• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一個(gè)高粘彈的陰離子蠕蟲(chóng)膠束體系

    2013-09-17 06:58:42謝丹華趙劍曦魏西蓮
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:化學(xué)系福州大學(xué)大學(xué)化學(xué)

    謝丹華 趙劍曦,* 劉 琳 游 毅 魏西蓮

    (1福州大學(xué)化學(xué)化工學(xué)院,膠體與界面化學(xué)研究所,福州350108;2聊城大學(xué)化學(xué)化工學(xué)院化學(xué)系,山東聊城252059)

    1 Introduction

    Upon the addition of salts,cationic cetyltrimethylammonium halides(C16TAX)in aqueous solution can self-assembly into flexible threadlike(wormlike)micelles with the length even on the order of a few microns.1,2At high concentrations these wormlike micelles entangle each other to form a transient network,which sharply increases the viscoelasticity of the solution.Comparatively,anionic wormlike micelles have advantage over cationic counterparts in many applications,including enhanced oil recovery.3Moreover,anionic systems tend to be biodegradable and less toxic compared with cationic ones.But the formation of anionic wormlike micelles is not common since the addition of salts often interacts strongly with anionic surfactant and results in precipitate.Therefore,only a few anionic wormlike micelles were formed by conventional singlechain surfactants such as sodium alkyl sulfate4-9or sodium dodecyltrioxylene sulfate10-14in the presence of additives.What?s more,these anionic micelles were not as long as the cationic ones and hence the anionic systems often followed a poor property(low viscoelasticity).For example,in the reported anionic wormlike micellar system consisted of SDS,the zero-shear viscosity of the solution only had a very low value of~1 Pa·s.5

    Many efforts have been made to overcome this difficulty,in which the most valuable test was for the gemini surfactants.For example,Acharya et al.15tried to construct the wormlike micelles using a carboxylate gemini surfactant that has no spacer(designated as GS)mixed with the nonionic surfactants with a short poly(oxyethylene)chain(CmEn,where m,n=12,3;12,4;16,4;respectively).They found that C12E3very effectively promoted the formation of long wormlike micelles and as a result,the maximum viscosity of the solution attained about 104Pa·s.Recently,we reported a novel anionic wormlike micelle system constructed by carboxylate gemini surfactants with an azobenzene spacer(designated as Cm(azo)Cm,where m represented the number of the carbon atoms in each alkyl tail and was 10,12,and 14,respectively,see Scheme 1(a)).16,17The azobenzene spacer has a stretched length of more than 1 nm,which makes the head-group of Cm(azo)Cmincluding two carboxyl groups and a spacer quite large.This seems to say that Cm(azo)Cmis hard to form threadlike aggregates with a low surface curvature according to the molecular packing theory.18Very interestingly,however,all these surfactants formed wormlike micelles.The mechanism has been attributed to the rigid characteristic of the azobenzene spacer,which restrained the two alkyl tails within a gemini molecule drawing close and yielded the pseudo volume between them and thus increased the packing parameter,P.16,17This finding strongly suggests that the gemini surfactants with a long rigid spacer may be good candidates for forming anionic wormlike micelles.

    Scheme 1 Chemical structures of carboxylate gemini surfactants with long rigid spacer

    Very recently,we synthesized a new family of carboxylate gemini surfactants also with a long aromatic spacer,O,O?-bis(sodium 2-alkylcarboxylate)-p-dibenzenediol,referred to as Cm?2Cm(m=10,12,14,Scheme 1(b)).Surprisingly,we found that C12?2C12followed a new mechanism of aggregation different from general core-shell micelle formation.19In dilute solution,C12?2C12formed large network-like aggregates.This behavior was attributed to an extending configuration of C12?2C12with the two alkyl tails stretching towards the solution due to the rigidity of the long spacer.Thus the large network-like aggregate formation was an inevitable outcome of spontaneously reducing the energy of the system.Due to the columnar-like molecular geometry of C12?2C12,the network-like aggregates were very easily transformed into rod-like micelles with slightly increasing surfactant concentration and finally the wormlike micelles were formed.By this mechanism of aggregation,a new approach to constructing highly viscoelastic anionic wormlike micellar systems is perhaps revealed.In this paper,we report the wormlike micellar solution formed by C14?2C14that has the longest alkyl tails in this family so as to further understand this new constructing way.

    2 Experimental

    2.1 Materials

    Sodium bromide(NaBr,purity>99%,Beijing Chemical Reagents Co.)was used as received.The water used was Milli-Q grade with a resistivity of 18.2 MΩ·cm.

    O,O?-bis(sodium 2-tetradecylcarboxylate)-p-dibenzenediol(referred to as C14?2C14)was synthesized in our laboratory according to the following routes(Scheme 2).All reagents used were purchased from Sinopharm Chemical Reagent Co.,Ltd.(China).

    Methyl 2-bromotetradecanoate was prepared according to our previous work.17

    Synthesis of MC14?2C14M.The potassium carbonate(9.7 g,70 mol)was added to a three-necked flask with 20 mL N,N-dimethylformamide(DMF).4,4?-Biphenol(3.7 g,20 mmol)was dissolved in 10 mL DMF,and then this solution was added to the mixture dropwise.Methyl 2-bromotetradecanoate(19.3 g,60 mmol)was added into the mixture secondly.The mixture was reacted under stirring at 80°C overnight.The mixture was poured into 70 mL ice-water and extracted with petroleum ether(3×60 mL).The combined organic layers were washed with deionized water.The petroleum ether was removed under reduced pressure.The crude product was recrystallized from petroleum ether three times to give MC14?2C14M as white powder.

