• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    苯并咪唑衍生配體鋅-銪(或鋱)異金屬雙核配合物的合成、結(jié)構(gòu)與光學(xué)性質(zhì)

    2013-09-21 09:00:40趙順省石國(guó)香馮維旭呂興強(qiáng)劉向榮
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:張建軍化工學(xué)院物理化學(xué)

    趙順省 張 召 石國(guó)香 馮維旭 呂興強(qiáng),* 劉向榮

    (1西安科技大學(xué)化學(xué)與化工學(xué)院,西安710054;2西北大學(xué),陜西省物理無(wú)機(jī)化學(xué)重點(diǎn)實(shí)驗(yàn)室,西安710069)

    1 Introduction

    Luminescent lanthanide(Ln)complexes,especially those of europium and terbium,with long-lived and characteristic line like emission bands in visible region,have attracted the interest of scientists in recent decades,1not only because of their potential applications in optoelectronics,2,3but also in the detection of various bioactive molecules and in-vitro imaging.4,5Nevertheless,the absorption coefficients of the lanthanide ions are low due to the parity forbidden f-f transitions and limit the emission of these ions.6One way to overcome this shortcoming is to employ a sensitizing chromophore or antennae as ligand in a lanthanide complex.7For the choice of appropriate ligand for efficient energy transfer to the lanthanide ion after excitation,the binding strength of the ligand,the ultraviolet(UV)absorption properties,absence of high frequency vibration modes,8and location of donor excited states of ligand identity9are important criteria to be considered.Many organic(cyclic or acyclic)ligands10-12and d-block metal complexes13-15have been used as antennae or chromophores for the effective sensitization of near-infrared(NIR)luminescence of Ln3+ions.

    Past studies have shown that in the formation of the series of Zn-Ln hetero-metallic complexes16,17from the compartmental Salen-type Schiff-base ligands with the outer O2O2moieties from methoxyl groups,the Zn2+complexes based on the Salentype Schiff-base ligands,as the suitable chromophores,could effectively sensitize the NIR luminescence of the centered Ln3+ions.Moreover,the occupation of pyridine at the axial position of the Zn2+ion is helpful for the strong NIR luminescence,which should be due to the complete avoiding of the luminescent quenching effect arising from OH-,CH-or NH-oscillators around the Ln3+ion.The introduction of heavy atom(Br)on the flank phenyl group is another way to improve the luminescent quantum efficiency of lanthanide ions.As a matter of fact,the utilization of the Salen-type Schiff-base ligands should not be the only way to construct Zn-Ln bimetallic complexes,recently reported Cu-Tb,Cu-Gd bimetallic complexes with single molecular magnet property18and Zn-Nd bimetallic complex19with near-infrared emission illuminate us the further exploration on the synthesis and luminescent properties Zn-Tb and Zn-Eu pairs,since the benzimidazole derivative ligand and its zinc complex emits at blue range,which may match better with the energy level of excited states of Tb3+or Eu3+.Herein,a series of hetero-binuclear ZnLn complexes[ZnLnLn2(Py)(NO3)3]·solvent(Py=Pyridine)based on the benzimidazole derivative ligands HL1(HL1=2-(2-hydroxy-3-methoxyphenyl)benzimidazole)or HL2(HL2=2-(5-bromo-2-hydroxy-3-methoxyphenyl)benzimidazole)were synthesized and characterized.UV-visible absorption spectra,excitation and emission spectra of these complexes were measured and the sensitization and energy transfer for the luminescence of the Ln3+ions in these Zn-Ln complexes were discussed.

    2 Experimental

    2.1 Reagents and general techniques

    All chemicals and solvents purchased commercially were analytical reagents and were used without further purification unless otherwise stated.The benzimidazole derivative ligands HL1and HL2were prepared according to a well-established procedure from the literature.18,19Acetonitrile for photophysical measurement was dried with calcium hydride,distilled and degassed by N2before use.Elemental analyses were performed on a Perkin-Elmer 2400-II elemental analyzer(PerkinElmer Inc.,USA).FTIR spectra were recorded on a P.E.983 FTIR spectrophotometer(PerkinElmer Inc.,USA)in the region 4000-400 cm-1using KBr pellets.UV-visible absorption spectra were recorded with a Cary 300 UV spectrophotometer(Agilent Technologies,USA),and steady-state visible fluorescence,PL excitation spectra on a Photon Technology International(PTI)Alphascan spectrofluorometer(Photon Technology International,Inc.USA)and visible decay spectra on a pico-N2laser system(PTI Time Master).The quantum yield of the visible luminescence for each sample was determined by the relative comparison procedure,using a reference of a known quantum yield(quinine sulfate in 0.05 mol·L-1H2SO4solution,quantum yield Фem=0.546).

    2.2 General procedure for synthesis of[ZnLnL2(NO3)3(Py)]·solvent

    To a stirred solution of the precursor HL(0.1 mmol)in absolute MeOH(5 mL),a solution of Zn(CH3COO)2·2H2O(0.011g,0.05 mmol)in methanol(2 mL)was added and stirred for 30 min,Ln(NO3)3·6H2O(0.05 mmol,Ln=Eu,17.9 mg;Ln=Tb,19.3 mg)in acetonitrile(5 mL)and one drop of pyridine were added,then the final mixture was refluxed for 3 h.The respective clear pale yellow solution was then cooled to room temperature and filtered.Diethyl ether was allowed to diffuse slowly into the solution at room temperature and pale yellow crystalline productsof 1-4wereobtainedinafew weeks,respectively.

    For[ZnEu(L1)2(NO3)3(Py)]·2Py·THF(1):Yield:31.6 mg,54.1%.Anal.calcd.for C47H45EuN10O14Zn(%):C,41.24;H,2.83;N,11.66;Found(%):C,41.39;H,2.69;N,11.76.IR(KBr,cm-1):3285(w),2944(w),2848(w),1642(s),1608(m),1478(s),1445(w),1423(w),1385(m),1283(w),1254(s),1179(w),1162(s),1091(w),1054(m),1035(w),986(m),933(m),863(w),783(w),740(m),707(w),620(w),557(s).(ESI-MS)(CH3CN)m/z:960.9(100%)[M-2Py-THF]+.

