• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    均苯四甲酰亞胺橋聯(lián)的聚酞菁亞鐵的氧還原反應(yīng)

    2013-09-21 09:00:46孫曉然李光躍夏定國(guó)張立美
    物理化學(xué)學(xué)報(bào) 2013年7期
    關(guān)鍵詞:酞菁北京工業(yè)大學(xué)物理化學(xué)

    孫曉然 李光躍 夏定國(guó) 張立美 李 釩

    (1北京工業(yè)大學(xué)化學(xué)與環(huán)境工程學(xué)院,北京100086;2北京大學(xué)工學(xué)院,北京100871;3河北聯(lián)合大學(xué)化學(xué)工程學(xué)院,河北唐山063009)

    1 Introduction

    In the past decades,phthalocyanine(Pc)has been widely applied in many fields,1including dyeing,2,3chemical sensors for gases,4liquid crystals,5,6nonlinear optics,7and catalysis.8Specificity in the applications of Pcs can be introduced by modification of the Pc ring or changes in the central metal.Pcs can form coordination complexes with most metal elements.These complexes are also intensely colored and are thus used as dyes or pigments.2,3Due to their large conjugated systems,they exhibit distinct optical and electrical properties,good chemical stability,and excellent electrocatalysis activities.In recent years,Pcs as the cathode catalysts have gradually substituted for the Pt/C electrode in direct-methanol fuel cells(DMFCs).

    DMFCs are a kind of proton-exchange fuel cells in which methanol is used as the fuel.Their main advantage is easy transportation of methanol,which are energy-dense and stable at all environmental conditions.At present,the efficiency of these cells is quite low.So they are targeted especially to portable applications,where energy and power density are more important than efficiency.Yet,methanol crossover is a problem for the development of DMFCs.This problem can be solved by two ways:(1)preparing the proton-exchange membrane with low methanol-transmittance;(2)preparing new electrocatalysts resistant in methanol oxidation.Nowadays,the methanol-transmittance of the proton-exchange membrane is still very high,which could significantly reduce the performance of DMFCs.Polymeric metallophthalocyanines are electrocatalytically active in oxygen-reduction and resistant in methanol-oxidation.As the cathode catalysts of DMFCs,they draw more and more interests in the research.

    Fig.1 Structure of poly-PcFe

    Fundamentally,redox reactions are a family of reactions that are concerned with the electron or charge transfer between molecules.9In order to better understand the redox mechanism,there have been a lot of efforts to complement experiments by theory.Recently,charge transfer and some other electronic processes have started to be studied computationally for conjugated molecules and their related systems.10-17Based on the ideas mentioned above,we designed a new kind of pyromellitimide-bridged polyphthalocyanine Fe(II)(poly-PcFe,shown in Fig.1)catalyst.This catalyst can be easily synthesized.It is important to understand the reaction process of O2reduction because of its crucial role in determining electrocatalysis activity.In order to provide a complementary view on the O2-reduction reaction,we performed a density functional theory(DFT)to study concerning this catalyst.Three model molecules are designed with different polymerization degrees(P1,P2,and P3,which are shown in Fig.2).To evaluate the influence of polymerization degrees on the O2reduction,molecular geometries were optimized for P1,P2,and P3.In particular,we focused our attention on the frontier molecular orbitals in the model molecules and O2,and the polymerization degree effect on the O2reduction.By scanning the potential curves of the possible process in the O2reduction,we can obtain the trend of reactions between O2and poly-PcFe,thus explaining the process of the O2-reduction reaction.

    2 Computational methods

    All calculations on electronic structures were carried out using the ORCA 2.8 program.18Geometry optimizations and vibration analysis were performed using density functional theory(DFT)method.In DFT,the electron density played the key role and all molecular properties could be derived from the density.The computational effort for DFT was much smaller than for correlated ab initio treatments and actually quite similar to Hatree-Fock theory.DFT applications required the choice of a suitable exchange-correlation functional and one-electron basis set.In this work,a test with a series of functionals(BP86,BLYP,PW91,B3P86,B3LYP,and B3PW91)was performed to confirm the proper functional.As the result,BP86 functional19,20was chosen as the functional,which was also considered to be the preferred DFT approach for carrying out related research.21The single valence quality with one set of polarization functions(SVP)22was chosen as basis sets throughout,which was a proper basis set for ionic compound23,24and not time-consuming.No constrains for symmetry,bonds,angles,or dihedral angles were applied in the geometry optimization calculations.All of the local minima were confirmed by the absence of an imaginary mode in vibrational analysis calculations.Furthermore,the natural bond orbital(NBO)analysis was performed using the NBO 3.0 program.25A useful aspect of the NBO method was that it gives information about interaction in both filled and virtual orbital spaces.26Moreover,the potential energy curves were qualitatively scanned by constrained optimizations,keeping the target bond distance fixed at a serious of values.According to our previous report,27the energy of reaction P+H→PH could take place of the energy of reactionPH in the calculations.