    Scheme 2 Synthetic route of C14?2C14

    Synthesis of C14?2C14.A mixture of MC14?2C14M(6.4 g,9.6 mmol)and sodium hydroxide(0.92 g,23 mmol)in 500 mL of 95%ethanol was refluxed overnight.The resulting mixture was cooled to room temperature and centrifuged to afford the white precipitate.The precipitate was washed with ethanol several times and dried in vacuum to give the target compound as white powder.The final yield was 36.6%according to the quality of 4,4?-biphenol.

    1H NMR(400 Hz,D2O)for C14?2C14: δ,7.56(d,J=7.6 Hz,4H,H-Ar),6.92(d,J=7.6 Hz,4H,H-Ar),4.47(br,2H,CH),1.90(m,4H,CH2),1.43-1.19(m,4H,CH2),1.05-0.82(m,36H,CH2),0.43(t,J=6.4 Hz,6H,CH3).

    Anal.Calcd.for(C40H60Na2O6)(%):C,70.35;H,8.86;Found:C,69.99;H,8.65.

    2.2 Rheological measurements

    Rheological measurements were performed on a stress controlled rheometer(AR2000ex,TAinstruments,USA)with conical concentric cylinders.The cone was made of standard ETC steel with the diameter of 40 mm and cone angle of 2°.The gap between the center of the cone and plate was 50 μm.At a designed temperature,the sample was kept for 5 min on the plate to reach the equilibrium before testing.A strain sweep was performed at a frequency of 6.28 rad·s-1(1 Hz)before the test.A strain value was then decided to make sure of the sample in the linear viscoelastic region during the following oscillatory measurements.

    2.3 Cryogenic transmission electron microscopy(cryo-TEM)

    Cryo-TEM samples were prepared in a controlled environment vitrification system(CEVS)at 28°C.A micropipet was used to load 5 μL surfactant solution onto a lacey support TEM grid,which was held by tweezers.The excess solution was blotted with a piece of filter paper and the thin film was suspended on the mesh hole.After waiting for about 10 s to relax any stresses induced during the blotting,the samples were quickly plunged into a reservoir of liquid ethane(cooled by the nitrogen)at its melting temperature.The vitrified samples were then stored in the liquid nitrogen until they were transferred to a cryogenic sample holder(Gatan 626)and examined with a JEM 2200FS TEM(200 keV)at about-174°C.The phase contrast was enhanced by underfocus.The images were recorded on a Gatan multiscan CCD and processed with Digital Micrograph.

    2.4 Dynamic light scattering

    Dynamic light scattering(DLS)of micellar solutions was measured with a Brookhaven Instrument which was composed of a BI-200SM goniometer,a BI-9000AT digital correlator(522 channels)and a photomultiplier detector.The He-Ne laser with 15 mW power and 632.8 nm wavelength was used as the light source.The measurement temperature was controlled by a thermostatic circulator(Poly-sceience,USA)with an accuracy of ±0.01 °C.All solutions were filtered through 0.22 μm Millipore filters into cylindrical light-scattering cells(od=25 mm).

    The intensity-intensity time correlation function G(2)(t,q)in the self-beating mode was measured,where t is decay time and q is scattering vector and equals to 4πn/λsin(θ/2).The G(2)(t,q)was transformed into the electric field-electric field time correlation function g(1)(t,q)by Siegert formula:

    where A is the baseline,β is a parameter depending on the coherence of the detection.The g(1)(t,q)was further related to the characteristic line-width(Γ)distribution G(Γ)by

    The G(Γ)can be obtained by a Laplace inversion of g(1)(t,q)using the CONTIN program.The average line-width<Γ> was calculated according to

    Furthermore,the apparent translational diffusive coefficient Dappcan be related to <Γ> as Dapp=<Γ>/q2.Thus,the apparent hydrodynamic radius of aggregate(Rh,app)was obtained from the Stokes-Einstein equation

    where kBis the Boltzmann constant,T is absolute temperature,and η0is the solvent viscosity.

    3 Results and discussion

    3.1 Characteristic of wormlike micelles at 25°C

    Fig.1 (a)Appearance of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)aqueous system at 25 °C,(b)the cryo-TEM image,and(c)its variations of G?(filled symbols),G?(open symbols)with sweep frequency ω

    The aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at 25 °C has a gel-like appearance(Fig.1a).This is due to the formation of wormlike micelles,which entangle each other into a transient network as seen in the cryo-TEM image(Fig.1b).The result of frequency sweep measurement(Fig.1c)shows high elasticity,where elastic modulus G?exceeds viscous modulus G?at sweep frequency ω>0.1 rad·s-1.This system very well follows the Maxwell fluid behavior with a single stress relaxation time(τR)20as fitted(solid lines in Fig.1c)by the equations:

    The corresponding Cole-Cole plot,i.e.,elastic modulus G? against viscous modulus G?(Fig.1c,insert),shows a perfect semicircular shape at low and medium frequencies,which is another indication for the Maxwell fluid behavior.

