• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    楊梅酮的抗氧化活性

    2013-09-21 09:00:42謝湖均牟望舒林芙蓉徐結(jié)慧雷群芳方文軍
    物理化學(xué)學(xué)報 2013年7期
    關(guān)鍵詞:化學(xué)系工商大學(xué)杭州

    謝湖均 牟望舒 林芙蓉 徐結(jié)慧 雷群芳 方文軍

    (1浙江工商大學(xué)應(yīng)用化學(xué)系,杭州310035;2浙江大學(xué)化學(xué)系,杭州310027)

    1 Introduction

    Flavonoids are found in fruits,vegetables,bark,nuts,tea,grains,flowers,and wine.1-3The general structures of flavonoids share a common three-ring structure in which two of them are aromatic rings A and B and one of them is heterocyclic C,which are shown in Fig.1.4-7Myricetin(3,5,7,3',4',5'-hexa-hydroxyflavon),belonging to flavonoid compounds,is a natural antioxidant that is present in waxberry.8-10The molecular structure of myricetin is also presented in Fig.1.Previous studies showed that myricetin has a variety of biological activities.11,12Myricetin has shown to possess anti-inflammatory,antiallergic,antimutagenic,cancer chemo-preventive and antioxidant activities.13-15Hence,in the past few years,many scientists have devoted to the research of the biological activity,especially the antioxidant activity of this compound,since free radical-induced peroxidation of membrane lipids has been considered to be associated with a wide variety of chronic health problems,such as cancer,atherosclerosis,and aging.16,17Myricetin has been reported to be a good antioxidant and can reduce levels of plasma low-density lipoproteins.18,19

    The antioxidant activity of myricetin is related to its hydroxyl(OH)groups which can scavenge free radicals produced in vivo.20,21Previous experimental and theoretical studies showed that myricetin is a stronger antioxidant than quercetin,which has been attributed to the presence of the 5'-OH group that allows a further stabilization of the semiquinone myricetin radical via hydrogen-bond interaction.22,23Moreover,the pyrogallol moiety present in myricetin is a better superoxide scavenger than the catechol moiety present in quercetin.Wang et al.24evaluated the cytoprotective effect of myricetin on oxidative stress damaged cells by assessment of the scavenging effect of reactive oxygen species(ROS)and the activities of antioxidant enzymes.The results show that the myricetin has the scavenging effect of 1,1-diphenyl-2-picrylhydrazyl(DPPH)radicals on intracellular ROS.Moser25revealed that the antioxidant activity of myricetin was determined in soybean oil methyl esters(SME),and myricetin had greater antioxidant activity than atocopherol,but was inferior to tert-butylhydroquinone.

    Justino and Vieira26performed semi-empirical PM6 calculations to obtain the heat of formation,frontier molecular orbitals,atomic charge,as well as bond dissociation enthalpy,in order to discuss the antioxidant activity of myricetin.However,generally speaking,the PM6 method can not give the fine geometry and unpaired electron distribution of a molecule.In contrast,density functional theory(DFT)has proved to be reliable in the study of geometrical and energetic properties of proton transfer and other ion-molecule reactions.27-29Sadasivam and Kumaresan30have reported the antioxidant activity of myricetin via DFT calculations.The results showed that a hydrogen abstraction in the para position is more favored than the other positions,showing that the myricetin is a potent antioxidant due to its semiquinone structure of dehydrogenated radicals,in which the unpaired electrons are mainly distributed on the para position of the O-atom and B ring.

    In the present calculations,the antioxidant activity and rate constant for H-atom abstraction reaction of myricetin have been performed by DFT calculations.Our work can provide the reasons of high antioxidant activity of myricetin and determine which structural and electronic features are behind the high antioxidant activity of myricetin and telucidate the possible mechanisms underlying antioxidant activity.

    2 Computational details

    Geometry optimizations and frequency calculations have been carried out using the M06-2X functional31,32in combination with the 6-31++G(d,p)basis set.Unrestricted calculations were used for open shell systems,and local minima and transition states(TS)were identified by the number of imaginary frequencies(NIMAG=0 or 1,respectively).For each transition state,intrinsic reaction coordinate(IRC)calculations were also performed to guarantee its correct connection to the designated local minima.The TS Gibbs free energy allowed us to evaluate the Gibbs free energies of activation(ΔG#).To examine solvent effect on hydrogen atom abstraction reaction,the conductorlike polarizable continuum model(CPCM)33,34with a dielectric constant of water(ε=78.35)has been employed on the basis of the optimized structures in the gas phase.All the electronic calculations were performed with the Gaussian 09 package of programs.35

    Atom in molecule(AIM)theory36,37was performed at the M06-2X/6-31++G(d,p)level of theory to investigate the hydrogen bond property of studied structures.The AIM analysis was carried out by means ofAIM2000 program.38

    Fig.1 Molecular structure of flavonoid and atom numbering of myricetin(R)

    Bond dissociation enthalpy(BDE,ΔH)of each OH group in flavonoids(ArOH)was calculated for different compounds according to the following equation:

    where H was the enthalpy that took into account temperaturedependent corrections(zero point energy(ZPE),translational,rotational,and vibrational energies at 298 K).H(ArOH,298 K)corresponded to the enthalpy of the molecule and H(ArO·,298 K)was the enthalpy of the phenoxy radical where the H atom was removed.The BDE of each OH group of a compound was quoted BDE(i-OH).

