-CNTs than on Pt/CNTs catalyst.Third,in the presence of WO3,the hydrogen adsorbed on the Pt spills over onto the surface of the WO3and forms HxWO3,thus releasing these Pt active sites.Subsequently,HxWO3can be readily oxidized to release hydrogen ions,electrons,and WO3.34,35This cyclic process will accelerate the dehydrogenation of methanol on Pt and improve the catalytic performance of methanol oxidation.The cyclic process on the Pt/WO3-CNTs catalyst is speculated to occur as follows:33,34

    4 Conclusions

    Nano-WO3modified carbon nanotubes were prepared by the conventional means with sodium tungstate as the precursor.Platinum supported on the WO3-modified CNTs(Pt/WO3-CNTs)was prepared by means of microwave heating ethylene glycol method.Electrochemical analysis shows that the Pt/WO3-CNTs catalysts prepared exhibit excellent catalytic activity and stability for methanol electro-oxidation.

    (1) Jung,E.H.;Jung,U.H.;Yang,T.H.;Peak,D.H.;Jung,D.H.;Kim,S.H.International Journal of Hydrogen Energy 2007,32,903.doi:10.1016/j.ijhydene.2006.12.014

    (2) Li,X.;Chen,J.L.;Zhu,Z.H.;De Marco,R.;Bradley,J.;Dicks,A.Energy&Fuels 2009,23,3721.doi:10.1021/ef900203h(3)Han,D.M.;Guo,Z.P.;Zeng,R.;Kim,C.J.;Meng,Y.Z.;Liu,H.K.International Journal of Hydrogen Energy 2009,34,2426.doi:10.1016/j.ijhydene.2008.12.073

    (4) Corpuz,A.R.;Olson,T.S.;Joghee,P.;Pylypenko,S.;Dameron,A.A.;Dinh,H.N.;O?Neill,K.J.;Hurst,K.E.;Bender,G.;Gennett,T.;Pivovar,B.S.;Richards,R.M.;O?Hayre,R.P.Journal of Power Sources 2012,217,142.doi:10.1016/j.jpowsour.2012.06.012

    (5) Kakati,N.;Lee,S.H.;Maiti,J.;Yoon,Y.S.Surface Science 2012,606,1633.doi:10.1016/j.susc.2012.07.008

    (6)Chu,Y.Y.;Wang,Z.B.;Jiang,Z.Z.;Gu,D.M.;Yin,G.P.Journal of Power Sources 2012,203,17.doi:10.1016/j.jpowsour.2011.11.025

    (7) Remona,A.M.;Phani,K.L.N.Journal of Fuel Cell Science and Technology 2011,8,011001.

    (8) Chu,Y.H.;Shul,Y.G.International Journal of Hydrogen Energy 2010,35,11261.doi:10.1016/j.ijhydene.2010.07.062(9) Wu,G.;Swaidan,R.;Cui,G.F.Journal of Power Sources 2007,172,180.doi:10.1016/j.jpowsour.2007.07.034

    (10) Chung,Y.S.;Pak,C.;Park,G.S.;Jeon,W.S.;Kim,J.R.;Lee,Y.;Chang,H.;Seung,D.Journal of Physical Chemistry C 2008,112,313.doi:10.1021/jp0759372

    (11) Piela,P.;Eickes,C.;Brosha,E.;Garzon,F.;Zelenay,P.Journal of the Electrochemical Society 2004,151,A2053.

    (12) Profeti,L.P.R.;Profeti,D.;Olivi,P.International Journal of Hydrogen Energy 2009,34,2747.doi:10.1016/j.ijhydene.2009.01.011

    (13) Zhou,C.M.;Wang,H.J.;Liang,J.H.;Peng,F.;Yu,H.;Yang,J.Chinese Journal of Catalysis 2008,29,1093.doi:10.1016/S1872-2067(09)60007-3

    (14) Frolova,L.A.;Dobrovolsky,Y.A.Russian Chemical Bulletin 2011,60,1101.doi:10.1007/s11172-011-0174-z

    (15) Guo,D.J.;You,J.M.Journal of Power Sources 2012,198,127.doi:10.1016/j.jpowsour.2011.10.017

    (16)Xu,M.W.;Gao,G.Y.;Zhou,W.J.;Zhang,K.F.;Li,H.L.Journal of Power Sources 2008,175,217.doi:10.1016/j.jpowsour.2007.09.069

    (17) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L85.