    The τRis estimated as ωc-1,where ωcis the frequency at which two moduli are equal.21On the increase in ω,the G?attains a limiting value called a plateau modulus,G?∞.The living polymer model proposed by Granek and Cates20revealed two time scales of stress relaxation,namely,reptation time(τrep),which corresponds to the curvilinear diffusion of a chain of the mean length along its own contour,and breaking time(τb).When breaking occurs over the time scale of reptation(τb<<τrep),as in a typical wormlike micellar system,the chain undergoes many breakages and recombinations before a chain segment relaxes by reptation.Thus the stress relaxation is characterized by a new time scale given by τR=(τbτrep)1/2,and the solution behaves as a Maxwell fluid with single relaxation time τR.The average scission time for the micelle,τb,is approximately equal to the inverse of ω corresponding to the minimum of G??minin the high-frequency region.For the present system,the estimated τbis ~0.105 s.This value allows us to estimate τrep~1.35×103s using τR(11.9 s),satisfying the expectation of τb<<τrep.20

    The micellar contour length(L)can be estimated by the relation20

    where leis the average length between two entanglement points and G??minis the minimum at G?at high-frequency region.For a given le,L is inversely proportional to the ratio G??min/G?∞.Thus,a smaller G??min/G?∞r(nóng)esults in a longer L.So far,the smallest G??min/G?∞r(nóng)eported was 0.014 yielded in the mixed system of carboxylate gemini surfactant with no spacer(GS)and C12E3.15In this case,Acharya et al.15have stressed that the added C12E3played a very important role in promoting micellar growth.Another small G??min/G?∞was 0.016 obtained from the system of traditional cationic surfactant having an unsaturated tail as long as 22 carbon atoms.22For the present system,the G??min/G?∞is about 0.022.Even though this value is not as low as those mentioned above,it is produced in an anionic wormlike micellar system only upon the addition of simple salt and hence is very rare.

    As a comparison,a typical value of le(80-150 nm)for wormlike micelles can be adopted15and thus L corresponds to roughly 3.6-6.8 μm for the present system at 25 °C.This length is indeed greatly longer than that of cetyltrimethylammonium bromide(C16TABr)micelle in the presence of 1.5 mol·L-1NaBr.23

    3.2 Zero-shear viscosity at 25°C

    Fig.2 Variations of viscosity(η)with the shear rate at 25 °C

    Fig.2 shows the viscosity versus steady shear rate curve for the aqueous system of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1).The viscosity keeps unchanged at low shear rate re-gion and then decreases with increasing the shear rate(the shear thinning behavior)after a critical shear rate,rc.The shear thinning behavior can be taken as an evidence for the formation of wormlike micelles,24which well corresponds to the indication of dynamic viscoelastic measurements.According to the Carreau model,the zero-shear viscosity η0is obtained to be 1.10×104Pa·s,meaning the relative viscosity of the wormlike micellar solution(ηr,given by η0/ηs,where ηsis the viscosity of the solvent,water)to be as high as 107.This is a very large value comparable with that obtained from the mixed system of gemini surfactant(GS)and C12E3.15

    3.3 Mechanism of wormlike micelle formation

    As seen in Sections 3.1 and 3.2,C14?2C14can form wormlike micelles in aqueous solution,which is similar to the behavior of C14(azo)C14as reported previously.17

    Fig.3(left row)shows the intensity-fraction distribution of C14?2C14measured by DLS,in which the aggregates at 5 and 10 mmol·L-1show quite large size(~100 nm in apparent hydrodynamic radius,Rh,app)and narrow distribution.With increasing the surfactant concentration(C),the mean Rhincreases obviously at C≥20 mmol·L-1,indicating the rapid growth of micelles.This behavior is very analogous to that of C12?2C12which is another member of this family.Thus,as revealed in our previous work,19C14?2C14must form large network-like aggregates after the critical micelle concentration(cmc),and these network-like aggregates can be very easily transformed into rod-like micelles with slightly increasing the surfactant concentration and finally the wormlike micelles are formed.

    However,it is very surprising that C14(azo)C14shows the aggregation behavior different from C14?2C14,although this surfactant also has a long aromatic spacer in its molecular structure.Fig.3(right row)shows the scattering intensity of C14(azo)C14only distributes at small Rhvalues(0.1-15 nm)but a very wide range(polydispersity in size).The two cases(C14?2C14and C14(azo)C14)reflect the complicacy of gemini surfactants in self-assembly and sometimes these surfactants show completely different behaviors although their molecular structures are similar.A good understanding for their mechanisms needs further and deep investigations.

    3.4 Effect of temperature

    Fig.3 Intensity-fraction distributions measured at a detector angle θ=90°and analyzed by CONTIN model for C14?2C14(left row)and C14(azo)C14(right row)at different concentrations

    Fig.4 Viscoelastic spectra(a)and the normalized Cole-Cole plots(b)at different temperatures

    Fig.4a shows the viscoelastic spectra of this system at different temperatures.On the raise in temperature,the rheological behavior still shows semicircular shape in the Cole-Cole plots(Fig.4b)over the range of low and medium frequencies.Similarly,the characteristic parameters described above can be obtained according to living polymer model.20For those cases where the G?does not give a constant limiting value,the G?∞may be estimated from the modulus value at ωc,using the relation G?∞=2G?max,where G?maxis the viscosity modulus at shear frequency ωc.21As seen from Table 1,the τRmonotonically decreases over the entire temperature range,but G?∞shows an initial enhancement at low temperatures followed by a subsequent decrease at higher temperatures.Since τRassociates with the micellar length,15the decrease in τRindicates the wormlike micelles become shorter with increasing temperature.This is consistent with the estimation for the length from the ratio of G?min/G?∞,which gives out the values of gradual decrease in L(Table 1).For the wormlike micellar system undergoing stress relaxation by reptation,G?∞generally depends on the number density of the aggregates.15The initial increase in G?∞over the temperature range of 25-40°C suggests that the enhanced thermal motion promotes the contact between the micelles and thus yields more entanglements,which makes the system more viscoelastic.The following decrease in G?∞above 40 °C must be due to the shorter micelles as discussed above.