    Fig.2 Structures of three models(P1,P2,and P3)of poly-PcFe

    3 Results and discussion

    3.1 Molecular geometries

    The optimized geometries of pyromellitimide-bridged polyphthalocyanine Fe(II)with different polymerization degrees(n=1-3)are obtained using the BP86 functional with SVP basis sets(shown in Fig.3,P1,P2,and P3 were described in this paper).Their spin multiplicities(S)are 5,9,and 13,respectively.Because of large conjugation effect,all the atoms in phthalocyanine moieties of P1,P2,and P3 are coplanar.Four Fe―N bonds are all 0.1985 nm in P1,which indicates that the Fe―N bonds are equivalent and the dicarboximino groups have little effect on the molecular structure of P1.But pyromellitimide moieties do not conjugate with a benzene ring in the three molecules,due to the stereo-hindrance effect.They have a dihedral angle of 75°.All the bond lengths of Fe―N are 0.1981-0.1982 nm in P2 and P3,slightly shortened by the pyromellitimide moieties.

    We also optimized the geometries of the complexes formed by the three poly-PcFe models and O2.The results show that their geometries are all similar.The complex P3-O2is shown in Fig.4.In this molecule,the bond angle of Fe―O―O is 121°.The Fe―O bond length is 0.228 nm,shorter than the sum of the van der Waals radii(0.278 nm)for the corresponding atoms.28So,the Fe atom in P3 can interact with O2with a weak interaction.According to the Mulliken charge analysis,both of the O atoms are negatively charged.The O―O bond length is 0.126 nm,longer than that in the O2molecule(0.121 nm).This indicates the donation of electrons from the central Fe atom to the anti-bonding orbital of O2.According to the NBO charge analysis,the natural charges of two O atoms in P3-O2are-0.106e and-0.092e,respectively.Thus,P3-O2can be considered as P3 binding an O2molecule.

    3.2 Stability of the O2-complexes

    Fig.4 Geometry of P3-O2complex

    We also calculated the binding energy(ΔE)for the reaction between O2and the three poly-PcFe models to determine the stability of their O2-complexes.As shown in Fig.5,it can be seen that each reaction has a negative binding energy,indicating that all of the calculated reactions are exothermic.That is to say,the selected O2-complex structures are all stable.It is evident that the ΔE decreases almost linearly with increasing polymerization degree.Accordingly,poly-PcFe models with larger polymerization degree should have better stability.

    3.3 Molecular orbital analysis

    According to the study on metallophthalocyanines of Zagal et al.,29,30the interaction between molecular orbital of O2and the atomic orbital of the central metal could cause the charge transfer from the metal atom to O2.The O2-reduction process in this work can be shown as:

    Frontier molecular orbital(FMO)theory has recently provided an elegant explanation for the redox reactions.31In this theory,the lowest unoccupied molecular orbital(LUMO),the highest occupied molecular orbital(HOMO),and the singly occupied molecular orbital(SOMO)play vital roles.For the O2-reduction reaction of poly-PcFe,the following criteria must be met:(1)the molecular orbitals must align for good overlap,which can explain why the Fe―O―O bond angle is nearly 120°;(2)the energies of the SOMOs in O2must be lower than those of the HOMOs in the poly-PcFe models,which is necessary for O2-reduction.As shown in Fig.6,the energy of HOMO in the poly-PcFe models,is higher than that of the SOMOs of O2.This demonstrates that all of the poly-PcFe models can be applied to the catalysis of O2-reduction.It is worthwhile to note that the HOMO energy is increased as the polymerization degree of poly-PcFe models is increased.Comparing the FMO energies,we can conclude that the substituent groups in phthalocyanine Fe(II)polymers could influence their electrocatalytic activities.Stronger electron-withdrawing groups could increase the electrocatalytic activity of Fe-phthalocyanine polymers,such as pyromellitimide groups.This agrees with the studies by Zajal et al.30

    Fig.3 Geometries of P1,P2,and P3

    Fig.5 Calculated binding energies of the O2-complexes of poly-PcFe models

    As reported,Eckhardt et al.32described the relationship between the frontier-orbital energy of conjugated polymers and the onset redox potential for the first time.The formula proposed by them can be written as follows:

    EHOMO=-e(φonset,re+4.4)(unit:eV)

    where EHOMO,e,and φonset,restand for the energy of HOMO,electron charge,and onset reduction potential,respectively.According to the HOMO energy of the poly-PcFe models,we can estimate that the onset potential of O2reduction is higher than 0.87 eV.Furthermore,the results show that poly-PcFe with higher polymerization degree exhibits stronger reduction ability.

    Molecular orbital diagram is an appropriate tool in explaining chemical bonding in molecules.33The molecular orbital diagrams have been calculated for P1-O2.As shown in Fig.7,a σ-bonding orbital can be formed by the linear combination of dz2orbital of Fe atom and π*2pyorbital of O2molecule;a π-bonding orbital can be formed by the linear combination of dyzorbital of Fe atom and π*2pyorbital of O2molecule.In other words,the Fe atom connects with O2molecule by a double bond.Meanwhile,the NBO analysis also confirms the double bond.But the occupancies of them are 0.324 and 0.238.This confirms the weak interaction between Fe atom and O2molecule.