    The rate constants appeared more relevant than ΔG#to compare the different reactions since hydrogen atom transfer(HAT)reactions may involve tunneling effect.Rate coefficients were calculated at 298 K within the conventional transition state theory(TST)39,40framework.

    where kBand h are the Boltzmann and Planck constants,the κ(T)transmission coefficient(quantum tunneling along the reaction coordinate)was evaluated by Wigner method.41This method is the most widely used and the simplest approximation to account for tunneling through the reaction barrier.Wigner method assumes a parabolic potential for nuclear motion near the transition state and κW(T)is given by

    where ν#is the transition states(TS)imaginary frequency.

    3 Results and discussion

    3.1 Geometry analysis of myricetin

    The nomenclature of H-deleted radicals is based on the molecular structure of myricetin(Fig.1).For example,the hydrogen atom is deleted from 3 site,then corresponding compounds are denoted with 3-OH radical.The same notation is used for the other radical forms,corresponding intermediates(Int),TS,and products(P).

    Structure-activity relationship researches42-44revealed that flavonoids have effective radical-scaveng capacities,which is originated from unique geometry conformation,that is,the ortho-trihydroxyl structure in the B-ring,the 2,3-double bond allows π electron delocalization from the B-ring,as well as the 3-and 5-OH with 4-oxo function in the A-and C-rings.As shown in Fig.1,myricetin belongs to flavonoid and possesses the similar structure characteristic,indicating strong antioxidant activity.

    Fig.2 depicts the evolution of the energy with respect to the C2'-C1'-C2-O1torsion angle around C1'-C2bond of myricetin between the rings B and C,and their preferred relative positions are presented.It has been found that the zero degree torsion angle is the most stable conformer of myricetin in gas phase.The curve also shows that the maximum value of potential energy lies at 90°,and the rotational barrier for interconversion is predicted to be 26.5 kJ·mol-1,which is consistent with previous results obtained from other flavonoids.45-48All hydroxyl groups are oriented in such way to form the stable structure.

    Fig.2 Relative energy profiles of myricetin obtained from rotation of the dihedral angle C2′?C1′?C2?O1around C1′?C2bond

    Many researchers have reported conformational calculations of flavonoids.Van Acker et al.49have obtained a planar geometry for quercetin via ab initio method,with the STO-3G basis set.Sadasivam and Kumaresan30have showed that the myricetin has a highly planar structure,the result is important because planarity influences π electron delocalization,one of the important parameters for an antioxidant.Fig.3 represents a three-dimensional(3D)visualization HOMO of myricetin,and it shows the characteristic of π state.For the myricetin,the HOMO mostly remains on the B-ring and little in the C2-C3double bond,indicating that the hydroxides in B-ring have strong antioxidant activity,which is in good agreement with previous calculated results.30,46The present calculations also suggested the presence of H-bond interactions between 3-OH and the carbonyl groups,3'-OH and 4'-OH groups,as well as 4'-OH and 5'-OH groups.Based on the calculations,the predicted H-bond distance of O3- H3…O4is about 0.1914 nm,which may play an important role in the myricetin stabilization and antioxidation activity.50,51

    Fig.3 Frontier molecular orbitals of myricetin(isovalue=0.05)

    3.2 Bond dissociation enthalpy

    As Fig.1 shows,among the six hydroxyl groups of myricetin,the 3'-OH,4'-OH,and 5'-OH groups are in the B-ring(pyrogallol moiety),which are responsible for the strong antioxidant activity of myricetin.In addition,the 3-OH is in the C-ing,while the 5-OH and 7-OH groups are in theA-ring.

    On the basis of previous studies,46,52-54flavonoids can react with radicals by hydrogen atom transfer(HAT)due to the low bond dissociation enthalpy of the O-H bond.Also,hydrogen atom transfer from an antioxidant to the oxygen-containing radical is a thermodynamically favorable event.Such as the BDE of phenol is 370 kJ·mol-1,which is generally chosen as the zero compound.55,56According to present calculations,all the BDEs of myricetin are lower than that of phenol as shown in Table 1,indicating that the hydrogen atom transfer is more favorable than the electron transfer.The BDE for breaking the O-H bond is characteristic of this antioxidant pathway.The weaker the OH bond(low BDE),the faster the reaction with free radicals.

    Theoretical calculations of the bond dissociation enthalpy by means of semi-empirical,Hartree-Fock,as well as DFT methods,have been useful for elucidating the high capacity of the OH groups of phenolic antioxidants.Nevertheless,quantumchemical studies on flavonoids are far from being complete.The previous theoretical investigations focused only on the B-ring(particularly the catechol moiety)and the most reliable methodology still has to be established.Although the B3LYP method is used in many investigations on antioxidant activity,57-60and in this study,the M06-2X method developed by Zhao and Truhlar31,32is applied.The main reason lies in the fact that sometimes there are some problems in the prediction of bond dissociation enthalpy,as well as energies and geometries of transition states by means of the B3LYP method.61-63As shown in Table 1,it can be seen the sequence of the BDE of OH groups calculated from M06-2X/6-31++G(d,p)level of theory:4'-OH<5'-OH<5-OH<3-OH<3'-OH<7-OH,meaning that the 4'-OH group has the strongest antioxidation activity with the BDE value of 303.7 kJ·mol-1,which is consistent with the calculations obtained by Sadasivama and kumaresan.30

    The relative low values of bond dissociation enthalpy(ΔH)are found for the 4'-OH and 5'-OH myricetin radicals,which clearly demonstrates that the B-ring is the most important site for hydrogen atom transfer.The role of the B-ring found here,especially that of the 4'-OH group,is in accordance with all structure-activity relationship described in the literature.30,46,64,65The role of ortho-substitution on the B-ring has also been intensively discussed,the 4'-OH seems to be the most thermo-dynamically favorable site,and similar results are obtained for quercetin and taxifolin.66,67The low ΔH value of 4'-OH group could be attributed to weak hydrogen-bond interactions,that is,the keto(C=O)group and remaining 3'-OH and 5'-OH groups(O3'-H'…O4'and O5'-H'…O4'hydrogen bonds).After the O-H bond is broken in the parent compound,the radical is able to rearrange to the more stable conformation,corresponding to the formation of a new hydrogen-bond in contrast to myricetin molecule.Thus,the hydrogen-bond has a stabilizing effect after radical formation on the B-ring and rearrangement,by twisting the remaining OH bond,is possible in the present calculations.