    For[ZnTb(L1)2(NO3)3(Py)]·Py·EtOH·H2O(2):Anal.calcd.for C40H40N9O15TbZn(%):C,40.95;H,2.81;N,11.58;Found(%):C,40.48;H,2.79;N,11.49.IR(KBr,cm-1):3301(w),3071(w),2942(w),1624(m),1608(w),1595(w),1535(w),1482(s),1452(m),1426(m),1385(m),1312(w),1285(w),1252(s),1105(w),1099(w),1075(w),1035(w),993(m),930(m),860(m),816(w),783(m),743(s),703(m),638(w),560(m),516(w).ESI-MS(CH3CN)m/z:967.7(100%),[MPy-EtOH-H2O]+.

    For[ZnEu(L2)2(NO3)3(Py)]·Py·H2O(3):Anal.calcd.for C38H32Br2EuN9O14Zn(%):C,35.43;H,2.25;N,10.02;Found(%):C,35.50;H,2.27;N,10.20.IR(KBr,cm-1):3419(w),3067(w),2944(w),1646(s),1625(s),1608(m),1596(w),1539(w),1481(s),1386(m),1317(w),1241(m),1120(s),1099(w),1075(w),1035(w),986(m),940(m),937(m),815(w),800(m),766(w),747(m),704(m),616(w),549(s),515(w).ESI-MS(CH3CN)m/z:1118.8(100%),[M-Py-H2O]+.

    For[ZnTb(L2)2(NO3)3(Py)]·Py·H2O(4):Anal.calcd.for C38H32Br2TbN9O14Zn:C,35.21;H,2.24;N,9.95;Found(%):C,35.13;H,2.32;N,10.03.IR(KBr,cm-1):3430(w),3067(w),2946(w),2846(s),1614(s),1586(m),1552(w),1512(vs),1468(w),1386(s),1303(w),1264(s),1234(w),1196(w),1168(w),1096(w),1074(w),1024(m),965(w),851(m),814(w),784(w),741(w),649(w),620(w),558(w),513(w),441(w).ESI-MS(CH3CN)m/z:1125.8(100%),[M-Py-H2O]+.

    2.3 Crystal structure determinations

    Single crystal of suitable dimensions was mounted onto thin glass fibers.All the intensity data were collected at 293 K on a Bruker SMART CCD diffractometer(Mo Kαradiation,λ=0.071073 nm)in Φ and ω scan modes.The structure was solved by direct methods followed by difference Fourier syntheses,and then refined by full-matrix least-squares techniques against F2using SHELXTL.20Absorption corrections were applied using SADABS.21All other non-hydrogen atoms were refined with anisotropic thermal parameters.Crystallographic data and refinement parameters for the complexes are presented in Table 1.Relevant atomic distances and bond angles are collected in Tables 2,3 and 4.CCDC reference numbers are 915907(for 1),915908(for 2),and 915909(for 3).

    3 Results and discussion

    3.1 Synthesis and characterization

    Scheme 1 Assembly of hetero-binuclear complexes

    Table 1 Crystallographic data and structure refinement for complexes 1,2,and 3

    Table 2 Selected bond lengths and bond angles for complex 1

    As shown in Scheme 1,using of HL1or HL2,which are prepared according to the literature method,19to react with the Zn(CH3COO)2·2H2O,subsequently the Ln(NO3)3·6H2O(Ln=Eu or Tb)in the presence of pyridine,results in the formation of two series of the hetero-binuclear Zn-Ln complexes[ZnEu(L1)2(NO3)3Py]·2Py·THF(1),[ZnTb(L1)2(NO3)3Py]·Py·EtOH·2H2O(2),[ZnEu(L2)2(NO3)3Py]·Py·H2O(3),and[ZnTb(L2)2(NO3)3Py]·Py·H2O(4),respectively.For complexes 1,2,and 3,single crystals suitable for X-ray diffraction studies have been obtained by allowing Et2O to diffuse into the respective reaction mixture at room temperature.Two strong absorptions at 1478-1482 and 1314-1320 cm-1shown in the FTIR spectra of complexes 1-4 are typical for the bidentate NO-3groups,and the bands appearing at 766 or 758 cm-1should be assigned to the υ(C-Br)vibration in complexes 3 or 4,respectively.The ESI-MS spectra of the four Zn-Ln complexes(1-4)exhibit the strongest peak at m/z 960.9(1),967.9(2),1118.8(3)or 1125.8(4),respectively,corresponding to the major species[ZnLn(L1)2(Py)(NO3)3](Ln=Eu,1;Ln=Tb,2)or[ZnLn(L2)2(Py)(NO3)3](Ln=Eu,3;Ln=Tb,4),giving the further proof that in the respective dilute MeCN solution the Zn-Ln(Ln=Eu or Tb)molecule keeps indiscrete.

