• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微納米多孔不銹鋼表面高效吸附活性生物大分子

    2013-09-17 06:58:44余占江陳永強(qiáng)楊曉達(dá)
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:藥學(xué)院物理化學(xué)學(xué)報(bào)

    余占江 陳永強(qiáng) 楊曉達(dá),*

    (1北京大學(xué)藥學(xué)院化學(xué)生物學(xué)系,天然和仿生藥物國家重點(diǎn)實(shí)驗(yàn)室,北京100191;2樂普(北京)醫(yī)療器械股份有限公司,北京100022)

    1 Introduction

    In the efforts for discovery of novel biomaterials in medical devices and implants,improving the biocompatibility and mechanical performance has always been the two primary issues.The next generation of biomaterials has been proposed to be smart or biomimetic materials.A key challenge in designing smart biomaterials is to modify material surface with functional biological or synthetic molecules/nanoparticals to mimic the extracellular matrix(ECM)of natural tissue.1

    Among biopolymers,alloys,and ceramics,stainless steel(AISI 316L)is one of the most prominent available commercial materials for medical devices,2-4e.g.,cardiovascular stents,bone,and dental implants.The 316 L stainless steel exhibits long-standing performance and good biocompatibility,2which make stainless steel implants safe and efficient treatment option over the much more expensive anecdotal superior titanium alloys.5

    One major limitation for stainless steel is the lack of chemically active groups on the metal surface for covalently immobilization of functional molecules.A great deal of efforts have been made to engineer the metal surface with a variety of organic and inorganic coatings,for instance,heparin hydrogel,6carbohydrates,7polydopamine,8,9poly(ethylene glycol)and various hydrophilic polymers,10-12peptides and peptide nanofiber,13-16polyelectrolyte micelles,17alkanethiol layers,18doped diamond-like carbon,19sputtered TiN/TiO2,20,21hydroxylapatite,22hydrothermal calcium nanocomposites,23and S-phase layers,24etc.On these bases,antibodies,vascular endothelial growth factor(VEGF),VE-cadherin,thrombin inhibitor,and liposomes were covalently attached to the surface of metal implants.These works improved greatly the cytocompatibility of the materials,for instance,the pro-healing approach immobilized antibodies capturing endothelial progenitor cells(EPC)from circulation on the blood contact surface of the stents;25the stents were shown to significantly reduce the thrombosis by facilitating stent endothelialization.26,27However,the use of synthetic polymer matrixes was suggested negative for in-stent restenosis by some studies.25,28

    Surface modification at the nanoscale was suggested to promote protein adsorption and cell adhesion.12,29-31Grafting the surface roughness and topography by electrochemical erosion29or ultrafast laser irradiation32has been investigated to improve cytocompatibility.A functionalized TiO2nanonodule-in-micropit smart titanium surfaces was shown to enhance osteoblast proliferation and differentiation while the micropitted surface actually inhibited osteoblast growth.20Comparing with mirror-polished stainless steel surfaces,nanostructured surfaces showed better adhesion and differentiation for osteoblastic cells.29It was found that cells responsed to surface energy and three dimensional(3D)patterns.31The 40-75 nm nanopores on 316L stainless steel enhanced fibroblast cell proliferation and signal transduction while~200 nm nanopore surfaces greatly attenuated.30However,the effects of micro/nano surface on adsorption of functional biological molecules for smart biomaterial have so far not been well investigated.

    It has long been recognized that stainless steel surface can irreversibly adsorb proteins33-35but far less effective for functional protein immobilization than some noble metals,e.g.,gold that is most frequently used for immobilization of biomolecules.36,37Providing that micro/nano-structured surface of stainless steel can effectively adsorb active biomacromolecules,a novel polymer-free smart metal platform for developing new biomaterials,e.g.,stents,would be achieved.For this purpose,the present work investigated adsorption of antibodies and enzymes on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.

    2 Experimental

    2.1 Materials

    316L stainless steel plates and stents were from Lepu Medical Technology Co.,Ltd.(Beijing).Mouse monoclonal antibody against human CD34 was from Biolegend(USA),FITC-labeled goat anti-mouse monoclonal antibody(FITC-IgG)and horseradish peroxidase conjugated goat anti-mouse immunoglobulins(HRP-IgG)from BD Biosciences(USA).4?,6-Diamidino-2-phenylindole(DAPI,the purity≥99%),RPIM 1640,4?,6-diamidino-2-phenylindole,diaminobenzidine(DAB,the purity ≥99%)and tetramethylbenzidine(TMB,the purity≥99%)from Amresco(USA),L929 fibroblast and CD34 positive KG-1a cells were from American Type Culture Collection(ATCC,USA).Horse radish peroxidase(HRP,EC.1.11.1.7)and all other reagents of analytical grade were from Sigma-Aldrich(USA).

    2.2 Preparation of 316L stainless steel surface

    The polished 316L stainless steel plates(1.0 cm×1.0 cm)were cleansed with 20%hydrochloride acid for 10 h at room temperature and 75%ethanol for 15 min at 100 kHz ultrasonicator,the plates were dried in a stream of filtrated air.To produce a porous surface,the plates were acid-etched with 10%hydrochloride acid for 10 min in the assistance of 0.2 A,500 Hz electric current.For gold coating,the plates were either sputter-coated with gold or incubated with 5%H2AuCl4solution for 17 h at 37°C.All the treated metal plates were cleaned finally by 75%ethanol as described above.Then the products were observed and analyzed with a S-4800 scanning electron microscope(SEM,Hitachi,Japan).

    2.3 Adsorption of anti-CD34 antibodies or HRP on metal surface

    The metal plates were incubated for 30 min at 37°C with antihuman CD34 monoclonal antibody(0-200 μg·mL-1)or HRP(0-0.5 mg·mL-1)in 0.1 mmol·L-1of carbonate sodium buffer,pH 9.6.Then the plates were washed three times with 10 mmol·L-1phosphate buffered saline(PBS,pH 7.4)containing 0.2%Tween-20.

    To investigate the effect of surfactant on protein adsorption,the cleaned plates were pre-incubated with 0.5%-5%Tween-20 before incubation with 200 μg·mL-1of monoclonal antibody against human CD34 or 0.5 mg·mL-1of HRP as described above.