    Table 1 Total energies(E)and relative energies(RE)of dehydrogenated myricetin radicals and O-H bond dissociation enthalpies(ΔH)derived from M06-2X/6-31++G(d,p)calculations

    The 3-OH,5-OH,and 7-OH radicals were also considered in the present study.The ΔH values(Table 1)show that the role of the A-ring and C-ring is clearly less important than that of the B-ring.In contrast to B-ring,a difference of about 42 kJ·mol-1is observed for the bond dissociation enthalpy of the A-ring and C-ring.Again,this is in agreement with all previous studies.30,46The calculated BDE values confirm that even the 3-OH group in the C-ring of myricetin,in some cases,can be also responsible for antioxidant activity.46,68After H removal of the 3-OH group,the stabilizing effect,due to an hydrogenbond with the 4-keto group,disappears in myricetin.

    Fig.4 presents the singly occupied molecular orbitals(SOMO)of dehydrogenated myricetin radicals.As Fig.4 shows,the SOMO of radicals can be correlated with the free radical-scavenging activity due to their delocalization of the unpaired electron and conjugation effects.Lien et al.69used this parameter in a quantitative structure-activity relationship(QSAR)study on phenolic compounds.The SOMO is important because it corresponds to the energy level of the unpaired electron.We have therefore analyzed the spatial distribution of SOMO.This parameter gives important information about possible stabilization by delocalization of the flavonoxy radical.It is noticed from Fig.4 that the SOMO is delocalized over the B-ring for the 4'-OH radicals of myricetin.Possibility of π electron delocalization in the radical,after hydrogen atom transfer,largely influences the ΔH values.This analysis supports the results obtained for the HOMO distribution and ΔH values,which are in agreement with previous structure-activity relationship.30

    3.3 Antioxidation mechanism of myricetin

    Fig.4 SOMO of H-deleted myricetin radicals

    Fig.5 Optimized geometries of Int1derived from M06-2X/6-31++G(d,p)calculations bond distance in nm

    The low O-H bond dissociation enthalpy of myricetin means that the hydrogen atom transfer reaction is easy to occur.In order to elucidate the reactivity of OH groups of myricetin,we calculated the free energy profiles for the reaction between the CH3OO·radical with myricetin(R).A simple model for the lipid peroxide radical CH3OO·is chosen because nu-merous natural peroxides are of the similar structure(ROO·).Thus,the obtained results could demonstrate their general behaviors.The calculations reveal that detachment of H atom by CH3OO·radical can be performed with all six hydroxyl groups of myricetin.Each reaction proceeds via one transition state(TS)and two intermediates(Int1and Int2).The relative energies of the different compounds in the hydrogen abstraction reaction in the gas phase and aqueous solution are given in Table 2,and the optimized geometries of the stationary points concerning Int1,TS,Int2,and P in the antioxidation reaction are available in Figs.5-8.

    The optimized geometries of all stationary points encountered during the H-atom transfer reaction between the 4'-OH group of myricetin and CH3OO·radical are reported in Figs.5-8.The 4'-OH group is considered to be the most reactive,since,from its radicalization,a very stable radical species is obtained,stabilized by delocalization and conjugation phenomena,as well as by an internal H-bond,established between the radicalized O·and the adjacent OH groups,which agrees with the smallest value for bond dissociation enthalpy of 4'-OH group.Myricetin is a planar species,and the OH groups are arranged in such a way as to maximize the number of hydrogenbonds.The reaction between myricetin(R)and CH3OO·radical starts with the formation of a reactant complex(Int1),in which the radical is hydrogen bonded to the 4'-OH group of the ortho-diphenolic moiety of myricetin.As Fig.5 displays,the predicted 4'-OH…OOCH3hydrogen-bond distance in Int1is 0.1907 nm.The H-atom transfer reaction passes through a transition state(TS)in which the hydrogen is bonded to the ox-ygen atoms of both the 4'-OH and the CH3OO·radical.By inspecting Table 2,one can observe that the smallest activation barriers of 34.5 and 37.3 kJ·mol-1in the gas phase and aqueous solution are required for the reaction in the position of 4'-OH.The activation barrier required to transfer the hydrogen atom from the phenolic OH to the methyl peroxide radical is calculated as the difference in the total energy between the transition state(TS)and corresponding reactant(Int1).As shown in Fig.6,the critical distances of 4'-O…H and H…OOCH3in TS are 0.1122 and 0.1289 nm,respectively.After the hydrogen atom transfers,a complex of the intermediates(Int2)is found.The H-OOCH3bond is completely established,and the methyl peroxide is hydrogen bonded to the 4'-O radical of myricetin as shown in Fig.7.In the latter,an internal hydrogen bond is formed and involves the radicalized oxygen of the 4'-OH group and the adjacent 3'-OH in the B-ring.Finally,the CH3OOH and H-deleted myricetin radical(P)are generated as shown in Fig.8.On the basis of present calculations,the patterns of the hydrogen bonds present in myricetin are retained in going from reactant to Int1,TS,Int2,and P,which is validated by AIM analysis as shown in Fig.9.Generally speaking,hydrogen bond is characterized by positive value of Laplacian?2ρ(r)and low electronic density ρ(r)value(<0.1)at bond critical point(BCP).Inspection of Fig.9 reveals obviously that the ρ(r)and ?2ρ(r)of all compounds for the 4'-H atom abstraction reaction fit the characteristics of hydrogen bond.