    3.2 Structural analysis of the complexes 1-3

    X-ray quality crystals of 1 and 2 based on the HL1ligand have been obtained.X-ray diffraction determination indicates that they are isostrucural with the previous reported Cu-Tb,Cu-Gd18and Zn-Nd19bimetallic complexes with different coordinated solvates.Selected bond lengths and bond angles are given in Tables 1 and 2.Complex 1 crystallizes with one independent hetero-binuclear molecules and solvates of THF,H2O,and Py in an asymmetrical unit,as shown in Fig.1.In the crystal,one Zn2+ion coordinates two deprotonated(L1)-ligandsthrough their N,O sites and one Eu3+ion through their O2site,compelling the two ligands to assembly shoulder to shoulder.The Zn2+ion has a five-coordinate environment and adopts a distorted square pyramidal geometry,composed of the inner N2O2core from two deprotonated benzimidazole-based(L1)-ligands as the base plane,and one N atom from the coordinated pyridine at the apical position.The Eu3+ion and the Zn2+ion are bridged by two phenoxo oxygen atoms of two(L1)-ligands with the a Zn??Eu separation of 0.3562(2)nm.The Eu3+ion is in a ten-coordinate environment.Besides four oxygen atoms from two deprotonated benzimidazole-based(HL1)-ligands,they complete their coordination environments with six oxygen atoms from three bidentate NO-3anions.The bond lengths(0.2029(5)nm and 0.2044(5)nm)of Zn-N(the benzimidazole(HL1)ligands,N2 and N3)bonds are smaller than that(0.2090(12)nm)of Zn-N(Py,N8)bond while between those(0.2060(4)-0.2078(3)nm)of Zn-O(phenoxo,O2 and O3)bonds.The bond lengths of Eu-O vary during 0.2295(9)-0.2731(4)nm depending on the origin of the oxygen atoms:the bond lengths from oxygen atoms of NO-3anions are longer than those from phenoxo oxygen atoms,while slightly shorter than those from methoxy groups.Besides the intermolecular N4-H4A…N9(-x+1,-y+1,-z+1)hydrogen bonding with the N…N distance of 2.868(2)between one of the solvate Py and an adjacent Zn-Eu molecule(see Table 5 and Fig.S1,in Supporting Information),the other solvate molecules(Py or THF)are not bound to the framework and they exhibit no observable interactions with the host structure.Other heterobimetallic Cu-Ln(Ln=Eu,Tb,Er,Tb,Nd)complexes with similar structure but with different ligand and nonidentical coordination environment of Cu2+have been reported previously.22

    Table 3 Selected bond lengths and bond angles for complex 2

    Table 4 Selected bond lengths and bond angles for complex 3

    Fig.1 Perspective drawing of complex 1

    The change of lanthanide ion leads to an isostructural hetero-binuclear Zn-Tb structure from the replacement of Eu3+ion by Tb3+ion.X-ray quality crystals of 2 based on the HL1ligand were obtained and the data of selected crystal properties are given in Tables 1 and 3.Complex 2 is isostructural with 1 containing nonidentical solvates,as shown in Fig.2 and Fig.S2(in Supporting Information).The bond lengths of Zn-N,Zn-O,Tb-O and separation distance of Zn-Tb are similar with those of the complex 1.Intermolecular hydrogen bond of N1-H1A…N9(-x,-y+1,-z)(see Table 5)between the solvate Py and host molecule could also be found in the crystals while the other solvates(EtOH or H2O)being kept unbound.

    The introcduction of heavy atoms(Br)still keeps the heterobinuclear Zn-Ln structures from the replacement of the benzimidazole-based ligand HL2.X-ray quality crystals of 3 as the representative of the two Zn-Ln complexes based on the HL2ligand have been obtained,and the tables of selected crystal properties are also given in Tables 1 and 4.Complex 3 crystallizes with one independent hetero-binuclear molecule,one solvate of Py and one solvate of H2O in the asymmetrical unit,as shown in Fig.3.The slightly shorter Zn-N(benzimidazole)bond lengths(0.196(2)-0.214(2))and the slightly longer Zn…Eu separation(0.3641(3))in complex 3 than those of complex 1 and 2,respectively,should be attributed to the electron with-drawing effect of Br atoms introduced on the ligand HL2.Unlike that of the complexes 1 and 2,the intramolecular N2-H2A…N9 hydrogen bond with N…N distance of 0.2720(3)between the solvate Py and the Zn-Eu molecule is also observed(see Table 5).It is worth noting that in the formation of two hetero-binuclear Zn-Ln complexes 1,2,and 3,comparable of that of near-infrared emitting[Zn(HL1)2Nd(NO3)3],19the occupation of Py at the axial position of Zn2+ions is considered to completely avoid the further coordination of solvents around the Ln3+ions of the four Zn-Ln complexes.

    Fig.2 Perspective drawing of complex 2

    Fig.3 Perspective drawing of complex 3

    Table 5 Hydrogen bond lengths and angles for complexes 1-3

    3.3 Photophysical properties of the complexes

    The photophysical properties of the complexes 1-4 have been examined in dilute MeCN solution at room temperature and summarized in Figs.4-6 and Table 6,respectively.As shown in Fig.4,in the UV-visible absorption spectra of the complexes,the similar ligand-centered absorption spectra(229-231,299-301,and 332-334 nm)of complexes 1-4 in the UV-Vis region are observed,which should be assigned to the π-π*transition of the benzimidazole ligands.

    Fig.4 UV-visible absorption spectra of complexes 1-4 in 2×10-5mol·L-1CH3CN solution

    As shown in Fig.5,the characteristic emissions of the Tb3+ion(5D4→7Fn,n=6,5,4,3)in the green light region have been detected up on photo excitation of the antenna at the range of 275-450 nm in complexes 2 and 4.The emissions at 489,542,584,and 622 nm could be assigned to5D4→7F6,5D4→7F5,5D4→7F4,and5D4→7F3transitions of the Tb3+ion,respectively.The precursor[Zn(L)2(Py)]or Tb(NO3)3does not exhibit the luminescence under the same condition.For complex 2,when monitoring at the two different emission peaks(λem=468 or 542 nm),two similar excitation spectra monitored,which clearly demonstrated that both the residue of the antennae emissions and the characteristic emission of the Tb3+ion are originated from the same π→π transitions of the benzimidazole-based ligand HL1and suggests that the energy transfer from the antenna to the Tb3+ions takes place but not completely.It was worth noting that for complex 4,although there was almost no position shift of the emissions of Tb3+ions in solution at room temperature,each of the emission intensities of complex 4 was distinctively higher than the respective one of complex 2.Moreover,the emission spectrum only shows the characteristic emission of Tb3+,there is no ligand based emission residue observed.This could be attributed to the heavy atom effect of Br on the HL2,which probably promotes of1LC→3LC intersystem crossing and thus increases the energy transfer efficiency between the antennae and Tb3+ion for that the energy transfer takes place mostly from triplet state of the antennae to the lanthanide ions.23