    2.4 Analysis of protein adsorption on metal surface

    For analysis of the amount of HRP adsorbed on the metal surface,38the treated plate was put into a 12-well cultural plate and then 0.8 mL of colorization solution containing 0.1 mmol·L-1of tetramethylbenzidine(TMB)was added and incubated for 15 min at 37°C.The reaction was terminated with 0.5 mL of 1 mol·L-1H2SO4and the absorbance at 450 nm was measured with a microplate reader(ASCENT,Labsystems Oy,Finland).

    For analysis of the amount of anti-CD34 antibodies on the metal surface with an ELISA assay,the plates were first blocked with 10%bovine serum albumin(BSA)in 10 mmol·L-1phosphate buffered saline(pH 7.4)for 24 h at 4°C,then incubated with HRP-conjugated goat anti-mouse antibody(BD Biosciences,USA)diluted(1:500)in 10 mmol·L-1PBS,pH 7.4 for 1 h at 37°C.After three-times washing,colorization with TMB substrate was conducted as described above.

    2.5 Wettability assessment

    For comparison of the wettability,the contact angles for metal plates were measured with an optical contact angle instrument(DSA100,Kruss Inc.,Germany).

    2.6 In vitro cell capturing activity of anti-CD34 antibodies-coated 316L stainless steel stents

    To determine the specific activity of antibody coated on stainless steel surface,the in vitro cell capturing activity of micro/nanoporous stents with or without antibody coating were incubated at 37 °C with cell suspension(1×106mL-1,either CD34+KG-1a cells or fibroblast L929 cells)for 1 h.These cells were previously stained with 50 μg·mL-1DAPI fluorescent dye as described in literature.39After rinsing three times with PBS,the stents were photographed and analyzed on a Fluorescence Microscope equipped with an image analyzing program(BX41,OLYMPUS,Japan).

    2.7 Statistical analysis

    All results were expressed as mean±standard error of each sample.Each experiment was repeated independently three times.One-way ANOVA was conducted using an OriginTM8.0 program(Microcal,USA)for data comparison.A value of p<0.05 was considered significant.

    3 Results

    3.1 SEM observation on 316L stainless steel surface

    The surface of various 316L stainless steel plates were observed under a microscopy(Fig.1).Although sputter-gold plates showed yellow color,these plates exhibited a similar shining smooth surface to that of polished metal plate(Fig.1(A,B)).Chemically deposited-gold plates(Fig.1(C))showed a tarnished but plainer surface with a lightly golden color when compared with the sputter-gold plates.In contrast,the porous plates by anodization treatment(Fig.1(D))showed a rough surface.When taking a closer look on SEM(Fig.2),the plates showed a microtexture that is full of irregular pores with an average size of(400±160)nm.The surface roughness was estimated and the contour arithmetic mean deviations(Ra)were 0.007,0.005,0.013,and 0.033 μm for polished stainless steel plate,sputter-gold plate,chemically deposited-gold plate and porous plate,respectively.

    3.2 Protein adsorption on surface of metal plates

    For assessment of protein adsorption,an enzyme(HRP)and a mouse monoclonal antibody against human CD34 were used as the representative of functional biological macromolecules.The physical data of HRP and antibody are listed in Table 1.

    Fig.1 Microscopic images(30×)of surfaces of polished stainless steel plate(A),sputter-gold plate(B),chemically deposited-gold plate(C),and porous plate by anodization treatment(D)

    Fig.2 Scanning electron microscope(SEM)images of the surface of porous stainless steel plate by anodization treatment

    Adsorption of HRP on various stainless steel plates were shown in Fig.3(A).The amount of HRP,expressed as enzymatic activity,increased with enzyme concentrations in solution.Polished plates and gold-coated plates exhibited similar extents of enzyme adsorption while porous plate adsorbed most amount of HRP than the other three plates.

    For antibody(monoclonal anti-CD34 antibodies)adsorption(Fig.3(B)),polished stainless steel plates hardly adsorb antibodies.Chemically deposited-gold plates adsorbed a few with increase of antibody concentration in solution.The sputter-gold plates could most effectively adsorb antibody in a concentration-dependent manner.The porous plates exhibited a similar capacity of antibody adsorption as the sputter-gold plate,however,with a saturation concentration.The maximal amount of antibody adsorption on porous plates was calculated to be ~1200 ng·cm-2according to a calibration method described previously.38

    3.3 Effect of surfactant on protein adsorption

    As shown in Fig.4,pretreatment of metal plates by surfactant Tween-20 could significantly reduce antibody adsorption almost by half;Herein,the porous plates exhibited a similar effect with the sputter-gold plates.However,Tween-20 did not affect adsorption of HRP on both metal surfaces.

    3.4 Wettability of metal plates upon protein adsorption

    Surface wettability was thought to be one important factor tuning cell adhesion and protein adsorption31,40,41and also closely related with the adsorbed amount of proteins.42The results of water contact angles of the plates before and after protein adsorption were shown in Fig.4.It is noted that porous treatment and gold coating barely reduced the contact angles.However,adsorption of protein can significantly increase the wettability of the metal surface.Although on the porous plate,protein adsorption produced the best wetness surface,nevertheless,the difference between the plates was far less than that between the protein species.This indicated that change of surface wettability for metal plates is more dependent on the adsorbed protein.

    3.5 Cell capture capacity of antibodies adsorbed tomicro/nanoporous 316L stainless steel stents

    In smart biomaterials,antibodies are used to selectively attach target cells(e.g.,stem cell or progenitor cells)to form mimetic tissue on the implants in situ.To test the efficiency and the selectivity of the antibodies immobilized,we tested the cellcapture capacity of porous metal stents coated with anti-CD34 mouse monoclonal antibodies.The results are shown in Fig.5 and Fig.6.For CD34 negative L929 fibroblast cells,bare porous metal surface caught a few cells(~9844 cells·cm-2);while the antibody-coated metal surface held a little more(~11593 cells·cm-2),probably due to better wettability after antibody coating.For CD34 positive KG-1a cells,bare porous metal surface caught much fewer amount(~3929 cells·cm-2)than L929 cells.This is conceivable because fibroblasts usually have higher adhesive capacity.Remarkably,the antibody-coated metal surface caught almost ten folds of cells(~36256 cells·cm-2).These results indicated the antibody can remain high efficiency and specificity on the micro/nanoporous sur-face of stainless steel.