    Fig.6 Calculated energy levels of HOMOs,LUMOs,and SOMOs

    3.4 Potential energy curves and O2-reduction electrocatalytic cycle

    The potential energy curves of P1 involved in the process of the O2-reduction reaction have been studied.Although the DFT method cannot be expected to be sufficiently accurate in calculating energies,previous calculations have indicated that the method may be reliable in calculating hydrogen-transfer potential energy.15,17,18Fig.8(A)shows that the combination of the Fe atom in P1 and O2molecule is an energetically favorable process with a very low potential barrier.The displacement of water molecule by O2could be the rate-determining step in the catalytic cycle.34Fig.8(B)shows a barrierless potential-energy curve for P1-OOH model,the energy of which decreases with the O―H bond length shortened from 0.287 to 0.097 nm.This indicates that the complex P1-O2can spontaneously capture the H+cation in the acidic solution and be reduced to P1-OOH.Meanwhile,F(xiàn)e(II)is oxidized to Fe(III).As depicted in Fig.8(C),P1-OOH changes into P1-OOH2by capturing the H+cation,which is also a spontaneous exothermic process.Its binding energy is smaller than that of P1-O2,because capturing the first H+cation could destroy the O=O double bond in P1-O2and thus need more energy.The data in Fig.8(D)confirmed that P1-OOH2is unstable.It could decompose into P1-O and a water molecule when Fe(III)is oxidized to Fe(IV).Actually,the H+-capturing of P1-OOH and the water-disintegration from P1-OOH2are simultaneous.Figs.8(E)and 8(F)provide the potential energy curves of H+-capturing process of P1-O as functions of the corresponding O―H bond lengths.Similar with P1-O2,P1-O can spontaneously be reduced to P1-OH2,which could be considered as P1 binding a water molecule.Fe(IV)is gradually reduced to Fe(II)in the process.

    Fig.7 Molecular orbitals formed by the atomic orbitals in Fe and O2in P1

    Fig.8 Calculated potential energy curves involved in the O2-reduction reaction

    Fig.9 depicts the O2-reduction reaction of poly-PcFe in details,where the ring of the Pc is represented by two bold vertical lines.Poly-PcFe is used in O2-reduction electrodes that operate by means of the electrocatalytic cycle.The cycle begins with the molecule P1,in which Fe(II)atom is tetra-coordinated by Pc ring.Subsequent binding of O2yields the Fe(II)-O2complex(triplet),a good electron acceptor.This could trigger the reduction of O2(step 1).Since the Fe(II)-O2is a good Lewis base,it captures a proton to form the Fe(III)-hydroperoxide species(quartet,step 2).The Fe(III)-hydroperoxide species is still a good Lewis base and captures another proton.When the cathode supplies a electron,a Fe(IV)-O complex(quintet)and a water are formed(steps 3 and 4).Then,the oxygen atom in the Fe(IV)-O complex is protonated.In this case,the oxygen atom is converted into another water molecule.In the meantime,the Fe(IV)is reduced to Fe(II)(steps 5 and 6,F(xiàn)e(III)-OH:quartet;Fe(II)-OH2:quintet).After this electrocatalytic reaction,the O2molecule can be reduced to two water molecules in the acidic solution,and the poly-PcFe restores to its beginning state by releasing a water molecule.

    Fig.9 Schematic representation of the electrocatalytic cycle of poly-PcFe

    4 Conclusions

    In summary,the process for O2reduction of poly-PcFe was studied by DFT method.Structual analysis and FMO analysis by DFT calculations confirm that the pyromellitimide moieties and phthalocyanine moieties of poly-PcFe are not coplanar.The Fe atom in pyromellitimide moiety could combine O2and form a stable complex by a double bond.The double bond is a linear combination of the d orbital of Fe and SOMO of O2.The charge transfer process takes place from the Fe atom to the binding O2molecule.The FMO results also show that the HOMO energy is increased as the polymerization degree of poly-PcFe isincreased,and strong electron-withdrawing groups of poly-PcFe are favorable to O2reduction.So,the poly-PcFe catalyst with higher polymerization degree and stronger electron-withdrawing groups could have better activi-ties of O2reduction.Based on the HOMO energies,the onset potential of O2reduction with the catalyst is estimated to be less than 0.87 eV.The potential energy curves confirme that O2can be reduced on the poly-PcFe catalyst by means of an electrocatalytic cycle.This poly-PcFe catalyst has electrocatalytic activity for O2reduction in acidic medium.

    (1) Phthalocyanines-Properties and Applications;Leznoff,C.C.,Lever,A.B.P.Eds.;VCH:New York,1989-1996.

    (2) McKeown,N.B.Phthalocyanine Materials-Synthesis,Structure and Function;Cambridge University Press:Cambridge,1998.

    (3)The Porphyrin Handbook;Kadish,K.,Smith,K.M.,Guilard,R.Eds.;Academic Press:San Diego,2003;Vols.15-20.