    For the Eu3+contained complexes 1 and 3,only ligand centered emission band(ca 468 nm)with low quantum yield(Φem<10-3,much lower than that of the precursor ZnL2Py)in dilute absolute MeCN solution at room temperature(see Fig.6 and Table 6),but no characteristic emission band of Eu3+is observed.From the viewpoint of the energy level match,the energy gap between the energy-donating3LC level(21639 cm-1for theor 21592 cm-1for theof the ligand and the excited5D1state(19020 cm-1)24of Eu3+is suitable for energy transfer,and the characteristic emission of Eu3+would have been sensitized.One explanation is that there may be a deactivation pathway that involves a charge transfer from the Zn(L)2excited state to Eu3+ion.25

    We were naturally interested in the efficiency of overall sensitization process which was established by determining luminescent quantum yield of the hetero-bimetallic complexes.The luminescent quantum yields of the complexes were measured by using the quinine sulfate(in 0.05 mol·L-1H2SO4solution,Φem=0.546)as the reference,adjusting the absorbance value to same at 350 nm and comparing the emission area of the complexes and reference.As listed in Table 6,the sensitized efficiency of the characteristic emission of Tb3+is 0.11 for 2 and 0.17 for 4.The luminescent decay curves obtained from timeresolved luminescent experiments can be fitted mono-exponentially with time constant of microseconds(at 542 nm,0.73 ms for 2 and 0.81 ms for 4),and the intrinsic quantum yield ΦLn(ca 0.18 for 2 and 0.20 for 4)of the Tb3+emission may be estimated by ΦLn=τobs/τ0,where τobsis the observed emission lifetime and τ0is the‘natural lifetime’,viz 4 ms for the Tb3+ion,26which indicates the presence of single emitting center for complex in dilute MeCN solutions.27

    Fig.5 Excitation and emission spectra of complexes 2 and 4 in 2×10-5mol·L-1CH3CN solution

    Fig.6 Excitation and emission spectra of complexes 1 and 3 in 2×10-5mol·L-1CH3CN solution

    Table 6 Photophysical properties of the complexes 1-4 in 2×10-5mol·L-1CH3CN solution at room temperature

    4 Conclusions

    In conclusion,with the benzimidazole derived ligand HL1or HL2as the precursor,series of hetero-binuclear Zn-Ln complexes[ZnEu(L1)2(NO3)3Py]·2Py·THF(1),[ZnTb(L1)2(NO3)3Py]·Py·EtOH·2H2O(2),[ZnEu(L2)2(NO3)3Py]·Py·H2O(3),and[ZnTb(L2)2(NO3)3Py]·Py·H2O(4)with two energy donors around the Ln3+ion are obtained,respectively.The results of their photophysical studies show that the strong and characteristic luminescence of Tb3+ions with emissive lifetimes in the microsecond range has been sensitized from the excited state of the benzimidazole-based ligand due to the effective intramolecular energy transfer,and the involvement of heavy atoms(Br)on the ligand promotes the energy transfer and luminescent efficiency.The Eu3+complexes do not show their characteristic emission due to other deactivation pathway.

    Supporting Information: Crystal structures of 1,2,and 3 showing the intermolecular or intramolecular hydrogen bonds have been included.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    Supplementary Material: The crystallographic data have been deposited at the Cambridge Crystallographic Data Center,CCDC 915907(for 1),915908(for 2),and 915909(for 3).The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge CB21EZ,UK.

    (1) Dos Santos,C.M.G.;Harte,A.J.;Quinn,S.J.;Gunnlaugsson,T.Coord.Chem.Rev.2008,252,2512.doi:10.1016/j.ccr.2008.07.018

    (2) Bünzli,J.C.G.;Eliseeva,S.V.J.Rare Earths 2010,28,824.doi:10.1016/S1002-0721(09)60208-8

    (3) Kido,J.;Okamoto,Y.Chem.Rev.2002,102,2357.doi:10.1021/cr010448y

    (4)Law,G.L.;Wong,K.L.;Man,C.W.Y.;Tsao,S.W.;Wong,W.T.J.Biophotonics 2009,2,718.doi:10.1002/jbio.v2:12

    (5) Bünzli,J.C.G.Chem.Rev.2010,110,2729.doi:10.1021/cr900362e

    (6) Comby,S.;Bünzli,J.C.G.Lanthanide Near-Infrared Luminescence in Molecular Probe and Device.In Handbook on the Physics and Chemistry of Rare Earths;Gschneidner,K.A.,Bünzli,J.C.G.,Pecharsky,V.K.Eds.;Elsevier Science B.V.:Amsterdam,2007;Vol.37,pp 221-224.

    (7) Sabbatini,N.;Guardigli,M.;Lehn,J.M.Coord.Chem.Rev.1993,123,201.doi:10.1016/0010-8545(93)85056-A

    (8) Freund,C.;Porzio,W.;Giovanella,U.;Vignali,F(xiàn).;Pasini,M.;Destri,S.;Mech,A.;Di Pietro,S.;Di Bari,L.;Mineo,P.Inorg.Chem.2011,50,5417.doi:10.1021/ic1021164

    (9) Bünzli,J.C.G.;Comby,S.;Chauvin,A.S.;Vandevyver,C.D.B.J.Rare Earths 2007,25,257.doi:10.1016/S1002-0721(07)60420-7

    (10) Bünzli,J.C.G.;Piguet,C.Chem.Soc.Rev.2005,34,1048.doi:10.1039/b406082m

    (11) Duan,L.Q.;Qiao,C.F.;Wei,Q.;Xia,Z.Q.;Chen,S.P.;Zhang,G.C.;Zhou,C.S.;Gao,S.L.Acta Phys.-Chim.Sin.2012,28,2783.[段林強(qiáng),喬成芳,魏 青,夏正強(qiáng),陳三平,張國(guó)春,周春生,高勝利.物理化學(xué)學(xué)報(bào),2012,28,2783.]doi:10.3866/PKU.WHXB201210122