    Table 1 Physical data of tested proteins

    Fig.3 Adsorption curves for HRP(A)and mouse monoclonal antibodies against CD34(B)on 316Lstainless steel plates variously treated as described above

    Fig.4 Effect of surfactant on antibody(A)and horse radish peroxidase(B)adsorption on porous and sputter-gold stainless steel plates

    Fig.5 Contact angles of various 316Lstainless steel plates before and after adsorption of proteins(HRPor mouse monoclonal antibodies)

    Fig.6 Fluorescence microscopic images(40×)of CD34 positive or negative cells adhesive to micro/nanoporous 316Lstainless steel stents

    4 Discussion

    For effective immobilization of functional biological molecules on surface of biomaterials,the amount of biomolecules,the stability of immobilization,and the residue activity are the key concerns.Therefore,most methods use covalent bonds to attach biomolecules10,43,44and in this way modification of metal surface with organic polymers or inorganic particles with active groups(e.g.,―OH,―CHO,―COOH,―NH2,etc.)would be necessary.

    In the present work,we tested the efficiency of direct physical adsorption of antibodies and enzymes on stainless steel surface by making use of micro/nano structures with an aim to develop novel smart metal implant,e.g.,prohealing stents.The experimental results indicate that the stainless steel with micro/nano texture can high-efficiently adsorb biomacromolecules with desired biological activity.

    First,the micro/nanoporous stainless steel surface adsorbed high amount of proteins(Fig.3),which is close to(for antibodies)or even more(for HRP)than those attached to sputter-gold surface.Gold can form coordination bond with―SH of proteins or adsorb protein via strong van der Waals interactions.36Gold surface is well-known in biomedical and bioanalytical applications for immobilization of protein or even protein particles.37Herein,the protein adsorption capacity of the porous stainless steel surface is shown to be at least comparable with the gold surface that is much more expensive.

    The reasons for high protein adsorption capacity for the porous stainless steel surface may lie on the followings:(i)the porous plates exhibited much rougher surface.The surface roughness is one key factor for molecular adsorption because the rough surface has bigger external surface area and pocket effect supports more protein loading.45,46In fact,the amount of HRP adsorption was by and large with the surface roughness(Fig.3(A));(ii)formation of protein multilayers by surface-induced aggregation as observed previously on stainless steel microparticles;34,47(iii)the monoclonal antibody showed different adsorption profile from that of HRP.The molecular size of monoclonal antibody(~15 nm)is larger than that of HRP(~6 nm);however,considering the pore size(~400 nm)of the metal plate,this size difference is too small to explain the adsorption profile.The mechanism of interaction between protein molecules with porous surface is worthwhile to be investigated further.

    Second,the protein attached on the porous stainless steel surface is stable.The experimental results showed that adsorption treatment with 10%BSA or 0.2%Tween-20 solution could not remove the enzymes/antibodies from the metal plate,which agrees with that stainless steel-protein interaction is strong48and protein adsorption to stainless steel could be irreversible.34,47While pre-treatment with Tween-20 buffer could reduce antibody adsorption by half(Fig.4(A))but had no effects on HRP adsorption,possibly because of the interaction between the antibody and surfactant.

    The wettability of the stainless steel has been proposed to be a predominant mechanism governing both protein adsorption and cell adhesion.40,41As shown in Fig.5,there was a great reduce of water contact angles upon antibody or HRP adsorption,indicating significant reduce of surface Gibbs free energy and suggesting a highly spontaneous and strong adsorption of antibody/HRP protein onto the surface like fibrinogen.49Several points are worthwhile to note here:(1)the wettability of HRP coated surfaces are much higher than that of antibody-coated surface,indicating that the wettability of protein-modified metal surface is primarily dependent on the properties of the protein rather than the nature of metal.Similar adsorption behavior of proteins at stainless steel-liquid interfaces has been observed previously;33(2)although the surface of gold-modified plates adsorbed more proteins than the stainless steel plates,however,the wettability of gold surface is apparently less.Since surface wettability is correlated to the transition of surface cytocompatibility from cell-phobic to cell-philic,31,41this result may suggest that the protein-engineered stainless steel surface could be better than gold for medical implants;(3)for the same type of metal surfaces,higher amount of protein adsorption gave higher wettability,which is consistent with previous observation.42

    Third,many works have shown that due to the strong surface interaction,adsorption of protein(e.g.,fibrinogen and BSA)on 316L stainless steel could result in partial unfolding of proteins and significant changes in the secondary structure that occur predominantly within the first minute of adsorption.46,49This raises a question of whether the proteins directly on the metal surface can keep their biological activity and specificity.

    Fig.7 Quantatification of adhesion of CD34 positive(KG-1a)or negative(L-929)cells to bare or antibody-coated micro/nanoporous 316Lstainless steel stents

    Fortunately,we observed that both HRP enzyme and antibodies retained high activity on the porous metal surface.Especially,as shown in Figs.6 and 7,stainless steel stents with micro/nanoporous surface coated with an anti-CD34 antibody can capture the target cells with both high efficiency and high specificity,which shall allow the development of novel polymer-free and economic smart biomaterials with stainless steel by direct protein adsorption on micro/nanoporous surface.

    The reasons for antibodies and HRP to keep their specific activity remain further investigated.However,several possibilities may include:(1)unlike fibrinogen and BSA,HRP and antibodies are rigid global proteins and thus resist to conformational change;(2)the surface pocket of the porous metal may accommodate the enzyme/antibody molecules in favorable states similarly to the case of protease on microporous zeolite MCM-22;45(3)the proteins may form multilayers on the metal surface.Then the proteins in the upper layers may be less influenced by surface forces and then keep a full activity.Nonetheless,in the future studies,systematic exploration to the roles of 3D micro/nano morphology of metal surface on immobilization of a variety of biological macromolecules and the effects on their structure and biological functions are envisaged.

    5 Conclusions

    In summary,the present work investigated adsorption of two important functional biomolecules,i.e.,monoclonal antibodies and HRP enzymes,on micro/nanoporous 316L stainless steel in comparison with smooth and gold-coating stainless steel surfaces.Our results indicate that antibodies and enzymes can be loaded firmly on the micro/nanoporous surface in a large amount and these proteins retained high biological activity.In addition,the porous metal surface coated with functional protein exhibited much enhanced wettability,indicating a better cytocompatibility.The current work suggested novel polymerfree and economic smart biomaterials with stainless steel for biomedical applications.