    (4) de la Torre,G.;Vasquez,P.;Agulló-López,F(xiàn).Adv.Mater.1997,9,265.

    (5) Simon,J.;Sirlin,C.Pure Appl.Chem.1989,61,1625.doi:10.1351/pac198961091625

    (6) Humberstone,P.;Clarkson,G.J.;McKeown,N.B.;Treacher,K.E.J.Mater.Chem.1996,6,315.doi:10.1039/jm9960600315

    (7) Dini,D.;Hanack,M.Physical Properties of 107 Phthalocyanine-Based Materials.In The Porphyrin Handbook,Volumes 11-20:Phthalocyanines:Properties and Materials;Academic Press:San Diego,2003;Vol.17,p 1.

    (8) Lever,A.B.P.;Hempstead,M.R.;Leznoff,C.C.;Liu,W.;Melnik,M.;Nevin,W.A.;Seymour,P.Pure Appl.Chem.1986,58,1467.doi:10.1351/pac198658111467

    (9) Sirotin,S.V.;Tolbin,A.Y.;Moskovskaya,I.F.;Abramchuk,S.S.;Tomilova,L.G.;Romanovsky,B.V.J.Mol.Cat.A:Chem.2010,319,39.doi:10.1016/j.molcata.2009.11.017

    (10) Han,K.L.;He,G.Z.J.Photochem.Photobiol.C 2007,8,55.doi:10.1016/j.jphotochemrev.2007.03.002

    (11) Zhao,G.J.;Han,K.L.J.Phys.Chem.A 2007,111,2469.doi:10.1021/jp068420j

    (12) Zhao,G.J.;Han,K.L.Biophys.J.2008,94,38.doi:10.1529/biophysj.107.113738

    (13)Yu,F(xiàn).B.;Li,P.;Li,G.Y.;Zhao,G.J.;Chu,T.S.;Han,K.L.J.Am.Chem.Soc.2011,133,11030.doi:10.1021/ja202582x

    (14) Li,G.Y.;Zhao,G.J.;Liu,Y.H.;Han,K.L.;He,G.Z.J.Comput.Chem.2010,31,1759.

    (15) Zhao,G.J.;Han,K.L.Accounts Chem.Res.2012,45,404.doi:10.1021/ar200135h

    (16) Li,G.Y.;Chu,T.S.Phys.Chem.Chem.Phys.2011,13,20766.doi:10.1039/c1cp21470e

    (17)Li,G.Y.;Zhao,G.J.;Han,K.L.;He,G.Z.J.Comput.Chem.2011,32,668.doi:10.1002/jcc.v32.4

    (18) Neese,F(xiàn).ORCA-an Ab initio,Density Functional and Semiempirical Program Package;2008.http://www.thch.uni-bonn.de/tc/orca/

    (19) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/1.464913

    (20) Perdew,J.P.Phys.Rev.B 1986,33,8822.doi:10.1103/PhysRevB.33.8822

    (21) Himo,F(xiàn).;Siegbahn,P.E.M.Chem.Rev.2003,103,2421.doi:10.1021/cr020436s

    (22)Treutler,O.;Ahlrichs,R.J.Chem.Phys.1995,102,346.

    (23) Zhong,A.G.;Huang,L.;Jiang,H.J.Acta Phys.-Chim.Sin.2011,27,837.[鐘愛國(guó),黃 凌,蔣華江.物理化學(xué)學(xué)報(bào),2011,27,837.]doi:10.3866/PKU.WHXB20110323

    (24) Schneider,S.K.;Julius,G.R.;Loschen,C.;Raubenheimer,H.G.;Frenking,G.;Herrmann,W.A.Dalton Trans.2006,1226.

    (25)http://www.ccl.net/cca/software/SOURCES/FORTRAN/nbo/index.shtml

    (26) Zheng,W.R.;Xu,J.L.;Xiong,R.Acta Phys.-Chim.Sin.2010,26,2535.[鄭文銳,徐菁利,熊 瑞.物理化學(xué)學(xué)報(bào),2010,26,2535.]doi:10.3866/PKU.WHXB20100931

    (27) Chen,X.;Li,F(xiàn).;Wang,X.Y.;Sun,S.R.;Xia,D.G.J.Phys.Chem.C 2012,116,12553.doi:10.1021/jp300638e

    (28) Favia,A.D.;Cavalli,A.;Masetti,M.;Carotti,A.;Recanatini,M.Proteins 2006,62,1074.

    (29) Zagal,J.H.;Cárdenas-Jirón,G.I.J.Electroanal.Chem.2000,489,96.doi:10.1016/S0022-0728(00)00209-6

    (30) Zagal,J.H.;Gulppi,M.;Issacs,M.;Cardenas-Jiron,G.;Aguirre,M.J.Electrochim.Acta 1998,44,1349.doi:10.1016/S0013-4686(98)00257-6

    (31) Fendorf,S.E.;Fendorf,M.;Sparks,D.L.;Gronsky,R.J.Colloid Interface Sci.1992,153,37.doi:10.1016/0021-9797(92)90296-X

    (32) Eckhardt,H.;Shacklette,L.W.;Jen,K.Y.J.Chem.Phys.1989,91,1303.doi:10.1063/1.457153

    (33) Jean,Y.;Volatron,F(xiàn).An Introduction to Molecular Orbitals;Oxford University Press:Oxford,1993.