    The zero-shear viscosity drown from Fig.5 has a value of 17.6 Pa·s at 70 °C,namely,its relative viscosity is 1.8×104.In general,with increasing temperature to 60 °C,the ηrof wormlike micellar solution falls to a value below 104.There are few,if any,examples of micellar solutions showing high viscosities(ηr>104)above 60 °C.The typical cases are the wormlike micel-lar solutions formed by cationic surfactants,erucyl bis(hydroxyethyl)methylammonium chloride(EHAC)and erucyl trimethylammonium chloride(ETAC),as reported by Raghavan and Kaler.22The both surfactants bear a quite long(C22)tail.Relying on the help of sodium salicylate or sodium chloride,the both systems retain high viscosity(ηr>104)up to ca 90 °C.Compared with EHAC or ETAC,C14?2C14only has short tails(12 carbon atoms in each tail,Scheme 1(b)).Even so,the relative viscosity ηrstill attains a rather large value at 70 °C.This is very rare for the anionic wormlike micelle systems.

    Table 1 Characteristic parameters of the wormlike micellar systems of C14?2C14(140 mmol·L-1)/NaBr(100 mmol·L-1)at different temperatures

    Fig.5 Variations of viscosity(η)with the shear rate at different temperatures

    3.5 Flow activation energy

    The variation of η0and τRwith temperature can be empirically described by Arrhenius relationships,indicating exponential reductions in these quantities:25,26

    where Eais the flow activation energy,R is the gas constant,and A is a pre-exponential factor.Semilogarithmic plots of η0and τRvs 1/T(Fig.6)fall on straight lines within experimental error,being consistent with Eqs.(8)and(9).The slope gives out the flow activation energy Eato be(141±5)kJ·mol-1.This value is comparable to that reported for other wormlike micelles.22,24

    Fig.6 Arrhenius plots of the zero-shear viscosity(η0)and the relaxation time(τR)vs 1/T

    4 Conclusions

    The present study exhibited an excellent anionic wormlike micelle system formed by carboxylate gemini surfactant C14?2C14.This result again demonstrates that the gemini surfactants are very good candidates for the construction of wormlike micelles and also strongly suggests that based on the gemini surfactants,an effective approach may be developed to construct the anionic wormlike micelle systems with excellent viscoelastic properties.

    (1) Dreiss,C.A.Soft Matter 2007,3,956.and references therein.doi:10.1039/b705775j

    (2) Yang,J.Curr.Opin.Colloid Interface Sci.2002,7,276.and references therein.doi:10.1016/S1359-0294(02)00071-7

    (3) Maitland,G.C.Curr.Opin.Colloid Interface Sci.2000,5,301.doi:10.1016/S1359-0294(00)00069-8

    (4) Magid,L.J.;Li,Z.;Butler,P.D.Langmuir 2000,16,10028.doi:10.1021/la0006216

    (5) Hassan,P.A.;Raghavan,S.R.;Kaler,E.W.Langmuir 2002,18,2543.doi:10.1021/la011435i

    (6) Arleth,L.;Bergstrom,M.;Pedersen,J.S.Langmuir 2002,18,5343.doi:10.1021/la015693r

    (7) Nakamura,K.;Shikata,T.Langmuir 2006,22,9853.doi:10.1021/la061031w

    (8)Acharya,D.P.;Sato,T.;Kaneko,M.;Singh,Y.;Kunieda,H.J.Phys.Chem.B 2006,110,754.doi:10.1021/jp054631x

    (9)Lu,T.;Xia,L.G.;Wang,X.D.;Wang,A.Q.;Zhang,T.Langmuir 2011,27,9815.doi:10.1021/la2018709

    (10) Mu,J.H.;Li,G.Z.Chem.Phys.Lett.2001,345,100.doi:10.1016/S0009-2614(01)00799-0

    (11) Mu,J.H.;Li,G.Z.Colloid Polym.Sci.2001,279,872.doi:10.1007/s003960100508

    (12)Mu,J.H.;Li,G.Z.;Jia,X.L.;Wang,H.X.;Zhang,G.Y.J.Phys.Chem.B 2002,106,11685.doi:10.1021/jp014096a

    (13) Mu,J.H.;Li,G.Z.;Wang,Z.W.Rheol.Acta 2002,41,493.doi:10.1007/s00397-002-0246-y

    (14)Mu,J.H.;Li,G.Z.;Wang,Z.W.;Zheng,L.Q.;Liao,G.Z.;Huang,L.J.Disper.Sci.Technol.2001,22,421.doi:10.1081/DIS-100107851

    (15)Acharya,D.P.;Kunieda,H.;Shiba,Y.;Aratani,K.J.Phys.Chem.B 2004,108,1790.

    (16) Song,B.L.;Hu,Y.F.;Zhao,J.X.J.Colloid Interface Sci.2009,333,820.doi:10.1016/j.jcis.2009.02.030

    (17) Song,B.L.;Hu,Y.F.;Song,Y.M.;Zhao,J.X.J.Colloid Interface Sci.2010,341,94.

    (18) Israelachvili,J.N.;Mitchell,D.J.;Ninham,B.W.Journal of the Chemical Society-Faraday Transactions II 1976,72,1525.doi:10.1039/f29767201525

    (19) Xie,D.H.;Zhao,J.X.Langmuir 2013,29,545.