    Table 2 Relative energy of the different compounds in the hydrogen abstraction reaction of myricetin

    Fig.6 Optimized geometries of TS for hydrogen atom transfer derived from M06-2X/6-31++G(d,p)calculations

    The H-atom transferreaction occurring between the CH3OO·radical and the 5'-OH group of myricetin is qualitatively similar to the 4'-OH group.The reactant complex(Int1)is obtained with hydrogen-bond 5'-OH…OOCH3distance of 0.1887 nm displayed in Fig.5.The transition state,necessary to proceed towards the product complex,is characterized by a 5'-O…H and H…OOCH3distances of 0.1105 and 0.1313 nm,respectively(Fig.6).As Table 2 shows,the predicted activation barriers for the hydrogen atom transfer are about 38.7 and 37.8 kJ·mol-1in the gas phase and aqueous solution,respectively.On the basis of the calculations,it leads to a conclusion that the reaction can take place in both 4'and 5'positions.As Table 2 depicts,the reverse reactions in these positions are unlikely,since both reactions for the formation of the final products are significantly exergonic in the gas phase to prevent the reverse process.

    Fig.7 Optimized geometries of Int2derived from M06-2X/6-31++G(d,p)calculations

    It is noted that the pyrogallol functionality in the B-ring of myricetin has a reasonable effect on the barrier heights.The greater reactivity of the 4'-OH and 5'-OH groups towards the CH3OO·radical is mainly due to the stability generated by the intramolecular H-bond between radicalized oxygen of the reactive OH group and the adjacent OH in the B-ring,which is retained in going from free myricetin to reactant complex to transition state.This H-bond helps in stabilizing the electronic deficiency generated on the radicalized oxygen during the H abstraction reaction.The important role of intramolecular hydrogen bonds in stability of the radicals has been validated by previous studies.7,42,46,67For the other OH groups,this stability cannot be achieved.

    In the case of the 3'-OH group,the hydrogen-bond distance between the oxygen from the CH3OO·radical and the hydrogen from the 3'-OH group in Int1is about 0.1919 nm(Fig.5).As can be noted from Fig.6,the 3'-O…H and H…OOCH3distances at the saddle points for the hydrogen atom transfer are calculated to be 0.1174 and 0.1219 nm,respectively.The corresponding reaction barriers are equal to 52.5 and 48.3 kJ·mol-1in the gas phase and aqueous solution,respectively.

    The 3-OH,5-OH,and 7-OH groups in C-ring of myricetin are recognized as the other possible sites for the reaction with the free radicals,from both theoretical and experimental points of view,due to the fact that in the radical arising from the oxidation process,the odd electron can be delocalized over both B-and C-rings.On the basis of the calculations,the H-atom transfer reactions of the 3-OH,5-OH,and 7-OH groups in C-ring of myricetin are less favorable than that of the 4'-OH group of myricetin.Also,the H-atom transfer reactions between the 3-OH,5-OH,and 7-OH groups with the CH3OO·show the similar potential energy surfaces.Thus,we will only talk about the reaction between the 3-OH group with the CH3OO·.For 3-OH group,a stable complex between reactants is obtained,through a weak interaction involving the hydrogen of the 3-OH and the oxygen of the CH3OO·.As Fig.5 shows,the distance of hydrogen-bond in Int1amounts to 0.2028 nm.The hydrogen of the 3-OH is also involved in the hydrogenbond with the 4-carbonyl oxygen(0.2055 nm).For the hydrogen that is going to be transferred,the reaction proceeds towards the transition state in which this hydrogen is contemporaneously bonded to the 3-OH and to the CH3OO·as shown in Fig.6(0.1082 and 0.1354 nm),and at the same time,the internal 4-keto…3-OH hydrogen-bond is destroyed.The activation barriers for the hydrogen atom transfer are predicted to be 49.2 and 42.0 kJ·mol-1in the gas phase and aqueous solution,respectively.

    Fig.8 Optimized geometries of product(P)derived from M06-2X/6-31++G(d,p)calculations

    On the basis of present calculations,the following activation energy sequence for the OH groups is found in the gas phase:4'-OH<5'-OH<3-OH<3'-OH<5-OH<7-OH,which agrees with the result from aqueous solution.The 4'-OH site seems to be the most reactive one,also indicated by previous works.30,46

    A detailed analysis of the transition states shows that the spin density(Fig.10)is located on CH3OO·and H-deleted ring.In comparison to the reactants,the spin density in TS associated with H-deleted ring moiety is increased,while that associated with CH3OO·fragment is decreased.

    3.4 Rate constants of H-atom abstraction reaction

    The rate constants for the H atom abstraction from the different OH groups of myricetin by the CH3OO·radical are calculated via M06-2X/6-31++G(d,p)method,together with the tunnelling transmission coefficients as a function of the temperature,which are collected in Table 3.In the present calculations,only the M06-2X functional is performed since this functional provides more reliable kinetics and thermodynamics.