    (12) Zhang,J.;Wang,J.F.;Zhang,J.J.Acta Phys.-Chim.Sin.2012,28,290.[張 潔,王娟芬,張建軍.物理化學(xué)學(xué)報(bào),2012,28,290.]doi:10.3866/PKU.WHXB201112121

    (13) Ward,M.D.Coord.Chem.Rev.2007,251,1663.doi:10.1016/j.ccr.2006.10.005

    (14) Chen,F(xiàn).F.;Chen,Z.Q.;Bian,Z.Q.;Huang,C.H.Coord.Chem.Rev.2010,254,991.doi:10.1016/j.ccr.2009.12.028

    (15)Ward,M.D.Coord.Chem.Rev.2010,254,2634.doi:10.1016/j.ccr.2009.12.001

    (16)Lo,W.K.;Wong,W.K.;Wong,W.Y.;Guo,J.P.;Yeung,K.T.;Cheng,Y.K.;Yang,X.P.;Jones,R.A.Inorg.Chem.2006,45,9315.doi:10.1021/ic0610177

    (17)Zhao,S.S.;Lü,X.Q.;Hou,A.X.;Wong,W.Y.;Wong,W.K.;Yang,X.P.;Jones,R.A.Dalton Trans.2009,9595.doi:10.1039/b908682j

    (18) Fellah,F(xiàn).Z.C.;Costes,J.P.;Duhayon,C.;Daran,J.C.;Tuchagues,J.P.Polyhedron 2010,29,2111.doi:10.1016/j.poly.2010.04.010

    (19) Shi,G.X.;Feng,W.X.;Zou,D.;Lü,X.Q.;Zhang,Z.;Zhang,Y.;Fan,D.D.;Zhao,S.S.;Wong,W.K.;Jones,R.A.Inorg.Chem.Commun.2012,22,126.doi:10.1016/j.inoche.2012.05.041

    (20) Sheldrick,G.M.SHELXS-97:Program for Crystal Structure Refinement;G?tingen:Germany,1997.

    (21) Sheldrick,G.M.SADABS;University of G?tingen:G?tingen,1996.

    (22)Yang,X.P.;Jones,R.A.;Lai,R.J.;Waheed,A.;Oye,M.M.;Holmes,A.L.Polyhedron 2006,25,881.doi:10.1016/j.poly.2005.09.029

    (23) Petoud,S.;Cohen,S.M.;Bünzli,J.C.G.;Raymond,K.N.J.Am.Chem.Soc.2003,125,13324.doi:10.1021/ja0379363

    (24) Sayre,E.V.;Freed,S.J.Chem.Phys.1956,24,1213.doi:10.1063/1.1742743

    (25)Zhu,X.J.;Wong,W.K.;Wong,W.Y.;Yang,X.P.Eur.J.Inorg.Chem.2011,4651.

    (26) Klink,S.I.;Grave,L.;Reinhoudt,D.N.;van Veggel,F(xiàn).C.J.M.;Werts,M.H.V.;Geurts,F(xiàn).A.J.;Hofstraat,J.W.J.Phys.Chem.A 2000,104,5457.doi:10.1021/jp994286+

    (27) Bünzli,J.C.G.Lanthanide Probe in Life.In Chemical and Earth Sciences,Theory and Practice;Bünzli,J.C.G.,Choppin,G.R.Eds.;Elsievier Science Pub1.B.V.:Amsterdam,1989;ch7,pp 219-293.