    (18) Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1994,141,3082.doi:10.1149/1.2059282

    (19) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of the Chemical Society-Faraday Transactions 1994,90,3089.doi:10.1039/ft9949003089

    (20) Cui,X.Z.;Shi,J.L.;Chen,H.R.;Zhang,L.X.;Guo,L.M.;Gao,J.H.;Li,J.B.Journal of Physical Chemistry B 2008,112,12024.

    (21) Jayaraman,S.;Jaramillo,T.F.;Baeck,S.H.;McFarland,E.W.Journal of Physical Chemistry B 2005,109,22958.doi:10.1021/jp053053h

    (22)Zhang,D.Y.;Ma,Z.F.;Wang,G.X.;Konstantinov,K.;Yuan,X.X.;Liu,H.K.Electrochemical and Solid State Letters 2006,9,A423.

    (23) Chen,K.Y.;Shen,P.K.;Tseung,A.C.C.Journal of the Electrochemical Society 1995,142,L185.

    (24) Shen,P.K.;Chen,K.Y.;Tseung,A.C.C.Journal of Electroanalytical Chemistry 1995,389,223.doi:10.1016/0022-0728(95)03974-L

    (25)Yang,C.Z.;van der Laak,N.K.;Chan,K.Y.;Zhang,X.Electrochimica Acta 2012,75,262.doi:10.1016/j.electacta.2012.04.107

    (26)Cui,Z.M.;Feng,L.G.;Liu,C.P.;Xing,W.Journal of Power Sources 2011,196,2621.doi:10.1016/j.jpowsour.2010.08.118

    (27) Rajesh,B.;Karthik,V.;Karthikeyan,S.;Thampi,K.R.;Bonard,J.M.;Viswanathan,B.Fuel 2002,81,2177.doi:10.1016/S0016-2361(02)00162-X

    (28) Sheng,J.F.;Ma,C.A.;Zhang,C.;Li,G.H.Acta Physico-Chimica Sinica 2007,23,181.[盛江峰,馬淳安, 張 誠(chéng),李國(guó)華.物理化學(xué)學(xué)報(bào),2007,23,181.]doi:10.3866/PKU.WHXB20070209

    (29) Rajeswari,J.;Viswanathan,B.;Varadarajan,T.K.Materials Chemistry and Physics 2007,106,168.doi:10.1016/j.matchemphys.2007.05.032

    (30)Ahmadi,R.;Amini,M.K.International Journal of Hydrogen Energy 2011,36,7275.doi:10.1016/j.ijhydene.2011.03.013

    (31) Raghuveer,V.;Viswanathan,B.Journal of Power Sources 2005,144,1.doi:10.1016/j.jpowsour.2004.11.033

    (32)Su,F.B.;Poh,C.K.;Tian,Z.G.;Xu,G.W.;Koh,G.Y.;Wang,Z.;Liu,Z.L.;Lin,J.Y.Energy&Fuels 2010,24,3727.doi:10.1021/ef901275q

    (33) Park,K.W.;Choi,J.H.;Sung,Y.E.Journal of Physical Chemistry B 2003,107,5851.doi:10.1021/jp0340966

    (34)Tseung,A.C.C.;Chen,K.Y.Catalysis Today 1997,38,439.doi:10.1016/S0920-5861(97)00053-9

    (35) Ye,J.L.;Liu,J.G.;Zou,Z.G.;Gu,J.;Yu,T.Journal of Power Sources 2010,195,2633.doi:10.1016/j.jpowsour.2009.11.055