    (34) Shaik,S.;Kumar,D.;de Visser,S.P.;Altun,A.;Thiel,W.Chem.Rev.2005,105,2279.doi:10.1021/cr030722j

    猜你喜歡
    酞菁北京工業(yè)大學(xué)物理化學(xué)
    北京工業(yè)大學(xué)
    北京工業(yè)大學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    北京工業(yè)大學(xué)
    2-硝基酞菁鋁的合成及其催化活性研究
    安徽化工(2018年4期)2018-09-03 07:11:48
    Chemical Concepts from Density Functional Theory
    北京工業(yè)大學(xué)
    纖維素纖維負(fù)載鈷酞菁對(duì)活性染料X-3B的降解
    四羧基酞菁鋅鍵合MCM=41的合成及其對(duì)Li/SOCl2電池催化活性的影響
    www.自偷自拍.com| 国产成人一区二区三区免费视频网站| 麻豆国产av国片精品| 一级黄色大片毛片| 毛片女人毛片| 2021天堂中文幕一二区在线观| 日本在线视频免费播放| 成人午夜高清在线视频| 国产一区二区三区视频了| 国产成人av激情在线播放| 1024手机看黄色片| 啪啪无遮挡十八禁网站| 综合色av麻豆| 他把我摸到了高潮在线观看| 欧美不卡视频在线免费观看| 免费在线观看亚洲国产| 国产蜜桃级精品一区二区三区| 国产高清三级在线| 免费观看人在逋| 九九久久精品国产亚洲av麻豆 | 好看av亚洲va欧美ⅴa在| 国内精品久久久久久久电影| 两性夫妻黄色片| 国产成人福利小说| 伊人久久大香线蕉亚洲五| 观看美女的网站| 精品久久久久久久毛片微露脸| 国产伦一二天堂av在线观看| 美女cb高潮喷水在线观看 | 亚洲熟妇中文字幕五十中出| 2021天堂中文幕一二区在线观| 中文在线观看免费www的网站| 国产三级黄色录像| 午夜福利高清视频| 999精品在线视频| 亚洲va日本ⅴa欧美va伊人久久| 丰满人妻熟妇乱又伦精品不卡| 免费搜索国产男女视频| 激情在线观看视频在线高清| 亚洲午夜理论影院| 麻豆一二三区av精品| 非洲黑人性xxxx精品又粗又长| 免费电影在线观看免费观看| 日本黄色视频三级网站网址| 真实男女啪啪啪动态图| tocl精华| 亚洲九九香蕉| 91av网站免费观看| 欧美极品一区二区三区四区| 香蕉丝袜av| 国产又色又爽无遮挡免费看| 欧美高清成人免费视频www| 日韩高清综合在线| 综合色av麻豆| www日本黄色视频网| 人妻夜夜爽99麻豆av| 欧美三级亚洲精品| 精品久久久久久久久久免费视频| 热99在线观看视频| 在线观看免费视频日本深夜| 真人做人爱边吃奶动态| bbb黄色大片| 日本 欧美在线| 国产精品九九99| 美女免费视频网站| 日本成人三级电影网站| 人人妻人人看人人澡| 久久伊人香网站| 热99re8久久精品国产| 一边摸一边抽搐一进一小说| 女生性感内裤真人,穿戴方法视频| 久久欧美精品欧美久久欧美| 亚洲va日本ⅴa欧美va伊人久久| 中文字幕最新亚洲高清| 狂野欧美白嫩少妇大欣赏| 成人无遮挡网站| 级片在线观看| 精品欧美国产一区二区三| 九色成人免费人妻av| 亚洲专区国产一区二区| 久久热在线av| 九色国产91popny在线| 亚洲欧美日韩高清在线视频| 少妇的逼水好多| 夜夜夜夜夜久久久久| 亚洲精品美女久久av网站| 国产91精品成人一区二区三区| 日本与韩国留学比较| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合一区二区三区| 成熟少妇高潮喷水视频| 国产成人影院久久av| 精品乱码久久久久久99久播| av在线蜜桃| 少妇的逼水好多| 欧美另类亚洲清纯唯美| 亚洲成人久久爱视频| 一进一出抽搐动态| 国产亚洲精品久久久com| 给我免费播放毛片高清在线观看| 偷拍熟女少妇极品色| 婷婷亚洲欧美| 国产精品一区二区免费欧美| 18禁黄网站禁片午夜丰满| 日韩有码中文字幕| 岛国视频午夜一区免费看| 99久久精品热视频| 99热只有精品国产| 亚洲熟妇中文字幕五十中出| 中文字幕人妻丝袜一区二区| 欧美黄色片欧美黄色片| 欧美黑人欧美精品刺激| 久久久久久国产a免费观看| 亚洲熟妇中文字幕五十中出| 两个人的视频大全免费| 亚洲自拍偷在线| 黄色成人免费大全| 日韩大尺度精品在线看网址| 国产av麻豆久久久久久久| e午夜精品久久久久久久| aaaaa片日本免费| 亚洲五月天丁香| 久久精品影院6| 国产精品,欧美在线| 在线观看免费视频日本深夜| 熟妇人妻久久中文字幕3abv| 国产午夜精品论理片| 在线十欧美十亚洲十日本专区| 欧美一级a爱片免费观看看| 午夜精品一区二区三区免费看| 国产精品一区二区免费欧美| xxxwww97欧美| 亚洲男人的天堂狠狠| 可以在线观看毛片的网站| 