    猜你喜歡
    張建軍化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity*
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    頸椎病患者使用X線平片和CT影像診斷的臨床準(zhǔn)確率比照觀察
    A NOTE ON MALMQUIST-YOSIDA TYPE THEOREM OF HIGHER ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS?
    Chemical Concepts from Density Functional Theory
    巧用反例在概率論教學(xué)中的作用
    最新在线观看一区二区三区| 一级片'在线观看视频| 亚洲精品在线美女| 欧美日韩亚洲国产一区二区在线观看 | 在线观看舔阴道视频| 久久天躁狠狠躁夜夜2o2o| 高清视频免费观看一区二区| 亚洲熟女毛片儿| 午夜免费鲁丝| bbb黄色大片| 亚洲av第一区精品v没综合| 国产成人欧美| 亚洲 欧美一区二区三区| 久久久国产成人免费| 岛国毛片在线播放| 91成人精品电影| 怎么达到女性高潮| 婷婷丁香在线五月| 久久久久久久精品吃奶| 亚洲熟妇中文字幕五十中出 | 在线观看免费午夜福利视频| 久久中文字幕人妻熟女| 天堂√8在线中文| 国产淫语在线视频| 中文字幕制服av| 亚洲欧美精品综合一区二区三区| 亚洲精品av麻豆狂野| 精品久久蜜臀av无| 日韩大码丰满熟妇| 国产又色又爽无遮挡免费看| 最新美女视频免费是黄的| 无人区码免费观看不卡| 69av精品久久久久久| 夜夜夜夜夜久久久久| 19禁男女啪啪无遮挡网站| 国产深夜福利视频在线观看| 国产1区2区3区精品| 51午夜福利影视在线观看| 少妇被粗大的猛进出69影院| 欧美人与性动交α欧美软件| 国产高清videossex| 日本wwww免费看| 国产精品偷伦视频观看了| 俄罗斯特黄特色一大片| 亚洲国产看品久久| 国产精品98久久久久久宅男小说| 日日爽夜夜爽网站| www.熟女人妻精品国产| 国产亚洲欧美98| 国产黄色免费在线视频| 亚洲精品国产精品久久久不卡| 久久精品熟女亚洲av麻豆精品| 伊人久久大香线蕉亚洲五| 精品国产超薄肉色丝袜足j| 中文字幕精品免费在线观看视频| 久久久久精品国产欧美久久久| 成人手机av| 天天操日日干夜夜撸| 一个人免费在线观看的高清视频| 午夜福利乱码中文字幕| 黄色成人免费大全| 亚洲自偷自拍图片 自拍| 法律面前人人平等表现在哪些方面| 男人的好看免费观看在线视频 | 精品亚洲成国产av| 亚洲成人免费电影在线观看| 成年版毛片免费区| 精品亚洲成国产av| 欧美成狂野欧美在线观看| 一二三四社区在线视频社区8| 国产在线观看jvid| 夜夜躁狠狠躁天天躁| 18在线观看网站| 露出奶头的视频| 午夜福利,免费看| 黄色 视频免费看| 欧美乱色亚洲激情| 制服人妻中文乱码| 女人精品久久久久毛片| 色精品久久人妻99蜜桃| 国产av精品麻豆| 黄色女人牲交| 好男人电影高清在线观看| 丝袜美足系列| 午夜成年电影在线免费观看| 久久午夜亚洲精品久久| 日韩视频一区二区在线观看| 精品国产美女av久久久久小说| 亚洲伊人色综图| 日韩中文字幕欧美一区二区| 一本综合久久免费| √禁漫天堂资源中文www| 久久香蕉激情| 极品教师在线免费播放| 国产精品免费一区二区三区在线 | 久久久久久人人人人人| 99国产精品一区二区三区| xxxhd国产人妻xxx| 久久久久视频综合| 成人手机av| 老鸭窝网址在线观看| 久久香蕉国产精品| 午夜福利欧美成人| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕在线视频| 国产免费男女视频| 午夜免费鲁丝| 黑人猛操日本美女一级片| 精品欧美一区二区三区在线| 亚洲人成电影观看| 国产精品久久久久久人妻精品电影| 日韩欧美免费精品| 国产精品av久久久久免费| 夫妻午夜视频| 亚洲精品中文字幕一二三四区| 美女高潮到喷水免费观看| 久久国产精品男人的天堂亚洲| 亚洲精品在线观看二区| ponron亚洲| 美女视频免费永久观看网站| av不卡在线播放| 咕卡用的链子| 久久午夜综合久久蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 色播在线永久视频| 黄色丝袜av网址大全| 婷婷丁香在线五月| 视频区图区小说| 国产黄色免费在线视频| 日韩欧美免费精品| 日本精品一区二区三区蜜桃| 国产在线观看jvid| 老汉色∧v一级毛片| 国产视频一区二区在线看| 亚洲精品一卡2卡三卡4卡5卡| 久久精品国产99精品国产亚洲性色 | 日韩欧美三级三区| 99国产极品粉嫩在线观看| 久久久久久久国产电影| 一区二区三区激情视频| 欧美精品亚洲一区二区| 一级毛片高清免费大全| 中文字幕最新亚洲高清| 久久久国产一区二区| 精品国产一区二区久久| av福利片在线| 丝袜人妻中文字幕| 在线观看午夜福利视频| 亚洲人成电影免费在线| 三级毛片av免费| 欧美日韩视频精品一区| 欧美日韩成人在线一区二区| 久久久久久久精品吃奶| 日本a在线网址| 极品教师在线免费播放| 亚洲精品美女久久av网站| 亚洲,欧美精品.| 一a级毛片在线观看| 国产男靠女视频免费网站| 天天躁夜夜躁狠狠躁躁| 又紧又爽又黄一区二区| 在线观看66精品国产| 97人妻天天添夜夜摸| 777久久人妻少妇嫩草av网站| 人人澡人人妻人| 久久精品国产99精品国产亚洲性色 | 国产色视频综合| 亚洲中文av在线| 精品视频人人做人人爽| 精品国产超薄肉色丝袜足j| 久热爱精品视频在线9| 欧美激情久久久久久爽电影 | 黄片大片在线免费观看| 少妇被粗大的猛进出69影院| 精品国产一区二区三区四区第35| 国产高清视频在线播放一区| 在线十欧美十亚洲十日本专区| 夜夜躁狠狠躁天天躁| 亚洲情色 制服丝袜| 国产精品永久免费网站| 精品电影一区二区在线| 老熟女久久久| av视频免费观看在线观看| 男女床上黄色一级片免费看| 久久人妻福利社区极品人妻图片| 1024视频免费在线观看| 精品一区二区三区四区五区乱码| 校园春色视频在线观看| 啦啦啦视频在线资源免费观看| 高清欧美精品videossex| 曰老女人黄片| 丝袜在线中文字幕| 免费少妇av软件| 