    (20) Granek,R.;Cates,M.E.J.Chem.Phys.1992,96,4758.doi:10.1063/1.462787

    (21) Oda,R.;Narayanan,J.;Hassan,P.A.;Manohar,C.;Salkar,R.A.;Kern,F.;Candau,S.J.Langmuir 1998,14,4364.doi:10.1021/la971369d

    (22) Raghavan,S.R.;Kaler,E.W.Langmuir 2001,17,300.doi:10.1021/la0007933

    (23) Khatory,A.;Lequeux,F.;Kern,F.;Candau,S.J.Langmuir 1993,9,1456.doi:10.1021/la00030a005

    (24) Shrestha,R.G.;Shrestha,L.K.;Aramaki,K.J.Colloid Interface Sci.2007,311,276.doi:10.1016/j.jcis.2007.02.050

    (25) Candau,S.J.;Hirsch,E.;Zana,R.;Delsanti,M.Langmuir 1989,5,1225.doi:10.1021/la00089a018

    (26) Fischer,P.;Rehage,H.Langmuir 1997,13,7012.doi:10.1021/la970571d

    猜你喜歡
    化學(xué)系福州大學(xué)大學(xué)化學(xué)
    一種鎘基配位聚合物的合成及其對(duì)2,4,6-三硝基苯酚的熒光識(shí)別
    福州大學(xué)馬克思主義學(xué)院
    福州大學(xué)繼續(xù)教育學(xué)院
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    福州大學(xué)喜迎建校60周年
    一個(gè)二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    基于SCIE的大學(xué)化學(xué)學(xué)科文獻(xiàn)計(jì)量學(xué)研究——以河南大學(xué)為例
    信息技術(shù)在大學(xué)化學(xué)專業(yè)英語(yǔ)教學(xué)中的應(yīng)用
    亞太教育(2015年18期)2015-02-28 20:54:31
    楊梅酮的抗氧化活性
    關(guān)于《大學(xué)化學(xué)》編輯部新網(wǎng)頁(yè)開(kāi)通的通知
    日韩欧美一区视频在线观看| 久久久久视频综合| 99国产精品99久久久久| 久久久精品区二区三区| 国产av一区二区精品久久| 国产亚洲精品久久久久5区| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 交换朋友夫妻互换小说| 777米奇影视久久| 丰满少妇做爰视频| 亚洲全国av大片| 宅男免费午夜| 成年人黄色毛片网站| 一级毛片电影观看| 美女国产高潮福利片在线看| 国产又色又爽无遮挡免费看| 欧美日韩亚洲综合一区二区三区_| 99热国产这里只有精品6| 国产一区二区 视频在线| 欧美日韩精品网址| 男女无遮挡免费网站观看| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 一本综合久久免费| 亚洲美女黄片视频| 黄色视频,在线免费观看| 欧美日韩福利视频一区二区| 亚洲成人手机| 韩国精品一区二区三区| 成人亚洲精品一区在线观看| 亚洲免费av在线视频| 亚洲av片天天在线观看| 国产深夜福利视频在线观看| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| 久久青草综合色| 亚洲精品在线美女| 男女床上黄色一级片免费看| 男人操女人黄网站| 久久青草综合色| 国产成人欧美| 19禁男女啪啪无遮挡网站| 国产色视频综合| 国产高清国产精品国产三级| 精品国产超薄肉色丝袜足j| 宅男免费午夜| 欧美日韩一级在线毛片| 日日摸夜夜添夜夜添小说| 婷婷成人精品国产| 啦啦啦 在线观看视频| 亚洲色图 男人天堂 中文字幕| 人人澡人人妻人| 天堂俺去俺来也www色官网| 18禁国产床啪视频网站| 国产色视频综合| 精品一区二区三区av网在线观看 | 欧美乱码精品一区二区三区| 日韩免费高清中文字幕av| 欧美精品亚洲一区二区| 少妇粗大呻吟视频| 在线观看人妻少妇| 国产不卡av网站在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 三上悠亚av全集在线观看| 一个人免费看片子| 亚洲视频免费观看视频| 90打野战视频偷拍视频| 亚洲av日韩在线播放| 成人黄色视频免费在线看| 日韩大片免费观看网站| 搡老乐熟女国产| 9191精品国产免费久久| 久热爱精品视频在线9| 成人国产一区最新在线观看| 精品一区二区三卡| 99在线人妻在线中文字幕 | 又大又爽又粗| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区mp4| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 午夜福利免费观看在线| 中国美女看黄片| 桃花免费在线播放| 久久热在线av| 亚洲自偷自拍图片 自拍| 