    猜你喜歡
    浙江工業(yè)大學(xué)淳安電催化
    熔融鹽法制備Mo2CTx MXene及其電催化析氫性能
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    浙江工業(yè)大學(xué)
    從“淳安女童失聯(lián)案”看新媒體的悲劇性事件報(bào)道
    浙江工業(yè)大學(xué)
    漁舟唱晚
    Ti基IrO2+Ta2O5梯度化涂層電極的制備及其電催化性能
    走進(jìn)淳安,去游千島之湖
    填充床電極反應(yīng)器在不同電解質(zhì)中有機(jī)物電催化氧化的電容特性
    精品国产乱码久久久久久男人| 久久天堂一区二区三区四区| 两个人免费观看高清视频| 午夜福利,免费看| 1024香蕉在线观看| av欧美777| 欧美精品一区二区免费开放| 国产欧美日韩综合在线一区二区| 国产视频首页在线观看| 人体艺术视频欧美日本| 777久久人妻少妇嫩草av网站| 波多野结衣av一区二区av| 国产精品 国内视频| 美国免费a级毛片| 十八禁网站网址无遮挡| 国产女主播在线喷水免费视频网站| 久久精品人人爽人人爽视色| 黄色片一级片一级黄色片| av电影中文网址| 国精品久久久久久国模美| 国产成人一区二区在线| 一级片免费观看大全| 精品一区二区三卡| 精品少妇内射三级| 丁香六月天网| 亚洲av美国av| 纵有疾风起免费观看全集完整版| bbb黄色大片| 日韩制服骚丝袜av| 丰满迷人的少妇在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产精品99久久99久久久不卡| 亚洲欧美一区二区三区国产| 久久久久久久大尺度免费视频| 青春草视频在线免费观看| 男女床上黄色一级片免费看| 大陆偷拍与自拍| 久久免费观看电影| 久久99精品国语久久久| 久久久久国产一级毛片高清牌| 久久青草综合色| 国产亚洲av高清不卡| 三上悠亚av全集在线观看| 另类精品久久| 亚洲情色 制服丝袜| av一本久久久久| 色网站视频免费| 天天躁日日躁夜夜躁夜夜| 操出白浆在线播放| 一级片'在线观看视频| 亚洲熟女毛片儿| 黄色一级大片看看| 国产免费视频播放在线视频| 亚洲精品一二三| 国产精品三级大全| 男女床上黄色一级片免费看| 午夜激情av网站| 十分钟在线观看高清视频www| 国产日韩欧美亚洲二区| 一区二区av电影网| 9热在线视频观看99| 成人亚洲欧美一区二区av| 欧美精品啪啪一区二区三区 | 国产国语露脸激情在线看| 国产日韩欧美视频二区| 欧美黄色淫秽网站| 午夜福利免费观看在线| 国产无遮挡羞羞视频在线观看| 免费av中文字幕在线| 国产精品久久久人人做人人爽| 国产精品秋霞免费鲁丝片| 精品视频人人做人人爽| 美女扒开内裤让男人捅视频| avwww免费| 亚洲av成人不卡在线观看播放网 | 久久久久久久久久久久大奶| 亚洲九九香蕉| 水蜜桃什么品种好| 久久 成人 亚洲| 大陆偷拍与自拍| 国产男女超爽视频在线观看| 久久久精品区二区三区| 色网站视频免费| 在现免费观看毛片| 亚洲,欧美,日韩| 少妇人妻 视频| 麻豆乱淫一区二区| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产av新网站| 日韩电影二区| 亚洲欧美清纯卡通| 久久性视频一级片| 亚洲精品国产色婷婷电影| av视频免费观看在线观看| 久久国产亚洲av麻豆专区| 亚洲美女黄色视频免费看| 伊人久久大香线蕉亚洲五| 99国产综合亚洲精品| 最黄视频免费看| 亚洲精品av麻豆狂野| 色婷婷av一区二区三区视频| av视频免费观看在线观看| 黄色毛片三级朝国网站| 欧美日韩亚洲综合一区二区三区_| 老熟女久久久| 丰满迷人的少妇在线观看| 欧美老熟妇乱子伦牲交| 午夜91福利影院| 日韩熟女老妇一区二区性免费视频| 母亲3免费完整高清在线观看| 