一本精品99久久精品77| 成年免费大片在线观看| 亚洲性夜色夜夜综合| avwww免费| 男女午夜视频在线观看| 国产精品影院久久| 国产av在哪里看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲自拍偷在线| 国产一区在线观看成人免费| 免费看a级黄色片| 亚洲成人免费电影在线观看| 一本综合久久免费| 日韩欧美在线二视频| 亚洲精品乱码久久久v下载方式 | 男人舔女人下体高潮全视频| 巨乳人妻的诱惑在线观看| 欧美又色又爽又黄视频| 精品福利观看| 亚洲精品一卡2卡三卡4卡5卡| 特级一级黄色大片| 国产免费男女视频| 又黄又粗又硬又大视频| 久久精品亚洲精品国产色婷小说| 在线国产一区二区在线| 午夜日韩欧美国产| 看片在线看免费视频| 亚洲av片天天在线观看| 国产精品野战在线观看| 国产激情欧美一区二区| 丁香六月欧美| 免费在线观看日本一区| 真实男女啪啪啪动态图| xxx96com| 一进一出好大好爽视频| 国产91精品成人一区二区三区| 免费高清视频大片| 午夜免费观看网址| 久久中文看片网| 神马国产精品三级电影在线观看| 国产高清三级在线| 国产成人欧美在线观看| 色综合欧美亚洲国产小说| 久久久久九九精品影院| 精品久久久久久久毛片微露脸| 村上凉子中文字幕在线| 老熟妇仑乱视频hdxx| 亚洲乱码一区二区免费版| 啦啦啦免费观看视频1| 欧美日韩黄片免| 国产亚洲精品久久久久久毛片| 亚洲 欧美一区二区三区| 非洲黑人性xxxx精品又粗又长| 极品教师在线免费播放| 久久精品aⅴ一区二区三区四区| 欧美日本视频| 色尼玛亚洲综合影院| 在线播放国产精品三级| 亚洲欧美日韩高清在线视频| 精品国内亚洲2022精品成人| netflix在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 成年人黄色毛片网站| 亚洲av免费在线观看| 午夜影院日韩av| 国产精品久久久人人做人人爽| 国产黄片美女视频| 国产欧美日韩精品一区二区| 国产成+人综合+亚洲专区| 全区人妻精品视频| av中文乱码字幕在线| avwww免费| 一二三四社区在线视频社区8| or卡值多少钱| 桃红色精品国产亚洲av| 欧美丝袜亚洲另类 | 亚洲专区国产一区二区| 99久久精品一区二区三区| 成人欧美大片| 黑人操中国人逼视频| 国产伦精品一区二区三区四那| 国产av麻豆久久久久久久| 淫妇啪啪啪对白视频| 美女扒开内裤让男人捅视频| 青草久久国产| 熟女人妻精品中文字幕| 精品久久久久久成人av| 成人欧美大片| 岛国在线观看网站| 国产亚洲av高清不卡| 国内精品美女久久久久久| 亚洲欧美精品综合一区二区三区| 亚洲最大成人中文| 麻豆成人av在线观看| 国产精品国产高清国产av| 在线观看66精品国产| 老司机深夜福利视频在线观看| 国内精品久久久久精免费| 韩国av一区二区三区四区| 免费看光身美女| 日本黄色视频三级网站网址| 久久人人精品亚洲av| 国产精品一及| 国产精品爽爽va在线观看网站| 日日干狠狠操夜夜爽| 在线观看午夜福利视频| 久久亚洲真实| 精品久久久久久久末码| 欧美黑人巨大hd| 禁无遮挡网站| 后天国语完整版免费观看| 性色avwww在线观看| 精品欧美国产一区二区三| 91麻豆av在线| 国产亚洲精品av在线| 两个人的视频大全免费| 国产伦精品一区二区三区视频9 | 中出人妻视频一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲精华国产精华精| 欧美黄色淫秽网站| 在线观看日韩欧美| 日韩欧美国产在线观看| 岛国在线观看网站| 日韩人妻高清精品专区| 日本精品一区二区三区蜜桃| 国产精品 国内视频| 性欧美人与动物交配| 亚洲男人的天堂狠狠| 韩国av一区二区三区四区| 久久精品国产99精品国产亚洲性色| 99久国产av精品| 在线国产一区二区在线| 三级国产精品欧美在线观看 | 亚洲av熟女| 亚洲五月婷婷丁香| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 丁香六月欧美| 91在线观看av| 免费看a级黄色片| 色噜噜av男人的天堂激情| 偷拍熟女少妇极品色| 亚洲av熟女| 日韩有码中文字幕| 91老司机精品| 精品福利观看| 国产三级中文精品| 在线免费观看的www视频| 精品免费久久久久久久清纯| 国产成人一区二区三区免费视频网站| 欧美成人免费av一区二区三区| 国产精品电影一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产又色又爽无遮挡免费看| 精品乱码久久久久久99久播| 麻豆av在线久日| 老司机午夜福利在线观看视频| 久久久久国产一级毛片高清牌| 久久久国产成人精品二区| 国产日本99.