久久久久久免费高清国产稀缺| 亚洲国产毛片av蜜桃av| 欧美黄色片欧美黄色片| 精品国产乱码久久久久久男人| 男人操女人黄网站| 国产亚洲欧美精品永久| 亚洲 欧美一区二区三区| 色老头精品视频在线观看| 午夜精品国产一区二区电影| 午夜福利一区二区在线看| 午夜福利免费观看在线| 十八禁人妻一区二区| 一本色道久久久久久精品综合| 高清在线国产一区| 一区二区三区国产精品乱码| 一级黄色大片毛片| 男女午夜视频在线观看| 亚洲成人国产一区在线观看| 国内毛片毛片毛片毛片毛片| 欧美日韩一级在线毛片| 后天国语完整版免费观看| 色综合欧美亚洲国产小说| 久久99热这里只频精品6学生| 在线十欧美十亚洲十日本专区| 999精品在线视频| 精品国产一区二区三区四区第35| 国产在线免费精品| 国产成人精品久久二区二区91| 美女主播在线视频| √禁漫天堂资源中文www| 国产成人精品久久二区二区免费| 侵犯人妻中文字幕一二三四区| 涩涩av久久男人的天堂| 老汉色av国产亚洲站长工具| 国产精品 国内视频| 成人国语在线视频| 国产av国产精品国产| 国产精品一区二区精品视频观看| 精品亚洲乱码少妇综合久久| 精品少妇黑人巨大在线播放| 亚洲国产精品一区二区三区在线| 欧美日韩一级在线毛片| 国产高清国产精品国产三级| 色婷婷久久久亚洲欧美| 伊人久久大香线蕉亚洲五| 精品乱码久久久久久99久播| 国产福利在线免费观看视频| 99久久国产精品久久久| 久久国产精品人妻蜜桃| 国产老妇伦熟女老妇高清| 丝瓜视频免费看黄片| 久久中文看片网| 51午夜福利影视在线观看| 国产欧美日韩综合在线一区二区| 搡老乐熟女国产| 激情在线观看视频在线高清 | 国产精品久久久av美女十八| 国产一区二区激情短视频| 91国产中文字幕| 国产激情久久老熟女| 在线观看舔阴道视频| 12—13女人毛片做爰片一| 国产欧美日韩一区二区三| 亚洲国产精品一区二区三区在线| 精品一区二区三区四区五区乱码| 色视频在线一区二区三区| 在线观看66精品国产| 欧美精品高潮呻吟av久久| 女人久久www免费人成看片| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美在线一区| 亚洲精品av麻豆狂野| 亚洲欧美激情在线| 欧美变态另类bdsm刘玥| 精品免费久久久久久久清纯 | 免费在线观看黄色视频的| 正在播放国产对白刺激| 欧美精品啪啪一区二区三区| 精品人妻1区二区| 黄色视频不卡| 免费人妻精品一区二区三区视频| 欧美成人免费av一区二区三区 | 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 好男人电影高清在线观看| 久久av网站| 亚洲国产精品一区二区三区在线| 操美女的视频在线观看| 中文字幕av电影在线播放| 天堂俺去俺来也www色官网| 久久精品国产亚洲av香蕉五月 | 丝袜人妻中文字幕| 老司机福利观看| 国产成+人综合+亚洲专区| av线在线观看网站| 亚洲精品粉嫩美女一区| 亚洲人成电影观看| 男女高潮啪啪啪动态图| 在线十欧美十亚洲十日本专区| 乱人伦中国视频| 性高湖久久久久久久久免费观看| 中文欧美无线码| 久久久精品94久久精品| 我要看黄色一级片免费的| 日本五十路高清| 90打野战视频偷拍视频| 精品熟女少妇八av免费久了| 久久人人爽av亚洲精品天堂| 在线观看66精品国产| 欧美黑人精品巨大| 日本a在线网址| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 亚洲国产欧美日韩在线播放| 十八禁网站网址无遮挡| 免费在线观看黄色视频的| 精品国内亚洲2022精品成人 | 丝袜美足系列| 日韩制服丝袜自拍偷拍| 女性生殖器流出的白浆| 在线观看免费午夜福利视频| 看免费av毛片| 久久久久久久大尺度免费视频| 久久久久精品人妻al黑| 国产av又大| 2018国产大陆天天弄谢| 成人精品一区二区免费| 麻豆成人av在线观看| 韩国精品一区二区三区| 在线天堂中文资源库| 亚洲国产欧美一区二区综合| 十分钟在线观看高清视频www| 国产免费视频播放在线视频| 一区二区三区激情视频| 国产一区有黄有色的免费视频| 黑丝袜美女国产一区| 18禁黄网站禁片午夜丰满| 丁香六月欧美| 精品亚洲乱码少妇综合久久| 叶爱在线成人免费视频播放| 成人国产av品久久久| 欧美午夜高清在线| 日韩大码丰满熟妇| 中文字幕最新亚洲高清| 777久久人妻少妇嫩草av网站| 成年动漫av网址| 午夜福利在线观看吧| 在线播放国产精品三级| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 热99re8久久精品国产| 黄色怎么调成土黄色| 亚洲成人免费电影在线观看| 亚洲,欧美精品.| 欧美成狂野欧美在线观看| 黄色怎么调成土黄色| 亚洲国产成人一精品久久久| 国产在线免费精品| 亚洲国产av影院在线观看| 午夜91福利影院| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 我要看黄色一级片免费的| 亚洲第一青青草原| 久久久国产一区二区| 亚洲国产欧美日韩在线播放| 高清毛片免费观看视频网站 | av网站在线播放免费| 亚洲专区中文字幕在线| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 免费观看av网站的网址| 丁香六月欧美| 国产伦理片在线播放av一区| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 性少妇av在线| 日韩制服丝袜自拍偷拍| 免费观看a级毛片全部| 欧美日韩精品网址| 亚洲精品中文字幕一二三四区 | 国产成人精品无人区| 免费一级毛片在线播放高清视频 | 午夜福利视频精品| www.999成人在线观看| 亚洲欧洲日产国产| 在线观看一区二区三区激情| 99久久精品国产亚洲精品| 亚洲五月色婷婷综合| 99re6热这里在线精品视频| 欧美日韩福利视频一区二区| 亚洲精品自拍成人| 亚洲人成77777在线视频| 成年人黄色毛片网站| 国产aⅴ精品一区二区三区波| 精品国产亚洲在线| 国产精品.