建设人人有责人人尽责人人享有的| 黄片播放在线免费| 国产精品国产三级国产专区5o| 欧美中文综合在线视频| 亚洲av电影在线进入| 我要看黄色一级片免费的| 国产欧美亚洲国产| 亚洲,一卡二卡三卡| 日韩欧美一区视频在线观看| 国产精品人妻久久久影院| 亚洲国产看品久久| 中文字幕av电影在线播放| 午夜福利在线免费观看网站| 国产老妇伦熟女老妇高清| 精品国产乱码久久久久久小说| 波多野结衣av一区二区av| 亚洲中文字幕日韩| 亚洲欧洲精品一区二区精品久久久| 一区二区三区四区激情视频| 国产精品 国内视频| 亚洲,欧美,日韩| 国产精品久久久久久精品电影小说| 国产精品久久久久久人妻精品电影 | 一二三四在线观看免费中文在| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 九草在线视频观看| 欧美精品啪啪一区二区三区 | 极品少妇高潮喷水抽搐| 丰满人妻熟妇乱又伦精品不卡| 欧美日本中文国产一区发布| 老司机深夜福利视频在线观看 | 午夜福利影视在线免费观看| 久久久国产欧美日韩av| 久久99热这里只频精品6学生| 国产深夜福利视频在线观看| 麻豆国产av国片精品| 亚洲欧美精品综合一区二区三区| 国产黄频视频在线观看| 国产深夜福利视频在线观看| 亚洲国产最新在线播放| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 精品高清国产在线一区| 精品国产乱码久久久久久男人| 亚洲欧美精品综合一区二区三区| 精品久久蜜臀av无| 青青草视频在线视频观看| 一级黄片播放器| 老司机靠b影院| 久热这里只有精品99| 亚洲,欧美,日韩| 国产精品 国内视频| 中文字幕色久视频| 久久 成人 亚洲| 一区二区三区激情视频| 精品一品国产午夜福利视频| 人体艺术视频欧美日本| 成年人黄色毛片网站| 每晚都被弄得嗷嗷叫到高潮| 国产精品一区二区精品视频观看| 好男人电影高清在线观看| 在线观看人妻少妇| 自线自在国产av| 高清视频免费观看一区二区| 捣出白浆h1v1| 久久久国产精品麻豆| 国产日韩欧美在线精品| 亚洲精品国产区一区二| 成年av动漫网址| 人人妻人人爽人人添夜夜欢视频| 19禁男女啪啪无遮挡网站| 日韩人妻精品一区2区三区| 亚洲精品自拍成人| 中文字幕人妻熟女乱码| 亚洲综合色网址| 日日摸夜夜添夜夜爱| 一二三四在线观看免费中文在| av国产精品久久久久影院| 亚洲av片天天在线观看| 2021少妇久久久久久久久久久| 欧美国产精品va在线观看不卡| 三上悠亚av全集在线观看| 久久精品国产a三级三级三级| 亚洲成人国产一区在线观看 | 日韩av在线免费看完整版不卡| 99热网站在线观看| 国产成人a∨麻豆精品| 下体分泌物呈黄色| 好男人电影高清在线观看| 久久鲁丝午夜福利片| 一级毛片黄色毛片免费观看视频| 精品国产一区二区三区久久久樱花| 老汉色av国产亚洲站长工具| 久热爱精品视频在线9| 午夜激情av网站| 久久久久久久大尺度免费视频| 极品少妇高潮喷水抽搐| 亚洲视频免费观看视频| 久久久亚洲精品成人影院| 欧美精品一区二区免费开放| 99久久99久久久精品蜜桃| 女人高潮潮喷娇喘18禁视频| 成人免费观看视频高清| 少妇的丰满在线观看| 亚洲自偷自拍图片 自拍| 午夜免费成人在线视频| 国产午夜精品一二区理论片| 两性夫妻黄色片| 9色porny在线观看| 成年av动漫网址| 国产伦人伦偷精品视频| 女人精品久久久久毛片| 人妻人人澡人人爽人人| 在线观看人妻少妇| 90打野战视频偷拍视频| 亚洲国产成人一精品久久久| 老汉色av国产亚洲站长工具| 免费人妻精品一区二区三区视频| 国产精品三级大全| 夜夜骑夜夜射夜夜干| 宅男免费午夜| 国产欧美日韩综合在线一区二区| 中文字幕精品免费在线观看视频| 蜜桃在线观看..