嫩草影视91久久| 国产无遮挡羞羞视频在线观看| 飞空精品影院首页| 又紧又爽又黄一区二区| 国产精品久久久久成人av| 国产精品久久久久成人av| 亚洲综合色网址| 69av精品久久久久久| 亚洲九九香蕉| 亚洲性夜色夜夜综合| 91av网站免费观看| 在线看a的网站| 丁香欧美五月| 三上悠亚av全集在线观看| 亚洲中文字幕日韩| 久久久久久人人人人人| 999久久久国产精品视频| 曰老女人黄片| 久久香蕉精品热| 成人特级黄色片久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 精品一品国产午夜福利视频| 精品一区二区三区av网在线观看| 婷婷丁香在线五月| 国产亚洲欧美98| 中文字幕色久视频| 视频在线观看一区二区三区| 一级片免费观看大全| 成在线人永久免费视频| 国产一区二区激情短视频| 久久精品国产清高在天天线| 午夜福利欧美成人| 巨乳人妻的诱惑在线观看| 在线观看66精品国产| 9色porny在线观看| 午夜成年电影在线免费观看| 美女扒开内裤让男人捅视频| 久久久精品国产亚洲av高清涩受| 18在线观看网站| 18禁美女被吸乳视频| 日韩视频一区二区在线观看| 99精国产麻豆久久婷婷| 欧美日韩亚洲高清精品| 亚洲 国产 在线| 久久婷婷成人综合色麻豆| 一进一出抽搐gif免费好疼 | 国产成人影院久久av| 国产精品.久久久| 黑丝袜美女国产一区| 岛国毛片在线播放| 99精国产麻豆久久婷婷| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品美女久久久久99蜜臀| 国产伦人伦偷精品视频| bbb黄色大片| 可以免费在线观看a视频的电影网站| 深夜精品福利| 成人亚洲精品一区在线观看| 国产精品九九99| 男女之事视频高清在线观看| 丝袜美腿诱惑在线| 欧美在线一区亚洲| 久久99一区二区三区| 欧美日韩成人在线一区二区| 99久久精品国产亚洲精品| 久99久视频精品免费| 两人在一起打扑克的视频| 99riav亚洲国产免费| 国产黄色免费在线视频| av福利片在线| 国产成人欧美在线观看 | 久久久国产成人精品二区 | 男女床上黄色一级片免费看| 精品人妻1区二区| 国产野战对白在线观看| 伊人久久大香线蕉亚洲五| 天堂√8在线中文| 欧美日韩一级在线毛片| xxx96com| 变态另类成人亚洲欧美熟女 | 操出白浆在线播放| 国产成人精品无人区| 日韩有码中文字幕| 91大片在线观看| 老司机在亚洲福利影院| 亚洲精品成人av观看孕妇| 精品少妇一区二区三区视频日本电影| 999精品在线视频| 国产在线一区二区三区精| 日韩精品免费视频一区二区三区| 成年版毛片免费区| 动漫黄色视频在线观看| 飞空精品影院首页| 亚洲专区中文字幕在线| 极品少妇高潮喷水抽搐| 国产不卡av网站在线观看| 亚洲熟妇熟女久久| 亚洲片人在线观看| 天堂动漫精品| 国产av精品麻豆| 超色免费av| 午夜精品久久久久久毛片777| 日本撒尿小便嘘嘘汇集6| 欧美丝袜亚洲另类 | 在线av久久热| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| 色老头精品视频在线观看| 成人av一区二区三区在线看| 国产成人av激情在线播放| 亚洲男人天堂网一区| 久久99一区二区三区| 一级,二级,三级黄色视频| e午夜精品久久久久久久| 我的亚洲天堂| 9热在线视频观看99| 99国产极品粉嫩在线观看| 国产无遮挡羞羞视频在线观看| 老熟女久久久| 1024香蕉在线观看| 国产男女超爽视频在线观看| 亚洲av欧美aⅴ国产| 国产精品美女特级片免费视频播放器 | 日本a在线网址| 高清黄色对白视频在线免费看| 精品熟女少妇八av免费久了| 午夜久久久在线观看| 亚洲午夜理论影院| 日韩中文字幕欧美一区二区| 亚洲少妇的诱惑av| 久久中文看片网| 69av精品久久久久久| 19禁男女啪啪无遮挡网站| 亚洲人成77777在线视频| 国产黄色免费在线视频| 国产色视频综合| 99香蕉大伊视频| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美激情综合另类| 黄色怎么调成土黄色| 国产亚洲精品久久久久久毛片 | 亚洲av美国av| 午夜精品在线福利| 欧美久久黑人一区二区| 亚洲精品国产一区二区精华液| 99久久99久久久精品蜜桃| 一级黄色大片毛片| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 亚洲黑人精品在线| 久久精品国产99精品国产亚洲性色 | 热99国产精品久久久久久7| 精品福利观看| 久久久久久久午夜电影 | 午夜福利在线免费观看网站| 男女免费视频国产| 国产精品成人在线| 高清毛片免费观看视频网站 | 99久久精品国产亚洲精品| 99久久精品国产亚洲精品| 国产在线精品亚洲第一网站| 色婷婷久久久亚洲欧美| 久久久久久久国产电影| 久久精品aⅴ一区二区三区四区| 久久中文字幕人妻熟女| 三级毛片av免费| 窝窝影院91人妻| 热re99久久精品国产66热6| 国产一区有黄有色的免费视频| 俄罗斯特黄特色一大片| 精品国产一区二区久久| 中文字幕最新亚洲高清| 亚洲色图av天堂| 一区福利在线观看| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 热re99久久国产66热| 热re99久久精品国产66热6| 一区二区日韩欧美中文字幕| 欧美激情极品国产一区二区三区| 91国产中文字幕| xxx96com| 老司机靠b影院| 精品乱码久久久久久99久播| 中国美女看黄片| 99久久综合精品五月天人人| 色播在线永久视频| 激情在线观看视频在线高清 | 亚洲专区国产一区二区| 国产深夜福利视频在线观看| 一本一本久久a久久精品综合妖精| 亚洲人成电影观看| 搡老乐熟女国产| 免费看a级黄色片| 欧美激情极品国产一区二区三区| 久久九九热精品免费| 18禁美女被吸乳视频| 18禁裸乳无遮挡动漫免费视频| 色播在线永久视频| 在线十欧美十亚洲十日本专区| 啦啦啦免费观看视频1| 亚洲av电影在线进入| 精品一区二区三区四区五区乱码| 免费观看精品视频网站| 国产一区二区三区视频了| 一本一本久久a久久精品综合妖精| 在线观看免费日韩欧美大片| 搡老熟女国产l中国老女人| 欧美激情 高清一区二区三区| 免费在线观看亚洲国产| 国产不卡av网站在线观看| 