久久久| 国产成人av教育| 欧美久久黑人一区二区| 国产精品一区二区免费欧美| 黑人巨大精品欧美一区二区蜜桃| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| svipshipincom国产片| 久久精品亚洲熟妇少妇任你| 国产亚洲精品第一综合不卡| 日韩一卡2卡3卡4卡2021年| 天堂俺去俺来也www色官网| 人成视频在线观看免费观看| 99国产精品一区二区三区| 亚洲av日韩精品久久久久久密| 黄片播放在线免费| kizo精华| 国产亚洲午夜精品一区二区久久| 日韩精品免费视频一区二区三区| 午夜激情久久久久久久| 国产精品久久久av美女十八| 久久久久视频综合| 亚洲成人免费av在线播放| 人人妻人人澡人人看| 999久久久精品免费观看国产| 国产精品久久久久久人妻精品电影 | 国产一区二区三区视频了| 亚洲av国产av综合av卡| 亚洲五月色婷婷综合| av网站免费在线观看视频| 超碰成人久久| 亚洲七黄色美女视频| av电影中文网址| 欧美日韩中文字幕国产精品一区二区三区 | 成人特级黄色片久久久久久久 | 不卡av一区二区三区| 国产成人精品在线电影| 丝袜美足系列| 午夜福利免费观看在线| 亚洲av片天天在线观看| 国产精品自产拍在线观看55亚洲 | 欧美+亚洲+日韩+国产| tocl精华| 每晚都被弄得嗷嗷叫到高潮| 一区在线观看完整版| 建设人人有责人人尽责人人享有的| 母亲3免费完整高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 亚洲专区字幕在线| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 国内毛片毛片毛片毛片毛片| 老司机靠b影院| 欧美变态另类bdsm刘玥| 新久久久久国产一级毛片| 午夜福利在线观看吧| 国产成人免费观看mmmm| 老汉色∧v一级毛片| 国产欧美日韩精品亚洲av| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 国产精品免费一区二区三区在线 | 亚洲性夜色夜夜综合| 国产精品免费大片| 精品亚洲成a人片在线观看| 欧美成狂野欧美在线观看| 王馨瑶露胸无遮挡在线观看| 在线永久观看黄色视频| 国产黄色免费在线视频| netflix在线观看网站| 精品一品国产午夜福利视频| 一区二区三区精品91| 亚洲精品成人av观看孕妇| 母亲3免费完整高清在线观看| 曰老女人黄片| 麻豆av在线久日| 黄色成人免费大全| 又大又爽又粗| 蜜桃国产av成人99| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 国产极品粉嫩免费观看在线| 午夜免费成人在线视频| 亚洲精品乱久久久久久| 国产精品香港三级国产av潘金莲| 久久久精品94久久精品| 亚洲男人天堂网一区| 两个人看的免费小视频| 国产又色又爽无遮挡免费看| 亚洲人成伊人成综合网2020| 亚洲美女黄片视频| 国产97色在线日韩免费| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o| 久久国产精品影院| 亚洲人成电影观看| 亚洲国产欧美日韩在线播放| 日本wwww免费看| 嫩草影视91久久| 性少妇av在线| 在线观看人妻少妇| 亚洲精品国产一区二区精华液| 在线观看免费视频网站a站| 欧美国产精品一级二级三级| 久久中文看片网| 青青草视频在线视频观看| 久久久久精品人妻al黑| 午夜日韩欧美国产| 狠狠婷婷综合久久久久久88av| 我要看黄色一级片免费的| 亚洲精品中文字幕一二三四区 | 国产av又大| 成人av一区二区三区在线看| 国产成人一区二区三区免费视频网站| 亚洲成人免费av在线播放| 精品久久蜜臀av无| 午夜福利乱码中文字幕| 精品第一国产精品| 日韩三级视频一区二区三区| 国产成人精品久久二区二区免费| 国产av精品麻豆| 夜夜骑夜夜射夜夜干| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 中文字幕色久视频| 日本欧美视频一区| 一级毛片电影观看| 国产欧美日韩精品亚洲av| 免费一级毛片在线播放高清视频 | 国产亚洲av高清不卡| 欧美亚洲 丝袜 人妻 在线| 久久久久久免费高清国产稀缺| 别揉我奶头~嗯~啊~动态视频| 91字幕亚洲| 桃花免费在线播放| 久久亚洲精品不卡| 淫妇啪啪啪对白视频| www.999成人在线观看| 国产免费视频播放在线视频| 中文字幕人妻丝袜制服| 国产精品98久久久久久宅男小说| 国产色视频综合| 日韩免费av在线播放| 性少妇av在线| 在线观看免费视频网站a站| 久久影院123| 亚洲精品美女久久av网站| 热re99久久国产66热| 欧美激情高清一区二区三区| 国产精品1区2区在线观看. | 在线av久久热| 