| bbb黄色大片| 超碰成人久久| 新久久久久国产一级毛片| cao死你这个sao货| 欧美久久黑人一区二区| 老熟女久久久| 纵有疾风起免费观看全集完整版| 一级毛片女人18水好多 | 美女大奶头黄色视频| 国产av国产精品国产| 无遮挡黄片免费观看| 亚洲五月婷婷丁香| 亚洲精品国产av成人精品| 久久久欧美国产精品| 久久精品亚洲av国产电影网| 午夜福利视频精品| 蜜桃国产av成人99| 久久亚洲国产成人精品v| 人体艺术视频欧美日本| 国产精品一二三区在线看| 妹子高潮喷水视频| 国产成人精品久久二区二区免费| 91精品国产国语对白视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲五月婷婷丁香| 国产精品成人在线| 免费看十八禁软件| 亚洲人成网站在线观看播放| 国产精品久久久久久精品电影小说| 一级黄片播放器| 考比视频在线观看| 另类亚洲欧美激情| 宅男免费午夜| 成年动漫av网址| 亚洲第一青青草原| 成人亚洲精品一区在线观看| 国产福利在线免费观看视频| 国产福利在线免费观看视频| 国产成人精品久久二区二区91| 中国美女看黄片| 国产亚洲精品久久久久5区| 美女高潮到喷水免费观看| 国产在线视频一区二区| 国产成人精品在线电影| 一本一本久久a久久精品综合妖精| 极品少妇高潮喷水抽搐| 亚洲av在线观看美女高潮| 日韩视频在线欧美| 成人18禁高潮啪啪吃奶动态图| av一本久久久久| 成年人黄色毛片网站| 少妇裸体淫交视频免费看高清 | 建设人人有责人人尽责人人享有的| 欧美黄色片欧美黄色片| 热99久久久久精品小说推荐| 捣出白浆h1v1| 少妇裸体淫交视频免费看高清 | 性色av一级| 妹子高潮喷水视频| 涩涩av久久男人的天堂| 99久久人妻综合| 国产av精品麻豆| 亚洲色图 男人天堂 中文字幕| 日日爽夜夜爽网站| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 国产精品av久久久久免费| 少妇人妻久久综合中文| 国产色视频综合| 成年人黄色毛片网站| 777米奇影视久久| 高清不卡的av网站| 曰老女人黄片| 老司机靠b影院| 国产淫语在线视频| 欧美黑人精品巨大| 国产精品.久久久| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频精品一区| 精品久久蜜臀av无| 99久久综合免费| 黄色视频在线播放观看不卡| 国产成人欧美| 久久人妻熟女aⅴ| 精品久久久久久电影网| 18在线观看网站| 亚洲av男天堂| 精品久久蜜臀av无| 啦啦啦视频在线资源免费观看| 啦啦啦啦在线视频资源| 成年动漫av网址| 亚洲人成电影观看| 看免费av毛片| 久久人人97超碰香蕉20202| 亚洲av日韩精品久久久久久密 | 欧美亚洲 丝袜 人妻 在线| 青青草视频在线视频观看| 亚洲精品日本国产第一区| 亚洲伊人色综图| 在线精品无人区一区二区三| 母亲3免费完整高清在线观看| 99热网站在线观看| 久久青草综合色| 日韩中文字幕欧美一区二区 | 色精品久久人妻99蜜桃| 成人国产av品久久久| 激情视频va一区二区三区| 精品视频人人做人人爽| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 在线观看免费高清a一片| 悠悠久久av| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 色综合欧美亚洲国产小说| 久久人人爽av亚洲精品天堂| 咕卡用的链子| 妹子高潮喷水视频| 日韩精品免费视频一区二区三区| 黑丝袜美女国产一区| 最新的欧美精品一区二区| 一边亲一边摸免费视频| 99国产精品一区二区三区| 日韩视频在线欧美| 国产成人精品久久二区二区91| 国产成人av教育| 日日摸夜夜添夜夜爱| 狠狠精品人妻久久久久久综合| 亚洲成人国产一区在线观看 | 久久 成人 亚洲| 国产在线一区二区三区精| 岛国毛片在线播放| 亚洲人成电影观看| 激情五月婷婷亚洲| 777久久人妻少妇嫩草av网站| 精品人妻在线不人妻| 