    (1) Holzapfel,B.M.;Reichert,J.C.;Schantz,J.T.;Gbureck,U.;Rackwitz,L.;Noth,U.;Jakob,F.;Rudert,M.;Groll,J.;Hutmacher,D.W.Adv.Drug Deliv.Rev.2013,65,581.doi:10.1016/j.addr.2012.07.009

    (2) Nagarajan,S.;Mohana,M.;Sudhagar,P.;Raman,V.;Nishimura,T.;Kim,S.;Kang,Y.S.;Rajendran,N.ACS Appl.Mater.Interfaces 2012,4,5134.

    (3)Abdel-Fattah,T.M.;Loftis,D.;Mahapatro,A.J.Biomed.Nanotechnol.2011,7,794.doi:10.1166/jbn.2011.1346

    (4) Hayes,J.S.;Richards,R.G.Expert.Rev.Med.Devices 2010,7,843.doi:10.1586/erd.10.53

    (5)Weckbach,S.;Losacco,J.T.;Hahnhaussen,J.;Gebhard,F.;Stahel,P.F.Unfallchirurg 2012,115,75.doi:10.1007/s00113-011-2145-0

    (6)Joung,Y.K.;You,S.S.;Park,K.M.;Go,D.H.;Park,K.D.Colloids Surf.B:Biointerfaces 2012,99,102.doi:10.1016/j.colsurfb.2011.10.047

    (7) Slaney,A.M.;Wright,V.A.;Meloncelli,P.J.;Harris,K.D.;West,L.J.;Lowary,T.L.;Buriak,J.M.ACS Appl.Mater.Interfaces 2011,3,1601.doi:10.1021/am200158y

    (8) Lionetto,S.;Little,A.;Moriceau,G.;Heymann,D.;Decurtins,M.;Plecko,M.;Filgueira,L.;Cadosch,D.J.Biomed.Mater.Res.A 2013,101,991.

    (9)Yang,Z.;Tu,Q.;Zhu,Y.;Luo,R.;Li,X.;Xie,Y.;Maitz,M.F.;Wang,J.;Huang,N.Adv.Healthc.Mater.2012,1,548.doi:10.1002/adhm.201200073

    (10)Kang,C.K.;Lim,W.H.;Kyeong,S.;Choe,W.S.;Kim,H.S.;Jun,B.H.;Lee,Y.S.Colloids Surf.B:Biointerfaces 2013,102,744.doi:10.1016/j.colsurfb.2012.09.008

    (11) Caro,A.;Humblot,V.;Methivier,C.;Minier,M.;Salmain,M.;Pradier,C.M.J.Phys.Chem.B 2009,113,2101.doi:10.1021/jp805284s

    (12)Kang,C.K.;Lee,Y.S.J.Mater.Sci.Mater.Med.2007,18,1389.doi:10.1007/s10856-006-0079-9

    (13) Ceylan,H.;Tekinay,A.B.;Guler,M.O.Biomaterials 2011,32,8797.doi:10.1016/j.biomaterials.2011.08.018

    (14) Davis,E.M.;Li,D.Y.;Irvin,R.T.Biomaterials 2011,32,5311.doi:10.1016/j.biomaterials.2011.04.027

    (15) Ignatova,M.;Voccia,S.;Gabriel,S.;Gilbert,B.;Cossement,D.;Jerome,R.;Jerome,C.Langmuir 2009,25,891.doi:10.1021/la802472e

    (16)Imamura,K.;Kawasaki,Y.;Awadzu,T.;Sakiyama,T.;Nakanishi,K.J.Colloid Interface Sci.2003,267,294.doi:10.1016/S0021-9797(03)00700-8

    (17) Falentin-Daudre,C.;Faure,E.;Svaldo-Lanero,T.;Farina,F.;Jerome,C.;Van De Weerdt,C.;Martial,J.;Duwez,A.S.;Detrembleur,C.Langmuir 2012,28,7233.doi:10.1021/la3003965

    (18) Harvey,J.;Bergdahl,A.;Dadafarin,H.;Ling,L.;Davis,E.C.;Omanovic,S.Biotechnol.Lett.2012,34,1159.doi:10.1007/s10529-012-0885-8

    (19) Secker,T.J.;Herve,R.;Zhao,Q.;Borisenko,K.B.;Abel,E.W.;Keevil,C.W.Biofouling 2012,28,563.doi:10.1080/08927014.2012.698387

    (20) Horia,N.;Iwasaa,F.;Uenoa,T.;Takeuchib,K.;Tsukimuraa,N.;Yamadaa,M.;Hattorib,M.;Yamamotoc,A.;Ogawaa,T.Dental Materials 2010,26,275.doi:10.1016/j.dental.2009.11.077

    (21)Subramanian,B.;Ananthakumar,R.;Kobayashi,A.;Jayachandran,M.J.Mater.Sci.Mater.Med.2012,23,329.doi:10.1007/s10856-011-4500-7

    (22) Subramanian,B.;Dhandapani,P.;Maruthamuthu,S.;Jayachandran,M.J.Biomater.Appl.2012,26,687.doi:10.1177/0885328210377534

    (23)Valanezahad,A.;Ishikawa,K.;Tsuru,K.;Maruta,M.;Matsuya,S.Dent.Mater.J.2011,30,749.doi:10.4012/dmj.2010-153

    (24) Buhagiar,J.;Bell,T.;Sammons,R.;Dong,H.J.Mater.Sci.Mater.Med.2011,22,1269.

    (25)Wendel,H.P.;Avci-Adali,M.;Ziemer,G.Int.J.Cardiol.2010,145,115.doi:10.1016/j.ijcard.2009.06.020

    (26) Granada,J.F.;Inami,S.;Aboodi,M.S.;Tellez,A.;Milewski,K.;Wallace-Bradley,D.;Parker,S.;Rowland,S.;Nakazawa,G.;Vorpahl,M.;Kolodgie,F.D.;Kaluza,G.L.;Leon,M.B.;Virmani,R.Circ.Cardiovasc.Interv.2010,3,257.doi:10.1161/CIRCINTERVENTIONS.109.919936

    (27) McGuigan,A.P.;Sefton,M.V.Biomaterials 2007,28,2547.doi:10.1016/j.biomaterials.2007.01.039

    (28) Rossi,M.L.;Zavalloni,D.;Gasparini,G.L.;Mango,R.;Belli,G.;Presbitero,P.Int.J.Cardiol.2010,141,e20.