    Fig.9 Electronic density ρ(r)BCPand Laplacian ?2ρ(r)BCPat bond critical point(BCP)of Int1,TS,Int2,and Pfor the 4′-H atom abstraction reaction

    Fig.10 Spin densities of TS for the hydrogen atom transfer reaction between myricetin and CH3OO·radical

    Table 3 Rate constants for the H-abstraction reaction between CH3OO·free radical and myricetin presented along with the tunneling transmission coefficients as a function of temperature

    The conventional transition state rate constant value,kTST,mainly depends on the high classical potential energy barrier(besides entropic contributions).As Table 3 shows,the rate constant for the 4'-H atom abstraction reaction is predicted to be 1.5×108L·mol-1·s-1at 298 K.After quantum tunneling correction,the rate constant of k(T)is equal to 6.0×108L·mol-1·s-1.In addition,with the increase of temperature,the rate constant is increased significantly.The predicted rate constants kTSTand k(T)at 1000 K are 8.7×1011and 1.1×1012L·mol-1·s-1,respectively.The rate constant at 1000 K is 3 orders of magnitude larger than that at 298 K.The present calculations indicate that the rate constant of 4'-H atom abstraction reaction shows the largest value,which is consistent with the previous researches30,46,64that a high rate of hydrogen atom transfer is expected to be related to a low BDE of phenolic O-H bond.The overall reactivity of myricetin toward CH3COO·radicals was found to be fast,supporting the excellent radical scavenging activity of myricetin,in agreement with the available experimental evidence.25Also,the κ(T)transmission coefficient is gradually decreased with the increase of temperature,indicating that the entropic effects become more significant.

    As indicated in the previous section,the formation of the reactant complex and the dissociation of the product complex do not affect kinetics since these two processes occur with no classical energy barriers,and the overall reaction is governed only by the H-atom abstraction bottleneck.According to the calculations,the tunnelling effects are slightly important in this reaction.Our findings are in qualitative agreement with those obtained in a study of the reaction between the methyl peroxide radical and epicatechin,70also showing the pyrogallol functionality in the B-ring.

    4 Conclusions

    On the basis of the most stable conformations of myricetin,its electronic structure has been calculated by means of M06-2X/6-31++G(d,p)treatments.The BDEs of all OH groups of myricetin were calculated,and the antioxidation activity and rate constant for hydrogen atom transfer were discussed.All these results confirm the predominant H-transfer capacity of the 4'-OH group,compared to the other OH groups in the myricetin.The relative high antioxidation activity of 4'-OH group in myricetin is attributed to very stable H-deleted radical species,delocalization and conjugation phenomena,as well as by an internal H-bond,established between the radicalized O·and the adjacent OH groups.The theoretical investigations on the antioxidation mechanism of myricetin could provide the insights into the design and synthesis of novel antioxidants with enhanced activity.

    (1) Kuhnau,J.World Rev.Nutr.Diet.1976,24,117.

    (2)Miean,K.H.;Mohamed,S.J.Agric.Food Chem.2001,49,3106.doi:10.1021/jf000892m

    (3)Li,M.J.;Zhang,L.M.;Liu,W.X.;Lu,W.C.Chin.J.Chem.Phys.2011,24,173.

    (4) Rüfer,C.E.;Kulling,S.E.J.Agric.Food Chem.2006,54,2926.doi:10.1021/jf053112o

    (5)Amat,A.;Clementi,C.;DeAngelis,F(xiàn).;Sgamellotti,A.;Fantaccia,S.J.Phys.Chem.A 2009,113,15118.doi:10.1021/jp9052538

    (6) Horvath,C.R.;Martos,P.A.;Saxena,P.K.J.Chromatogr.A 2005,1062,199.doi:10.1016/j.chroma.2004.11.030

    (7) Nenadis,N.;Sigalas,M.P.J.Phys.Chem.A 2008,112,12196.doi:10.1021/jp8058905

    (8) Rashid,U.;Anwar,F(xiàn).;Moser,B.R.;Knothe,G.Bioresour.Technol.2008,99,8175.doi:10.1016/j.biortech.2008.03.066

    (9) Gunesekaran,R.;Ubeda,A.;Alcaraz,M.J.;Jayaprakasam,R.;Nair,A.G.R.Pharmazie 1993,48,230.

    (10)Mehrdad,M.;Zebardast,M.;Abedi,G.;Koupaei,M.N.;Rasouli,H.;Talebi,M.J.Aoac.Int.2009,92,1035.

    (11) Burda,S.;Oleszek,W.J.Agric.Food.Chem.2001,49,2774.doi:10.1021/jf001413m

    (12) Mira,L.;Fernandez,M.T.;Santos,M.;Rocha,R.;Florencio,M.H.;Jennings,K.R.Free Radic.Res.2002,36,1199.doi:10.1080/1071576021000016463

    (13)Ko,C.H.;Shen,S.C.;Lee,T.J.;Chen,Y.C.Mol.Cancer Ther.2005,4,281.

    (14) Morales,P.;Haza,A.I.J.Appl.Toxicol.2012,32,986.doi:10.1002/jat.v32.12

    (15) Rasulev,B.F.;Abdullaev,N.D.;Syrov,V.N.Leszczynski,J.QSAR Comb.Sci.2005,24,1056.