欧美精品人与动牲交sv欧美| 多毛熟女@视频| 欧美在线黄色| 国产国语露脸激情在线看| 天堂俺去俺来也www色官网| 国产熟女欧美一区二区| 伦理电影免费视频| 乱人伦中国视频| 国产三级黄色录像| 校园人妻丝袜中文字幕| 成人午夜精彩视频在线观看| 免费在线观看黄色视频的| 婷婷成人精品国产| 少妇精品久久久久久久| 国产精品一区二区在线观看99| av天堂久久9| 夜夜骑夜夜射夜夜干| 女人高潮潮喷娇喘18禁视频| 亚洲欧美一区二区三区久久| videosex国产| 色94色欧美一区二区| 如日韩欧美国产精品一区二区三区| 搡老乐熟女国产| 国产精品免费视频内射| kizo精华| 亚洲av欧美aⅴ国产| 啦啦啦在线观看免费高清www| 亚洲午夜精品一区,二区,三区| 18禁国产床啪视频网站| 亚洲熟女精品中文字幕| 精品少妇久久久久久888优播| 91字幕亚洲| 久久精品人人爽人人爽视色| 国产成人av教育| 9热在线视频观看99| 老司机影院毛片| 黑人猛操日本美女一级片| 亚洲图色成人| 国产精品久久久久久人妻精品电影 | 极品人妻少妇av视频| 丝袜脚勾引网站| av线在线观看网站| 亚洲av日韩在线播放| 狂野欧美激情性xxxx| a级毛片黄视频| 欧美变态另类bdsm刘玥| 久久久精品国产亚洲av高清涩受| 男男h啪啪无遮挡| 国产主播在线观看一区二区 | 黄网站色视频无遮挡免费观看| 亚洲精品美女久久av网站| 久久久欧美国产精品| 美女大奶头黄色视频| 高潮久久久久久久久久久不卡| 免费黄频网站在线观看国产| 交换朋友夫妻互换小说| 欧美久久黑人一区二区| 在线亚洲精品国产二区图片欧美| 精品久久久久久久毛片微露脸 | 亚洲精品国产区一区二| 国产精品香港三级国产av潘金莲 | 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 无遮挡黄片免费观看| 国产伦人伦偷精品视频| www.精华液| 亚洲三区欧美一区| 波多野结衣av一区二区av| 色精品久久人妻99蜜桃| 91精品伊人久久大香线蕉| 三上悠亚av全集在线观看| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 美女福利国产在线| 啦啦啦视频在线资源免费观看| 女人爽到高潮嗷嗷叫在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品二区激情视频| 亚洲av美国av| 久久久久视频综合| 一区二区三区激情视频| 国产成人精品久久二区二区91| 中国国产av一级| 亚洲伊人色综图| 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 嫩草影视91久久| 天天躁夜夜躁狠狠久久av| 久久99热这里只频精品6学生| 国产淫语在线视频| 国产精品国产三级专区第一集| 丁香六月欧美| 久久国产精品男人的天堂亚洲| 国产一区二区在线观看av| 黄色视频在线播放观看不卡| 国产成人一区二区在线| 性少妇av在线| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区 | 日韩 亚洲 欧美在线| 国产精品九九99| 成年女人毛片免费观看观看9 | 国产精品 国内视频| 18禁黄网站禁片午夜丰满| 亚洲 欧美一区二区三区| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 亚洲精品自拍成人| 可以免费在线观看a视频的电影网站| 午夜日韩欧美国产| 韩国精品一区二区三区| 国产成人精品久久久久久| 国产熟女午夜一区二区三区| 日韩中文字幕视频在线看片| 高清欧美精品videossex| 三上悠亚av全集在线观看| 国产亚洲欧美在线一区二区| 各种免费的搞黄视频| 欧美成人午夜精品| 90打野战视频偷拍视频| av又黄又爽大尺度在线免费看| 久久久久久免费高清国产稀缺| 日韩熟女老妇一区二区性免费视频| 