    (29) Le Guehennec,L.;Martin,F.;Lopez-Heredia,M.A.;Louarn,G.;Amouriq,Y.;Cousty,J.;Layrolle,P.Nanomedicine 2008,3,61.doi:10.2217/17435889.3.1.61

    (30) Pan,H.A.;Liang,J.Y.;Hung,Y.C.;Lee,C.H.;Chiou,J.C.;Huang,G.S.Biomaterials 2013,34,841.doi:10.1016/j.biomaterials.2012.09.078

    (31) Ranellaa,A.;Barberogloua,M.;Bakogiannia,S.;Fotakisa,C.;Stratakisa,E.Acta Biomaterialia 2010,6,2711.doi:10.1016/j.actbio.2010.01.016

    (32) Nayak,B.K.;Gupta,M.C.Optics and Lasers in Engineering 2010,48,940.doi:10.1016/j.optlaseng.2010.04.010

    (33) Fukuzaki,S.;Urano,H.;Nagata,K.J.Ferment.Bioeng.1995,80,6.doi:10.1016/0922-338X(95)98168-K

    (34) Bee,J.S.;Chiu,D.;Sawicki,S.;Stevenson,J.L.;Chatterjee,K.;Freund,E.;Carpenter,J.F.;Randolph,T.W.J.Pharm.Sci.2009,98,3218.

    (35)Sakiyama,T.;Aya,A.;Embutsu,M.;Imamura,K.;Nakanishi,K.J.Biosci.Bioeng.2006,101,434.doi:10.1263/jbb.101.434

    (36)Hagiwara,T.;Sakiyama,T.;Watanabe,H.Langmuir 2009,25,226.

    (37) He,C.X.;Yuan,A.P.;Zhang,Q.L.;Ren,X.Z.;Li,C.H.;Liu,J.H.Acta Phys.-Chim.Sin.2012,28,2721.[何傳新,袁安朋,張黔玲,任祥忠,李翠華,劉劍洪.物理化學(xué)學(xué)報(bào),2012,28,2721.]doi:10.3866/PKU.WHXB201207191

    (38)Zhang,F.;Guo,W.;Yu,Z.;Wang,Y.C.Chin.J.Pharm.Anal.2011,31,862.

    (39) Berry,J.L.;Santamarina,A.;Moore,J.E.,Jr.;Roychowdhury,S.;Routh,W.D.Ann.Biomed.Eng.2000,28,386.doi:10.1114/1.276

    (40) Hao,L.;Lawrence,J.Proc.Inst.Mech.Eng.H 2006,220,47.doi:10.1243/095441105X68999

    (41) Mikulewicz,M.;Chojnacka,K.Biol.Trace.Elem.Res.2011,142,865.doi:10.1007/s12011-010-8798-7

    (42) Matsumura,H.;Saburi,M.Colloids Surf.B:Biointerfaces 2006,47,146.doi:10.1016/j.colsurfb.2005.12.004

    (43) Mourtas,S.;Kastellorizios,M.;Klepetsanis,P.;Farsari,E.;Amanatides,E.;Mataras,D.;Pistillo,B.R.;Favia,P.;Sardella,E.;d?Agostino,R.;Antimisiaris,S.G.Colloids Surf.B:Biointerfaces 2011,84,214.doi:10.1016/j.colsurfb.2011.01.002

    (44) Muller,R.;Abke,J.;Schnell,E.;Macionczyk,F.;Gbureck,U.;Mehrl,R.;Ruszczak,Z.;Kujat,R.;Englert,C.;Nerlich,M.;Angele,P.Biomaterials 2005,26,6962.doi:10.1016/j.biomaterials.2005.05.013

    (45)Liu,P.;Xing,G.W.;Li,X.W.;Ye,Y.H.Acta Phys.-Chim.Sin.2010,26,1113.[劉 平,邢國文,李宣文,葉蘊(yùn)華.物理化學(xué)學(xué)報(bào),2010,26,1113.]doi:10.3866/PKU.WHXB20100448

    (46) Omanovic,S.;Roscoe,S.G.J.Colloid Interface Sci.2000,227,452.doi:10.1006/jcis.2000.6913

    (47) Bee,J.S.;Davis,M.;Freund,E.;Carpenter,J.F.;Randolph,T.W.Biotechnol.Bioeng.2010,105,121.doi:10.1002/bit.v105:1

    (48) Hedberg,Y.S.;Killian,M.S.;Blomberg,E.;Virtanen,S.;Schmuki,P.;Odnevall Wallinder,I.Langmuir 2012,28,16306.doi:10.1021/la3039279

    (49)Desroches,M.J.;Omanovic,S.Phys.Chem.Chem.Phys.2008,10,2502.doi:10.1039/b719371h