免费观看| 高清在线国产一区| 熟妇人妻久久中文字幕3abv| 久久久久久九九精品二区国产| 色在线成人网| 久久香蕉国产精品| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式 | 色尼玛亚洲综合影院| 亚洲成av人片在线播放无| 亚洲一区二区三区色噜噜| 午夜福利欧美成人| 久久久久久大精品| 性色avwww在线观看| 亚洲精品456在线播放app | 在线观看免费午夜福利视频| 日本一本二区三区精品| 欧美日韩综合久久久久久 | 91av网站免费观看| 最近最新免费中文字幕在线| 两性夫妻黄色片| 天堂影院成人在线观看| 国产成人精品久久二区二区免费| 国产伦在线观看视频一区| 伊人久久大香线蕉亚洲五| 成年女人永久免费观看视频| 欧美xxxx黑人xx丫x性爽| 国产久久久一区二区三区| 成人国产综合亚洲| 丁香欧美五月| 18禁美女被吸乳视频| 夜夜夜夜夜久久久久| 亚洲无线观看免费| 精品久久久久久,| 精品乱码久久久久久99久播| 亚洲性夜色夜夜综合| 久久久色成人| 精品午夜福利视频在线观看一区| 伦理电影免费视频| 国产亚洲精品av在线| 999久久久精品免费观看国产| 男人舔奶头视频| 国产成年人精品一区二区| 免费看美女性在线毛片视频| 熟女人妻精品中文字幕| 日韩欧美在线二视频| 全区人妻精品视频| 久久精品夜夜夜夜夜久久蜜豆| 精品乱码久久久久久99久播| 两性夫妻黄色片| 免费在线观看日本一区| 久久久久久人人人人人| 欧美日韩中文字幕国产精品一区二区三区| 十八禁人妻一区二区| 黄色丝袜av网址大全| 午夜两性在线视频| 一进一出好大好爽视频| 黄片大片在线免费观看| xxx96com| 老司机深夜福利视频在线观看| 999精品在线视频| 久久中文看片网| 日本免费a在线| 成年女人毛片免费观看观看9| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 国产精品久久久久久精品电影| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 在线国产一区二区在线| 人人妻人人澡欧美一区二区| 叶爱在线成人免费视频播放| 夜夜夜夜夜久久久久| 国产免费男女视频| 巨乳人妻的诱惑在线观看| 精品免费久久久久久久清纯| 性欧美人与动物交配| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片| 精品国产乱码久久久久久男人| 日韩有码中文字幕| 怎么达到女性高潮| 欧美日韩瑟瑟在线播放| 国产99白浆流出| 亚洲av日韩精品久久久久久密| 亚洲成a人片在线一区二区| 亚洲午夜精品一区,二区,三区| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 99久久国产精品久久久| 国产免费男女视频| 男人舔女人的私密视频| 亚洲精品粉嫩美女一区| 国产美女午夜福利| 一级毛片高清免费大全| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人av| 禁无遮挡网站| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 小说图片视频综合网站| 日韩欧美精品v在线| 性色av乱码一区二区三区2| 又爽又黄无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲国产看品久久| 麻豆av在线久日| 精品久久久久久久久久久久久| 精品国内亚洲2022精品成人| 欧美不卡视频在线免费观看| 久久精品aⅴ一区二区三区四区| 亚洲无线在线观看| 国产97色在线日韩免费| 国产成+人综合+亚洲专区| 男人舔奶头视频| 亚洲性夜色夜夜综合| 成人三级做爰电影| 欧美不卡视频在线免费观看| 久久人人精品亚洲av| 久久久久国内视频| 国产高清三级在线| 日韩中文字幕欧美一区二区| www.999成人在线观看| 人妻久久中文字幕网| 午夜福利在线观看免费完整高清在 | 一本一本综合久久| 美女被艹到高潮喷水动态| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 国产伦人伦偷精品视频| 一本精品99久久精品77| 嫩草影视91久久| 一个人观看的视频www高清免费观看 | 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看| 88av欧美| 精品久久蜜臀av无| 亚洲av五月六月丁香网| 国产成人系列免费观看| 欧美日韩福利视频一区二区| 一级毛片精品| av中文乱码字幕在线| 精品免费久久久久久久清纯| 精品午夜福利视频在线观看一区| 搞女人的毛片| 国产真人三级小视频在线观看| tocl精华| 99热精品在线国产| 国产高清视频在线播放一区| 极品教师在线免费播放| 国产单亲对白刺激| 三级男女做爰猛烈吃奶摸视频| 久久亚洲精品不卡| 亚洲成av人片免费观看| 成人一区二区视频在线观看| 在线视频色国产色| 欧美色视频一区免费| 少妇熟女aⅴ在线视频| 五月玫瑰六月丁香| 日本撒尿小便嘘嘘汇集6| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影| 欧美色视频一区免费| 国产免费男女视频| 国产成年人精品一区二区| www.