男女下面插进去视频免费观看| 在线av久久热| 亚洲一区中文字幕在线| 人妻 亚洲 视频| 最近最新中文字幕大全免费视频 | 首页视频小说图片口味搜索 | 国产免费又黄又爽又色| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 亚洲国产毛片av蜜桃av| 美女大奶头黄色视频| 男女国产视频网站| 亚洲av成人不卡在线观看播放网 | 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 操美女的视频在线观看| 少妇 在线观看| 欧美日本中文国产一区发布| 波多野结衣一区麻豆| 99国产精品一区二区三区| 精品少妇黑人巨大在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产1区2区3区精品| 另类亚洲欧美激情| 成人国产av品久久久| 亚洲第一av免费看| 老鸭窝网址在线观看| 50天的宝宝边吃奶边哭怎么回事| 一级黄色大片毛片| 五月开心婷婷网| 久久久久精品国产欧美久久久 | 国产97色在线日韩免费| 亚洲精品国产av成人精品| 另类亚洲欧美激情| 黑人猛操日本美女一级片| videos熟女内射| 高清黄色对白视频在线免费看| 日本猛色少妇xxxxx猛交久久| 精品第一国产精品| 18禁观看日本| 交换朋友夫妻互换小说| 日本av手机在线免费观看| 国产真人三级小视频在线观看| 操出白浆在线播放| 国产精品久久久久久精品电影小说| 久久女婷五月综合色啪小说| 日本av手机在线免费观看| 久久精品aⅴ一区二区三区四区| 777米奇影视久久| 成人国产一区最新在线观看 | 真人做人爱边吃奶动态| 精品人妻熟女毛片av久久网站| 后天国语完整版免费观看| 9热在线视频观看99| av网站免费在线观看视频| 国产日韩欧美视频二区| 91国产中文字幕| 天堂俺去俺来也www色官网| 这个男人来自地球电影免费观看| 十八禁网站网址无遮挡| 久久精品久久久久久噜噜老黄| 久久久精品区二区三区| 亚洲欧美一区二区三区黑人| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 欧美中文综合在线视频| 国产91精品成人一区二区三区 | 国产国语露脸激情在线看| 久久午夜综合久久蜜桃| 男女床上黄色一级片免费看| 亚洲 欧美一区二区三区| 一本一本久久a久久精品综合妖精| av国产精品久久久久影院| 老司机靠b影院| 亚洲国产欧美一区二区综合| 国产无遮挡羞羞视频在线观看| 麻豆av在线久日| 亚洲精品在线美女| 最黄视频免费看| 久久久国产欧美日韩av| 一级毛片 在线播放| 精品少妇一区二区三区视频日本电影| 免费看十八禁软件| 一二三四在线观看免费中文在| 美女大奶头黄色视频| 一二三四在线观看免费中文在| 男女边摸边吃奶| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 黄网站色视频无遮挡免费观看| 丝袜人妻中文字幕| 国产亚洲一区二区精品| 永久免费av网站大全| 在线观看免费高清a一片| 精品人妻熟女毛片av久久网站| 一级毛片女人18水好多 | 啦啦啦在线观看免费高清www| 午夜影院在线不卡| 国产97色在线日韩免费| 精品亚洲成a人片在线观看| 少妇人妻久久综合中文| 男女午夜视频在线观看| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 日本wwww免费看| 日韩制服丝袜自拍偷拍| 国产极品粉嫩免费观看在线| 国产一级毛片在线| 两性夫妻黄色片| 久久久久久免费高清国产稀缺| 如日韩欧美国产精品一区二区三区| 另类精品久久| 国产成人影院久久av| 亚洲精品成人av观看孕妇| 久久天躁狠狠躁夜夜2o2o | 国产精品.久久久| 91九色精品人成在线观看| 国产成人精品久久二区二区91| 欧美日韩av久久| 波多野结衣一区麻豆| 亚洲精品中文字幕在线视频|