    猜你喜歡
    藥學(xué)院物理化學(xué)學(xué)報(bào)
    蘭州大學(xué)藥學(xué)院簡介
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    《深空探測學(xué)報(bào)》
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    HSCCC-ELSD法分離純化青葙子中的皂苷
    麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 无遮挡黄片免费观看| 国产色爽女视频免费观看| 在线观看午夜福利视频| 精品国产美女av久久久久小说| 在线十欧美十亚洲十日本专区| 老司机午夜十八禁免费视频| 久久久国产精品麻豆| 国产老妇女一区| 制服人妻中文乱码| 国产精品久久视频播放| 国产野战对白在线观看| 搞女人的毛片| 欧美3d第一页| 99国产综合亚洲精品| 我的老师免费观看完整版| 可以在线观看毛片的网站| 色视频www国产| 极品教师在线免费播放| 亚洲一区二区三区不卡视频| 夜夜夜夜夜久久久久| 午夜福利免费观看在线| ponron亚洲| 精品人妻一区二区三区麻豆 | 岛国在线观看网站| 亚洲av日韩精品久久久久久密| 看免费av毛片| 一本久久中文字幕| 久久久久久大精品| 啦啦啦免费观看视频1| 成人国产综合亚洲| 怎么达到女性高潮| 少妇的丰满在线观看| 嫩草影院入口| 亚洲av成人av| 国产av在哪里看| 国产精品野战在线观看| 欧美乱妇无乱码| 久久久国产精品麻豆| 最近视频中文字幕2019在线8| 97人妻精品一区二区三区麻豆| 亚洲av五月六月丁香网| 夜夜躁狠狠躁天天躁| 久久久久性生活片| 久久6这里有精品| 99精品在免费线老司机午夜| 国产精品爽爽va在线观看网站| 男人舔奶头视频| 成人国产综合亚洲| 天堂影院成人在线观看| av片东京热男人的天堂| 高清毛片免费观看视频网站| 国产精品自产拍在线观看55亚洲| 国产高清激情床上av| 亚洲一区二区三区色噜噜| 中文资源天堂在线| 亚洲不卡免费看| 三级毛片av免费| 天天躁日日操中文字幕| 99在线人妻在线中文字幕| 国产不卡一卡二| 五月伊人婷婷丁香| 老熟妇仑乱视频hdxx| 成人高潮视频无遮挡免费网站| 国产精品 欧美亚洲| 51国产日韩欧美| 色播亚洲综合网| 一二三四社区在线视频社区8| 美女免费视频网站| 精品国产超薄肉色丝袜足j| 18+在线观看网站| 精品一区二区三区av网在线观看| 又爽又黄无遮挡网站| 日本一二三区视频观看| 男女之事视频高清在线观看| 哪里可以看免费的av片| 色噜噜av男人的天堂激情| 精品电影一区二区在线| 在线观看舔阴道视频| 亚洲人成网站高清观看| 亚洲第一欧美日韩一区二区三区| 久久久国产成人免费| 啪啪无遮挡十八禁网站| 乱人视频在线观看| 一进一出好大好爽视频| 国产三级中文精品| 国语自产精品视频在线第100页| 国产探花极品一区二区| 欧美最黄视频在线播放免费| 久久草成人影院| 黄片大片在线免费观看| 一个人免费在线观看电影| 天堂√8在线中文| 少妇丰满av| 亚洲欧美日韩无卡精品| 老汉色∧v一级毛片| 在线a可以看的网站| 内射极品少妇av片p| 99热这里只有是精品50| 欧美成人免费av一区二区三区| 精品熟女少妇八av免费久了| 亚洲精品久久国产高清桃花| 亚洲av第一区精品v没综合| 久久久久久久午夜电影| 日韩欧美一区二区三区在线观看| 国产精品久久久久久亚洲av鲁大| 成年女人看的毛片在线观看| 久久久久免费精品人妻一区二区| 欧美大码av| 国产精品久久电影中文字幕| 色视频www国产| 日本一二三区视频观看| 51午夜福利影视在线观看| 天堂动漫精品| 婷婷六月久久综合丁香| 老汉色∧v一级毛片| 日本熟妇午夜| 男女那种视频在线观看| 美女高潮的动态| 美女cb高潮喷水在线观看| 99在线人妻在线中文字幕| av国产免费在线观看| 少妇熟女aⅴ在线视频| 精品午夜福利视频在线观看一区| 午夜老司机福利剧场| 有码 亚洲区| 亚洲片人在线观看| 丁香欧美五月| 长腿黑丝高跟| 亚洲美女黄片视频| 又紧又爽又黄一区二区| 国产成人a区在线观看| 国产精品久久久久久久久免 | 欧美高清成人免费视频www| 免费在线观看成人毛片| 色精品久久人妻99蜜桃| 偷拍熟女少妇极品色| or卡值多少钱| 舔av片在线| 国产亚洲欧美在线一区二区| 久久久久久国产a免费观看| 亚洲精品粉嫩美女一区| 久久久久久大精品| 亚洲狠狠婷婷综合久久图片| 国产精品精品国产色婷婷| 国产精品自产拍在线观看55亚洲| 听说在线观看完整版免费高清| 亚洲18禁久久av| 一二三四社区在线视频社区8| 亚洲国产欧洲综合997久久,| 国产黄a三级三级三级人| 深夜精品福利| 国产精品一区二区三区四区久久| 免费在线观看影片大全网站| 一区二区三区激情视频| 精品一区二区三区人妻视频| 亚洲人成网站在线播放欧美日韩| 亚洲中文字幕一区二区三区有码在线看| 亚洲人成网站在线播放欧美日韩| 人妻夜夜爽99麻豆av| 一进一出抽搐gif免费好疼| 国产成人系列免费观看| 九九久久精品国产亚洲av麻豆| 宅男免费午夜| 十八禁网站免费在线| 亚洲av美国av| 国产黄a三级三级三级人| 俄罗斯特黄特色一大片| 亚洲aⅴ乱码一区二区在线播放| 桃红色精品国产亚洲av| 国产美女午夜福利| 国产精品亚洲av一区麻豆| 亚洲不卡免费看| 国产探花在线观看一区二区| 一区二区三区国产精品乱码| 亚洲成av人片在线播放无| 老司机在亚洲福利影院| 亚洲电影在线观看av| 一区二区三区高清视频在线| 色在线成人网| 久久精品国产亚洲av香蕉五月| 亚洲av美国av| 久久精品综合一区二区三区| 亚洲av一区综合| 啪啪无遮挡十八禁网站| 最近在线观看免费完整版| 成年免费大片在线观看| www国产在线视频色| 国产精品久久电影中文字幕| 国产色婷婷99| 国产熟女xx| 日韩精品中文字幕看吧| 久久国产精品影院| 国产精品久久久久久亚洲av鲁大| 人人妻人人澡欧美一区二区| av天堂在线播放| 