精华液| 国产精品综合久久久久久久免费| 国产成人福利小说| 欧美日韩一级在线毛片| 好看av亚洲va欧美ⅴa在| 国产私拍福利视频在线观看| 免费在线观看成人毛片| 亚洲欧美精品综合一区二区三区| 日韩欧美三级三区| 久久久国产成人精品二区| 精品国产亚洲在线| 搡老妇女老女人老熟妇| 淫妇啪啪啪对白视频| 美女大奶头视频| 国产真实乱freesex| 国产毛片a区久久久久| 国产三级黄色录像| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| 亚洲七黄色美女视频| 中文字幕久久专区| 国产免费av片在线观看野外av| 欧美色视频一区免费| 免费无遮挡裸体视频| 精品久久久久久久毛片微露脸| 国产久久久一区二区三区| av天堂在线播放| 久久性视频一级片| 成人国产综合亚洲| 我要搜黄色片| 麻豆一二三区av精品| 精品乱码久久久久久99久播| 美女高潮的动态| 我的老师免费观看完整版| 亚洲黑人精品在线| 香蕉久久夜色| 国产av不卡久久| 亚洲国产精品久久男人天堂| 国产三级在线视频| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 亚洲熟妇熟女久久| 国产人伦9x9x在线观看| 午夜福利18| 波多野结衣巨乳人妻| 搡老岳熟女国产| 国产成人av教育| 午夜视频精品福利| 精品一区二区三区视频在线 | 欧美最黄视频在线播放免费| 日本 av在线| 欧美日韩福利视频一区二区| 小说图片视频综合网站| 成人午夜高清在线视频| 久久久久久久久中文| 国产成人福利小说| 国产av一区在线观看免费| 97碰自拍视频| 一边摸一边抽搐一进一小说| 亚洲国产欧美网| 欧美午夜高清在线| 国产v大片淫在线免费观看| 色哟哟哟哟哟哟| 成年女人永久免费观看视频| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看 | 日本免费a在线| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 欧美日韩一级在线毛片| 国产午夜福利久久久久久| 国模一区二区三区四区视频 | 99热只有精品国产| 亚洲国产精品久久男人天堂| 国产精品久久久av美女十八| 很黄的视频免费| 国产高潮美女av| 给我免费播放毛片高清在线观看| 757午夜福利合集在线观看| 俄罗斯特黄特色一大片| 美女被艹到高潮喷水动态| 深夜精品福利| 在线播放国产精品三级| 久久精品aⅴ一区二区三区四区| x7x7x7水蜜桃| 男人舔奶头视频| 亚洲欧美激情综合另类| 午夜免费成人在线视频| e午夜精品久久久久久久| 999久久久国产精品视频| 99在线视频只有这里精品首页| 国产精品一区二区精品视频观看| 噜噜噜噜噜久久久久久91| 中文字幕久久专区| 十八禁网站免费在线| 九色国产91popny在线| 国产伦精品一区二区三区视频9 | 他把我摸到了高潮在线观看| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 亚洲人成伊人成综合网2020| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 两性夫妻黄色片| 日本黄色视频三级网站网址| www.www免费av| 国产亚洲av高清不卡| 麻豆av在线久日| 黄色日韩在线| 99久久无色码亚洲精品果冻| 99久久99久久久精品蜜桃| 亚洲av日韩精品久久久久久密| 制服人妻中文乱码| 在线视频色国产色| 国产精品亚洲av一区麻豆| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 免费看十八禁软件| 一级黄色大片毛片| 一边摸一边抽搐一进一小说| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 国产黄片美女视频| 最近最新免费中文字幕在线| 黄色成人免费大全| www.www免费av| 精品一区二区三区视频在线观看免费| 日韩高清综合在线| 一区二区三区激情视频| 久久性视频一级片| 午夜福利在线观看免费完整高清在 | 欧美+亚洲+日韩+国产| 黄色片一级片一级黄色片| 97碰自拍视频| 国产亚洲欧美98| 亚洲国产精品999在线| 精品久久蜜臀av无| 色噜噜av男人的天堂激情| 法律面前人人平等表现在哪些方面| 国产精品久久久av美女十八| 欧美成人免费av一区二区三区| 在线视频色国产色| 色综合欧美亚洲国产小说| 午夜a级毛片| 久久久久精品国产欧美久久久| 精华霜和精华液先用哪个| 色av中文字幕| 他把我摸到了高潮在线观看| 国产 一区 欧美 日韩| 国产精品一区二区三区四区久久|