国产成人免费无遮挡视频| 亚洲精品久久成人aⅴ小说| 久久久精品国产亚洲av高清涩受| 九色亚洲精品在线播放| av有码第一页| svipshipincom国产片| 国产在线一区二区三区精| 两性夫妻黄色片| 一本综合久久免费| av在线播放免费不卡| 99国产精品一区二区蜜桃av | 夫妻午夜视频| 黄色 视频免费看| 一个人免费在线观看的高清视频| 久久草成人影院| 国产无遮挡羞羞视频在线观看| 91av网站免费观看| 欧美最黄视频在线播放免费 | 日本vs欧美在线观看视频| 免费在线观看视频国产中文字幕亚洲| 国产不卡一卡二| 桃红色精品国产亚洲av| 王馨瑶露胸无遮挡在线观看| 国产一区在线观看成人免费| 日韩大码丰满熟妇| 黑人操中国人逼视频| 久久精品国产清高在天天线| 制服诱惑二区| 免费在线观看视频国产中文字幕亚洲| 一本一本久久a久久精品综合妖精| 老司机午夜十八禁免费视频| 麻豆成人av在线观看| 国产欧美日韩精品亚洲av| e午夜精品久久久久久久| 9热在线视频观看99| 日本黄色日本黄色录像| 成人国语在线视频| 在线观看66精品国产| 欧美日韩亚洲综合一区二区三区_| 国产精品 欧美亚洲| 三上悠亚av全集在线观看| 亚洲av熟女| 五月开心婷婷网| 村上凉子中文字幕在线| 又大又爽又粗| av电影中文网址| avwww免费| 热99re8久久精品国产| 高清欧美精品videossex| 亚洲男人天堂网一区| 久久精品国产99精品国产亚洲性色 | av线在线观看网站| 一本一本久久a久久精品综合妖精| 老司机福利观看| 精品亚洲成a人片在线观看| 嫁个100分男人电影在线观看| av电影中文网址| 天堂动漫精品| 99久久国产精品久久久| 国产精品一区二区在线不卡| 好看av亚洲va欧美ⅴa在| 成人精品一区二区免费| 亚洲自偷自拍图片 自拍| 一级a爱片免费观看的视频| 欧美亚洲 丝袜 人妻 在线| 日本vs欧美在线观看视频| 十分钟在线观看高清视频www| 亚洲欧美色中文字幕在线| 午夜福利乱码中文字幕| 久久九九热精品免费| 国产精品电影一区二区三区 | 免费女性裸体啪啪无遮挡网站| 9色porny在线观看| 国产精品久久久人人做人人爽| 性少妇av在线| 久久人人97超碰香蕉20202| 欧美色视频一区免费| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 9热在线视频观看99| 高清黄色对白视频在线免费看| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 一级片'在线观看视频| 身体一侧抽搐| 十八禁人妻一区二区| 国产乱人伦免费视频| 18禁美女被吸乳视频| 欧美乱色亚洲激情| 99精国产麻豆久久婷婷| 看片在线看免费视频| 十八禁网站免费在线| 久久人人爽av亚洲精品天堂| 国产成人系列免费观看| av福利片在线| 国产精品一区二区精品视频观看| 中文字幕人妻丝袜制服| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| 高清在线国产一区| 精品视频人人做人人爽| 国产麻豆69| 中文字幕制服av| 欧美乱妇无乱码| 亚洲专区国产一区二区| 免费人成视频x8x8入口观看| 一本综合久久免费| 久久香蕉国产精品| 中文字幕av电影在线播放| 男女床上黄色一级片免费看| 国产高清videossex| 免费少妇av软件| 午夜老司机福利片| 国产在线一区二区三区精| 国产精品美女特级片免费视频播放器 | 曰老女人黄片| 欧美激情高清一区二区三区| 日日夜夜操网爽| 欧美午夜高清在线| 色综合欧美亚洲国产小说| 久久狼人影院| 亚洲第一欧美日韩一区二区三区| 美女午夜性视频免费| 久久精品国产99精品国产亚洲性色 | 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx| 乱人伦中国视频| 黄色片一级片一级黄色片| 亚洲专区中文字幕在线| av福利片在线| 麻豆成人av在线观看| av网站免费在线观看视频| 亚洲色图av天堂| 一级片免费观看大全| a级毛片黄视频| 天堂中文最新版在线下载| 欧美精品啪啪一区二区三区| 免费观看人在逋| 色婷婷久久久亚洲欧美| 国产免费现黄频在线看| 亚洲 欧美一区二区三区| 国产午夜精品久久久久久| 欧美精品av麻豆av| 91麻豆精品激情在线观看国产 | 婷婷丁香在线五月| 国产淫语在线视频| www.熟女人妻精品国产| 精品国产一区二区三区四区第35| 欧美中文综合在线视频| 丰满的人妻完整版| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| www.熟女人妻精品国产| 午夜免费观看网址| 免费观看精品视频网站| 五月开心婷婷网| 亚洲av片天天在线观看| 天天添夜夜摸| 欧美 亚洲 国产 日韩一| 亚洲aⅴ乱码一区二区在线播放 | 最新在线观看一区二区三区| 丁香欧美五月| 男女高潮啪啪啪动态图| 亚洲精品一二三| 成人影院久久| 男女床上黄色一级片免费看| 校园春色视频在线观看| 精品亚洲成a人片在线观看| 日本一区二区免费在线视频| 老熟女久久久| 国产精品亚洲av一区麻豆| 免费黄频网站在线观看国产| 91麻豆av在线| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3 | 国产99白浆流出| 青草久久国产| 老司机靠b影院| 国产精品美女特级片免费视频播放器 | 天堂中文最新版在线下载| 两性午夜刺激爽爽歪歪视频在线观看 | 成人永久免费在线观看视频| 男女之事视频高清在线观看| 热re99久久国产66热| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 交换朋友夫妻互换小说| 黄色成人免费大全| 久久午夜亚洲精品久久| 韩国精品一区二区三区| 欧美黄色淫秽网站| 午夜福利一区二区在线看| 国产aⅴ精品一区二区三区波| 国产欧美亚洲国产| 成人精品一区二区免费| 性色av乱码一区二区三区2| 激情在线观看视频在线高清 | 久热爱精品视频在线9| 欧美乱妇无乱码| 嫩草影视91久久| 精品欧美一区二区三区在线| 久久亚洲精品不卡| 人人澡人人妻人| 视频区欧美日本亚洲| 久久精品亚洲熟妇少妇任你| 丝袜人妻中文字幕| 妹子高潮喷水视频| 色婷婷av一区二区三区视频| 在线观看免费视频网站a站|