    (16)DeToma,A.S.;Choi,J.S.;Braymer,J.J.;Lim,M.H.ChemBioChem 2011,12,1198.doi:10.1002/cbic.v12.8

    (17) Delgado,M.E.;Haza,A.I.;Garcia,A.;Morales,P.Toxicolin.In Vitro 2009,23,1292.doi:10.1016/j.tiv.2009.07.022

    (18)Oyama,Y.;Fuchs,P.A.;Katayama,N.;Noda,K.Brain Res.1994,635,125.doi:10.1016/0006-8993(94)91431-1

    (19)Gordon,M.H.;Roedig-Penmanm,A.Chem.Phys.Lipids 1998,97,79.doi:10.1016/S0009-3084(98)00098-X

    (20) Lalas,S.;Tsaknis,J.J.Am.Oil.Chem.Soc.2002,79,677.doi:10.1007/s11746-002-0542-2

    (21) Shahidi,F(xiàn).;Wanasundara,U.Dev.Food Sci.1995,37A,469.

    (22) Robak,J.;Gryglewski,R.J.Biochem.Pharmacol.1988,37,837.doi:10.1016/0006-2952(88)90169-4

    (23) Angelone,T.;Pasqua,T.;Di Majo,D.;Quintieri,A.M.;Filice,E.;Amodio,N.;Tota,B.;Giammanco,M.;Cerra,M.C.Nutr.Metab.Cardiovas.2011,21,362.doi:10.1016/j.numecd.2009.10.011

    (24)Wang,Z.H.;Kang,K.A.;Zhang,R.;Piao,M.J.;Jo,S.H.;Kim,J.S.;Kang,S.S.;Lee,J.S.;Park,D.H.;Hyun,J.W.Environ.Toxicol.Phar.2010,29,12.doi:10.1016/j.etap.2009.08.007

    (25) Moser,B.R.Eur.J.Lipid Sci.Technol.2008,110,1167.doi:10.1002/ejlt.v110:12

    (26) Justino,G.C.;Vieira,A.J.S.C.J.Mol.Model.2010,16,863.doi:10.1007/s00894-009-0583-1

    (27)Mendoza-Wilson,A.M.;Sotelo-Mundo,R.R.;Balandran-Quintana,R.R.;Glossman-Mitnik,D.;Santiz-Gomez,M.A.;Garcia-Orozco,K.D.J.Mol.Struct.2010,981,187.doi:10.1016/j.molstruc.2010.08.005

    (28) Leon-Carmona,J.R.;Galano,A.J.Phys.Chem.B 2011,115,4538.doi:10.1021/jp201383y

    (29) Anouar,E.;Calliste,C.A.;Kosinova,P.;Di Meo,F(xiàn).;Duroux,J.L.;Champavier,Y.;Marakchi,K.;Trouillas,P.J.Phys.Chem.A 2009,113,13881.doi:10.1021/jp906285b

    (30) Sadasivam,K.;Kumaresan,R.Spectrochim.Acta A 2011,79,282.doi:10.1016/j.saa.2011.02.042

    (31) Zhao,Y.;Truhlar,D.G.Theor.Chem.Acc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (32) Zhao,Y.;Truhlar,D.G.Accounts Chem.Res.2008,41,157.doi:10.1021/ar700111a

    (33) Barone,V.;Cossi,M.J.Phys.Chem.A 1998,102,1995.doi:10.1021/jp9716997

    (34)Cossi,M.;Rega,N.;Scalmani,G.;Barone,V.J.Comput.Chem.2003,24,669.doi:10.1002/jcc.10189

    (35) Frisch,M.J.;Trucks,G..W.;Schlegel,H.B.;et al.Gaussian 09,RevisionA.01;Gaussian Inc.:Wallingford,CT,2009.

    (36) Bader,R.F.W.Chem.Res.1991,91,893.

    (37) Bader,R.F.W.J.Phys.Chem.A 1998,102,7314.doi:10.1021/jp981794v

    (38) Biegler-Konig,F(xiàn).AIM2000;University ofApplied Sciences:Bielefeld,Germany.

    (39) Eyring,H.J.Chem.Phys.1935,3,107.doi:10.1063/1.1749604

    (40) Evans,M.G.;Polanyi,M.Trans.Faraday Soc.1935,31,875.doi:10.1039/tf9353100875

    (41) Wigner,E.J.Chem.Phys.1937,5,720.

    (42) Russo,N.;Toscano,M.;Uccella,N.J.Agric.Food Chem.2000,48,3232.doi:10.1021/jf990469h

    (43)Bors,W.;Heller,W.;Saran,M.Methods in Enzymology;Academic Press:San Diego,1990;Vol.186,p 343.

    (44) Leopoldini,M.;Rondinelli,F(xiàn).;Russo,N.;Toscano,M.J.Agric.Food Chem.2010,58,8862.doi:10.1021/jf101693k

    (45) Estvez,L.;Mosquera,R.A.J.Phys.Chem.A 2007,111,11100.doi:10.1021/jp074941a

    (46) Xie,H.J.;Lei,Q.F.;Fang,W.J.Acta Chim.Sin.2010,68,1467.