考比视频在线观看| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 水蜜桃什么品种好| 欧美人与性动交α欧美精品济南到| av线在线观看网站| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区三| 日本av手机在线免费观看| 91成年电影在线观看| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一小说 | 成年人免费黄色播放视频| 精品卡一卡二卡四卡免费| 男女之事视频高清在线观看| 国产亚洲av高清不卡| av福利片在线| 在线观看一区二区三区激情| 久久影院123| 国产亚洲欧美在线一区二区| 欧美人与性动交α欧美软件| 欧美精品av麻豆av| 黄色视频不卡| 亚洲va日本ⅴa欧美va伊人久久| 久久精品91无色码中文字幕| 国产欧美日韩一区二区三区在线| 中文字幕色久视频| 黄片小视频在线播放| 啦啦啦在线免费观看视频4| 久久人妻福利社区极品人妻图片| 在线观看66精品国产| 午夜精品久久久久久毛片777| 精品亚洲成a人片在线观看| 免费久久久久久久精品成人欧美视频| 国产伦理片在线播放av一区| 王馨瑶露胸无遮挡在线观看| 国产精品 国内视频| 老司机靠b影院| 国产97色在线日韩免费| 国产不卡av网站在线观看| 啦啦啦视频在线资源免费观看| 免费观看av网站的网址| 成人特级黄色片久久久久久久 | 久久婷婷成人综合色麻豆| 国产精品秋霞免费鲁丝片| 日韩 欧美 亚洲 中文字幕| 亚洲情色 制服丝袜| 人人妻人人澡人人爽人人夜夜| 女性被躁到高潮视频| 丝袜人妻中文字幕| 久久精品国产a三级三级三级| 2018国产大陆天天弄谢| 国产在线视频一区二区| 国产精品熟女久久久久浪| 嫁个100分男人电影在线观看| 午夜精品国产一区二区电影| av网站在线播放免费| 精品少妇黑人巨大在线播放| 免费在线观看视频国产中文字幕亚洲| 午夜福利在线观看吧| 狠狠精品人妻久久久久久综合| 精品午夜福利视频在线观看一区 | 国产精品 欧美亚洲| 国产在线视频一区二区| 欧美国产精品va在线观看不卡| 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 在线播放国产精品三级| videosex国产| 老熟妇乱子伦视频在线观看| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 亚洲 欧美一区二区三区| 亚洲av第一区精品v没综合| 精品国产超薄肉色丝袜足j| 国产成人免费观看mmmm| 一进一出好大好爽视频| 王馨瑶露胸无遮挡在线观看| 久久久久国内视频| 97在线人人人人妻| 久久ye,这里只有精品| 国产一区二区三区在线臀色熟女 | 欧美精品啪啪一区二区三区| 亚洲色图 男人天堂 中文字幕| 少妇精品久久久久久久| 人人澡人人妻人| 狠狠婷婷综合久久久久久88av| 一区二区三区激情视频| 国产精品亚洲av一区麻豆| 国产伦理片在线播放av一区| 美国免费a级毛片| 桃红色精品国产亚洲av| 免费黄频网站在线观看国产| 淫妇啪啪啪对白视频| 少妇裸体淫交视频免费看高清 | 国精品久久久久久国模美| 国产福利在线免费观看视频| 老熟妇仑乱视频hdxx| 免费久久久久久久精品成人欧美视频| 19禁男女啪啪无遮挡网站| 曰老女人黄片| 国产国语露脸激情在线看| 久热这里只有精品99| 黄色毛片三级朝国网站| 欧美精品人与动牲交sv欧美| 久久久久久久大尺度免费视频| 亚洲avbb在线观看| 日韩熟女老妇一区二区性免费视频| 9热在线视频观看99| 人人妻人人澡人人看| 在线永久观看黄色视频| 天天躁日日躁夜夜躁夜夜| 久久精品亚洲av国产电影网| 国产日韩欧美在线精品| 亚洲色图综合在线观看| 老鸭窝网址在线观看| 成人国产一区最新在线观看| 国产高清videossex| 国产一区二区三区在线臀色熟女 | 国产精品久久久久久精品电影小说| 日韩有码中文字幕| 欧美黑人精品巨大| 黑人操中国人逼视频| 嫁个100分男人电影在线观看| 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区| 最近最新中文字幕大全免费视频| 成人av一区二区三区在线看| √禁漫天堂资源中文www| 精品久久久久久久毛片微露脸| 久久国产精品影院| 在线av久久热| 久久久水蜜桃国产精品网| 水蜜桃什么品种好| 性少妇av在线| 日本精品一区二区三区蜜桃| 美女国产高潮福利片在线看| 一区二区av电影网| 国产伦理片在线播放av一区| 欧美精品啪啪一区二区三区| bbb黄色大片| 1024香蕉在线观看| 老司机深夜福利视频在线观看| av福利片在线| 国产欧美日韩一区二区三| 夜夜骑夜夜射夜夜干| 亚洲一卡2卡3卡4卡5卡精品中文| 国产av一区二区精品久久| av电影中文网址| 久久久国产成人免费| 国产主播在线观看一区二区| 天天躁日日躁夜夜躁夜夜| 香蕉国产在线看| 一区福利在线观看| 丰满少妇做爰视频| 麻豆国产av国片精品| 久久精品aⅴ一区二区三区四区| 黑人操中国人逼视频| 国产av又大| 日韩欧美一区视频在线观看| 一区二区三区乱码不卡18| 欧美乱妇无乱码| 欧美黑人精品巨大| 国产在视频线精品| 最黄视频免费看| kizo精华| 久久久久网色| 日本撒尿小便嘘嘘汇集6| 美女高潮喷水抽搐中文字幕| 一边摸一边抽搐一进一出视频| 亚洲伊人久久精品综合| 99re6热这里在线精品视频| 午夜激情av网站| 免费不卡黄色视频| 精品少妇黑人巨大在线播放|