无遮挡黄片免费观看| 九九久久精品国产亚洲av麻豆| 久久久久久久久久黄片| 五月玫瑰六月丁香| 午夜福利免费观看在线| 亚洲七黄色美女视频| 日韩av在线大香蕉| 18美女黄网站色大片免费观看| 在线观看日韩欧美| 久久亚洲真实| 51午夜福利影视在线观看| 久久久久九九精品影院| 在线观看午夜福利视频| 听说在线观看完整版免费高清| 亚洲av免费在线观看| 午夜免费观看网址| 亚洲国产欧美人成| 国内毛片毛片毛片毛片毛片| 亚洲aⅴ乱码一区二区在线播放| 日本一二三区视频观看| x7x7x7水蜜桃| 成人18禁在线播放| 成人18禁在线播放| 窝窝影院91人妻| 亚洲无线观看免费| 国产免费男女视频| 午夜久久久久精精品| 午夜福利免费观看在线| 脱女人内裤的视频| 听说在线观看完整版免费高清| 又紧又爽又黄一区二区| 亚洲中文字幕日韩| 变态另类成人亚洲欧美熟女| 日韩免费av在线播放| 日本 av在线| a级毛片a级免费在线| 天天躁日日操中文字幕| 热99re8久久精品国产| 在线播放国产精品三级| 亚洲色图av天堂| 国产成人av激情在线播放| 国产亚洲精品av在线| 国产精品亚洲一级av第二区| 日本五十路高清| 高清日韩中文字幕在线| 免费看美女性在线毛片视频| 桃红色精品国产亚洲av| 欧美黄色淫秽网站| 久久久久久久亚洲中文字幕 | 国产高清三级在线| 国产亚洲精品一区二区www| 亚洲成人久久性| 久久99热这里只有精品18| 老汉色av国产亚洲站长工具| 亚洲欧美一区二区三区黑人| 日韩亚洲欧美综合| 91麻豆av在线| 看黄色毛片网站| 成人国产一区最新在线观看| 国产精品香港三级国产av潘金莲| 亚洲国产欧洲综合997久久,| 天天添夜夜摸| 99riav亚洲国产免费| 国产日本99.免费观看| 欧美黄色淫秽网站| 国产精品一区二区免费欧美| 国产伦一二天堂av在线观看| 精品国产超薄肉色丝袜足j| 久久人人精品亚洲av| 黄片小视频在线播放| 久久久国产精品麻豆| 欧美黑人巨大hd| 热99re8久久精品国产| 欧美大码av| 无限看片的www在线观看| 人妻夜夜爽99麻豆av| 亚洲美女视频黄频| 亚洲国产欧美人成| 亚洲五月天丁香| 女警被强在线播放| 欧美另类亚洲清纯唯美| 久久久久久久久中文| 欧美区成人在线视频| 一级a爱片免费观看的视频| 免费高清视频大片| 69人妻影院| 国产真实乱freesex| 欧美日韩亚洲国产一区二区在线观看| 99热精品在线国产| 少妇高潮的动态图| av中文乱码字幕在线| 国产精品,欧美在线| 免费大片18禁| 国产成人aa在线观看| 中文在线观看免费www的网站| 国产午夜精品论理片| 1000部很黄的大片| 国产主播在线观看一区二区| 亚洲av日韩精品久久久久久密| 午夜老司机福利剧场| 国产精品久久久久久久久免 | 一本一本综合久久| 成人18禁在线播放| 国产午夜精品论理片| 12—13女人毛片做爰片一| 欧美午夜高清在线| 国内毛片毛片毛片毛片毛片| 在线观看日韩欧美| 国产在线精品亚洲第一网站| 欧美日韩瑟瑟在线播放| 欧美+亚洲+日韩+国产| 亚洲,欧美精品.| 嫩草影院入口| 亚洲欧美激情综合另类| 夜夜躁狠狠躁天天躁| 一个人看的www免费观看视频| 婷婷精品国产亚洲av在线| 国产黄a三级三级三级人| 亚洲成av人片免费观看| 精品99又大又爽又粗少妇毛片 | 在线免费观看的www视频| 在线观看美女被高潮喷水网站 | 精品久久久久久久人妻蜜臀av| 日本熟妇午夜| ponron亚洲| 少妇丰满av| 国产三级黄色录像| 久久久久久久精品吃奶| 国产美女午夜福利| 一本精品99久久精品77| 99久久99久久久精品蜜桃| 亚洲av二区三区四区| 3wmmmm亚洲av在线观看| 噜噜噜噜噜久久久久久91| 国产亚洲精品久久久com| 亚洲av不卡在线观看| 亚洲午夜理论影院| ponron亚洲| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 欧美绝顶高潮抽搐喷水| 日韩成人在线观看一区二区三区| 亚洲av电影在线进入| 免费看美女性在线毛片视频| 搡老妇女老女人老熟妇| 美女高潮的动态| 搡老熟女国产l中国老女人| 精品人妻一区二区三区麻豆 | 禁无遮挡网站| 级片在线观看| 国产老妇女一区| 久久99热这里只有精品18| 午夜老司机福利剧场| 99久久成人亚洲精品观看| 老司机在亚洲福利影院| 日本 av在线| 十八禁人妻一区二区| 久久伊人香网站| 女同久久另类99精品国产91| 午夜免费观看网址| 禁无遮挡网站| 脱女人内裤的视频| 老熟妇仑乱视频hdxx| 综合色av麻豆| 最新在线观看一区二区三区| 老司机深夜福利视频在线观看| 国产真实伦视频高清在线观看 | 在线播放国产精品三级| 少妇的逼水好多| 91字幕亚洲| 极品教师在线免费播放| 人妻久久中文字幕网| 在线观看66精品国产| 亚洲av免费在线观看| 狂野欧美白嫩少妇大欣赏| 好看av亚洲va欧美ⅴa在| 91av网一区二区| 狠狠狠狠99中文字幕| 日韩欧美在线二视频| 久久精品91蜜桃| 成年女人永久免费观看视频| 国产成人av教育| 亚洲一区二区三区不卡视频| av欧美777| 精品欧美国产一区二区三| 最近最新中文字幕大全电影3| 小说图片视频综合网站| 精品乱码久久久久久99久播| 亚洲欧美日韩高清专用| 中文字幕高清在线视频| 欧美日本亚洲视频在线播放| 亚洲欧美一区二区三区黑人| 老司机福利观看| 一个人看的www免费观看视频| 香蕉av资源在线| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品综合一区在线观看| 国产午夜精品久久久久久一区二区三区 | 一级黄片播放器| 无限看片的www在线观看| 亚洲片人在线观看| 成年人黄色毛片网站| 麻豆一二三区av精品| 啦啦啦免费观看视频1| 日韩av在线大香蕉| 国产在线精品亚洲第一网站| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 欧美成人免费av一区二区三区| 