    (47) Markovic,Z.S.;Dimitric,J.M.;Markovic,D.;Dolicanin,C.B.Theor.Chem.Acc.2010,127,69.doi:10.1007/s00214-009-0706-x

    (48)Sadasivam,K.;Kumaresan,R.Comput.Theor.Chem.2011,963,227.doi:10.1016/j.comptc.2010.10.025

    (49) VanAcker,S.A.B.E.;DeGroot,M.J.;Van den Berg,D.J.;Tromp,M.N.J.L.;Den Kelder,G.D.O.;Van der Vijgh,W.J.F.;Bast,A.Chem.Res.Toxicol.1996,9,1305.doi:10.1021/tx9600964

    (50) Rice-Evans,C.A.;Miller,N.J.;Paganga,G.Free Radic.Biol.Med.1996,20,933.doi:10.1016/0891-5849(95)02227-9

    (51)VanAcker,S.A.B.E.;Van Den Berg,D.J.;Tromp,M.N.J.L.;Griffioen,D.H.;Van Bennekom,W.P.;Van Der Vijgh,W.J.F.;Bast,A.Free Radic.Biol.Med.1996,20,331.doi:10.1016/0891-5849(95)02047-0

    (52) Guzman,R.;Santiago,C.;Sanchez,M.J.Mol.Struct.2009,935,110.doi:10.1016/j.molstruc.2009.06.048

    (53) Chiodo,S.G.;Leopoldini,M.;Russo,N.;Toscano,M.Phys.Chem.Chem.Phys.2010,12,7662.doi:10.1039/b924521a

    (54)Li,M.J.;Li,Y.J.;Peng,C.R.;Lu,W.C.Acta Phys.-Chim.Sin.2010,26,466.[李敏杰,李亞軍,彭淳容,陸文聰.物理化學(xué)學(xué)報,2010,26,466.]doi:10.3866/PKU.WHXB20100230

    (55) Wright,J.S.;Johnson,E.R.;Di Labio,G.A.J.Am.Chem.Soc.2001,123,1173.doi:10.1021/ja002455u

    (56) Trouillas,P.;Fagnere,C.;Lazzaroni,R.;Calliste,C.;Marfak,A.;Duroux,J.L.Food Chem.2004,88,571.doi:10.1016/j.foodchem.2004.02.009

    (57) Aparicio,S.Int.J.Mol.Sci.2010,11,2017.doi:10.3390/ijms11052017

    (58) Zhang,J.H.;Du,F(xiàn).P.;Peng,B.;Lu,R.H.;Gao,H.X.;Zhou,Z.Q.J.Mol.Struct.-Theochem 2010,955,1.doi:10.1016/j.theochem.2010.04.036

    (59) Kosinova,P.;Di Meo,F(xiàn).;Anouar,E.H.;Duroux,J.L.;Trouillas,P.Int.J.Quantum Chem.2011,11,1131.

    (60)Zhang,H.Y.;Wang,L.F.;Sun,Y.M.Bioorg.Med.Chem.Lett.2003,13,909.doi:10.1016/S0960-894X(03)00013-1

    (61)Zhang,I.Y.;Wu,J.M.;Luo,Y.;Xu,X.J.Comput.Chem.2011,32,1824.doi:10.1002/jcc.v32.9

    (62)Wu,J.M.;Zhang,I.Y.;Xu,X.ChemPhysChem 2010,11,2561.doi:10.1002/cphc.201000273

    (63) Alecu,I.M.;Truhlar,D.G.J.Phys.Chem.A 2011,115,2811.doi:10.1021/jp110024e

    (64) Dhaouadi,Z.;Nsangou,M.;Garrab,N.;Anouar,E.H.;Marakchi,K.;Lahmar,S.J.Mol.Struct.-Theochem 2009,904,35.doi:10.1016/j.theochem.2009.02.034

    (65)Mikulski,D.;Gorniak,R.;Molski,M.Eur.J.Med.Chem.2010,45,1015.doi:10.1016/j.ejmech.2009.11.044

    (66) Trouillas,P.;Marsal,P.;Siri,D.;Lazzaroni,R.;Duroux,J.L.Food Chem.2006,97,679.doi:10.1016/j.foodchem.2005.05.042

    (67) Leopoldini,M.;Pitarch,I.P.;Russo,N.;Toscano,M.J.Phys.Chem.A 2004,108,92.doi:10.1021/jp035901j

    (68) Bowater,L.;Fairhurst,S.A.;Just,V.J.;Bornemann,S.FEBS Lett.2004,557,45.doi:10.1016/S0014-5793(03)01439-X

    (69) Lien,E.J.;Ren,S.;Bui,H.H.;Wang,R.Free Radic.Biol.Med.1999,26,285.doi:10.1016/S0891-5849(98)00190-7

    (70) Tejero,I.;Gonzalez-Garcia,N.;Gonzalez-Lafont,A.;Lluch,J.M.J.Am.Chem.Soc.2007,129,5846.doi:10.1021/ja063766t