久久国产精品影院| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 成人精品一区二区免费| 国产成人系列免费观看| 欧美成人a在线观看| 九色国产91popny在线| 日本免费一区二区三区高清不卡| 欧美日韩乱码在线| 尤物成人国产欧美一区二区三区| 亚洲成人久久性| 观看美女的网站| 欧美大码av| 国产精品影院久久| 老鸭窝网址在线观看| 精品国内亚洲2022精品成人| 好男人电影高清在线观看| 香蕉丝袜av| 丰满人妻熟妇乱又伦精品不卡| 日本黄大片高清| or卡值多少钱| 日本在线视频免费播放| 午夜福利高清视频| 最近最新中文字幕大全免费视频| 国产在线精品亚洲第一网站| 午夜福利在线观看免费完整高清在 | 中文字幕人成人乱码亚洲影| 香蕉丝袜av| 夜夜夜夜夜久久久久| 一级毛片女人18水好多| 午夜福利18| 日韩欧美精品免费久久 | 老司机福利观看| 亚洲国产高清在线一区二区三| 久久久久久大精品| 亚洲av电影不卡..在线观看| 999久久久精品免费观看国产| 天天添夜夜摸| 精品人妻一区二区三区麻豆 | 亚洲av成人精品一区久久| 国产99白浆流出| 欧美性感艳星| 国内久久婷婷六月综合欲色啪| 成人av一区二区三区在线看| 乱人视频在线观看| 欧美中文综合在线视频| 日本黄大片高清| 一夜夜www| 人妻丰满熟妇av一区二区三区| av国产免费在线观看| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 国产精品一区二区三区四区久久| 在线看三级毛片| 变态另类成人亚洲欧美熟女| 国产精品日韩av在线免费观看| 色综合欧美亚洲国产小说| 在线观看66精品国产| 床上黄色一级片| 蜜桃亚洲精品一区二区三区| 国产一级毛片七仙女欲春2| 最新中文字幕久久久久| 神马国产精品三级电影在线观看| 午夜福利免费观看在线| 亚洲av电影不卡..在线观看| 99久久久亚洲精品蜜臀av| 日本a在线网址| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 久久久久久久午夜电影| 亚洲男人的天堂狠狠| 亚洲成人久久性| 舔av片在线| 狂野欧美白嫩少妇大欣赏| 欧洲精品卡2卡3卡4卡5卡区| 9191精品国产免费久久| 亚洲人成网站在线播放欧美日韩| 少妇人妻一区二区三区视频| 免费高清视频大片| 免费搜索国产男女视频| 欧美最黄视频在线播放免费| 亚洲真实伦在线观看| 免费看十八禁软件| 国产熟女xx| 99热只有精品国产| 婷婷丁香在线五月| 精品电影一区二区在线| 精品久久久久久久末码| 国产伦一二天堂av在线观看| 99热只有精品国产| e午夜精品久久久久久久| 国产极品精品免费视频能看的| 欧美日韩乱码在线| 免费观看精品视频网站| 99久久精品热视频| 国产精品亚洲av一区麻豆| 国产爱豆传媒在线观看| 日本 欧美在线| 国产亚洲精品av在线| 中文字幕人妻丝袜一区二区| 亚洲av不卡在线观看| 久久久久久人人人人人| 中国美女看黄片| 国产亚洲精品一区二区www| 日韩欧美三级三区| 精品99又大又爽又粗少妇毛片 | 免费观看的影片在线观看| 欧美日韩国产亚洲二区| 变态另类丝袜制服| 欧美国产日韩亚洲一区| 亚洲国产精品999在线| 麻豆成人午夜福利视频| 国内精品一区二区在线观看| 99在线人妻在线中文字幕| 亚洲国产中文字幕在线视频| 欧美日本亚洲视频在线播放| 最近在线观看免费完整版| 一级黄色大片毛片| a级毛片a级免费在线| 黑人欧美特级aaaaaa片| 久久精品夜夜夜夜夜久久蜜豆| 99久久综合精品五月天人人| 精品一区二区三区人妻视频| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲avbb在线观看| 精品久久久久久,| 国产麻豆成人av免费视频| 日本成人三级电影网站| 偷拍熟女少妇极品色| 可以在线观看毛片的网站| 免费电影在线观看免费观看| 校园春色视频在线观看| 久久人人精品亚洲av| 女警被强在线播放| 在线天堂最新版资源| 岛国在线免费视频观看| netflix在线观看网站| 美女黄网站色视频| 亚洲avbb在线观看| 亚洲乱码一区二区免费版| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站| 国产一区二区在线观看日韩 | 久久国产精品人妻蜜桃| 在线视频色国产色| 51国产日韩欧美| 全区人妻精品视频| 欧美在线一区亚洲| 国产伦在线观看视频一区| 九色成人免费人妻av| 午夜久久久久精精品| 精华霜和精华液先用哪个| 非洲黑人性xxxx精品又粗又长| 色哟哟哟哟哟哟| 啪啪无遮挡十八禁网站| 国产成+人综合+亚洲专区| 亚洲av电影在线进入| 夜夜躁狠狠躁天天躁| 日韩欧美一区二区三区在线观看| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 亚洲成人久久爱视频| 日韩欧美 国产精品| 久久性视频一级片| 全区人妻精品视频| 高清毛片免费观看视频网站| 国语自产精品视频在线第100页| 欧美zozozo另类| 亚洲国产精品合色在线| 亚洲av熟女| 特级一级黄色大片| 日韩欧美免费精品| 国产免费男女视频| 亚洲七黄色美女视频| 又黄又粗又硬又大视频| 我要搜黄色片| 国产午夜精品论理片| 观看美女的网站| 少妇熟女aⅴ在线视频| 欧美在线一区亚洲| 少妇高潮的动态图| 午夜福利在线观看吧| 亚洲人成网站在线播放欧美日韩| 毛片女人毛片| 每晚都被弄得嗷嗷叫到高潮| 国产美女午夜福利| 女人高潮潮喷娇喘18禁视频| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 亚洲国产中文字幕在线视频| 久久久成人免费电影| 99精品在免费线老司机午夜| 国产成人福利小说| 可以在线观看毛片的网站| 国产亚洲欧美在线一区二区| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 国产黄片美女视频| 久久久久国内视频| 色哟哟哟哟哟哟| 亚洲人成伊人成综合网2020|