    猜你喜歡
    化學(xué)系工商大學(xué)杭州
    重慶工商大學(xué)作品欣賞
    大眾文藝(2024年2期)2024-02-18 11:41:00
    一種鎘基配位聚合物的合成及其對2,4,6-三硝基苯酚的熒光識別
    杭州
    幼兒畫刊(2022年11期)2022-11-16 07:22:36
    重慶工商大學(xué)學(xué)科簡介
    重慶工商大學(xué)
    重慶工商大學(xué)
    首都師范大學(xué)化學(xué)系自充電功能材料研究取得重要進(jìn)展
    一個二重互穿的鎘配合物:合成、結(jié)構(gòu)和雙功能熒光傳感性質(zhì)
    G20 映像杭州的“取勝之鑰”
    傳媒評論(2017年12期)2017-03-01 07:04:58
    杭州
    汽車與安全(2016年5期)2016-12-01 05:21:55
    一区在线观看完整版| 大片免费播放器 马上看| 美女国产高潮福利片在线看| 日本91视频免费播放| 男女床上黄色一级片免费看| 人成视频在线观看免费观看| 熟女少妇亚洲综合色aaa.| 亚洲色图综合在线观看| 2021少妇久久久久久久久久久| 国产成人欧美| 国产精品二区激情视频| 一级,二级,三级黄色视频| 国产97色在线日韩免费| 99久久99久久久精品蜜桃| 国产精品人妻久久久影院| 天美传媒精品一区二区| 国产日韩欧美视频二区| 宅男免费午夜| 日韩一本色道免费dvd| 成人国产av品久久久| 一二三四在线观看免费中文在| 日日啪夜夜爽| 夫妻性生交免费视频一级片| 中文字幕人妻熟女乱码| 卡戴珊不雅视频在线播放| 青春草国产在线视频| 日韩一区二区视频免费看| 五月开心婷婷网| 欧美日韩成人在线一区二区| 夫妻午夜视频| 日韩 亚洲 欧美在线| 少妇精品久久久久久久| 最近中文字幕2019免费版| 欧美日韩福利视频一区二区| 在线观看国产h片| 日韩 亚洲 欧美在线| 欧美在线黄色| 国产女主播在线喷水免费视频网站| 精品一区二区三区四区五区乱码 | 精品卡一卡二卡四卡免费| 亚洲av综合色区一区| 亚洲精华国产精华液的使用体验| 欧美日韩成人在线一区二区| 男女国产视频网站| 久久精品久久久久久久性| h视频一区二区三区| 国产有黄有色有爽视频| 亚洲国产av新网站| 人妻人人澡人人爽人人| 国产欧美日韩一区二区三区在线| 国产精品.久久久| 国产一区二区三区av在线| av一本久久久久| 欧美人与性动交α欧美软件| av线在线观看网站| 99国产精品免费福利视频| 亚洲国产欧美一区二区综合| 国产男女内射视频| 国产日韩欧美视频二区| 中文字幕人妻丝袜一区二区 | 999精品在线视频| 亚洲视频免费观看视频| 一级片免费观看大全| 一本—道久久a久久精品蜜桃钙片| 久久韩国三级中文字幕| 国产一级毛片在线| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频 | 日本猛色少妇xxxxx猛交久久| 亚洲自偷自拍图片 自拍| 99久久人妻综合| 精品酒店卫生间| 日本色播在线视频| 91老司机精品| 婷婷色av中文字幕| 亚洲精品美女久久av网站| av在线观看视频网站免费| 男女边吃奶边做爰视频| 久久人人爽人人片av| 人妻 亚洲 视频| 永久免费av网站大全| 各种免费的搞黄视频| 美国免费a级毛片| 亚洲av成人不卡在线观看播放网 | 午夜免费男女啪啪视频观看| 国产精品成人在线| 色视频在线一区二区三区| 妹子高潮喷水视频| 亚洲成av片中文字幕在线观看| 国产精品偷伦视频观看了| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 国产不卡av网站在线观看| 色精品久久人妻99蜜桃| 青青草视频在线视频观看| 亚洲欧美激情在线| av有码第一页| 人人妻人人澡人人看| 午夜福利视频精品| 免费黄网站久久成人精品| 亚洲中文av在线| 最黄视频免费看| 亚洲 欧美一区二区三区| 女的被弄到高潮叫床怎么办| 99精国产麻豆久久婷婷| 啦啦啦在线观看免费高清www| 日本欧美国产在线视频| 另类亚洲欧美激情| 国产精品一国产av| 精品少妇内射三级| 三上悠亚av全集在线观看| 在线天堂中文资源库| 婷婷色综合大香蕉| 超碰成人久久| 两个人免费观看高清视频| 老鸭窝网址在线观看| 成人三级做爰电影| 青春草国产在线视频| 人妻一区二区av| 香蕉国产在线看| 精品少妇久久久久久888优播| 国产一级毛片在线| 男女之事视频高清在线观看 | 黄片播放在线免费| 九九爱精品视频在线观看| 精品国产露脸久久av麻豆| 国产97色在线日韩免费| 9191精品国产免费久久| 啦啦啦啦在线视频资源| 国产野战对白在线观看| 国产xxxxx性猛交| avwww免费| 国产毛片在线视频| 宅男免费午夜| 在线天堂最新版资源| 七月丁香在线播放| 精品少妇一区二区三区视频日本电影 | 亚洲精品国产色婷婷电影| 99热全是精品| 久久av网站| 国产 一区精品| 免费观看性生交大片5| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 国产熟女午夜一区二区三区| 夜夜骑夜夜射夜夜干| 日本91视频免费播放| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 国产精品久久久久久久久免| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 国产精品一二三区在线看| 精品少妇黑人巨大在线播放| 久久久久视频综合| 久久人人爽人人片av| 黄片小视频在线播放| 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕最新亚洲高清| 女的被弄到高潮叫床怎么办| 久久久国产精品麻豆| 最新的欧美精品一区二区| 免费高清在线观看视频在线观看| 最新的欧美精品一区二区| 99热国产这里只有精品6| 欧美日韩视频高清一区二区三区二| 悠悠久久av| 免费高清在线观看日韩| 国产精品三级大全| 成年av动漫网址| 美女脱内裤让男人舔精品视频| 又粗又硬又长又爽又黄的视频| 九色亚洲精品在线播放| 女人久久www免费人成看片| 国产成人免费观看mmmm| 久久人人爽人人片av| 不卡视频在线观看欧美| 国产黄频视频在线观看| 免费不卡黄色视频| 国产精品欧美亚洲77777| 欧美精品av麻豆av| 在线 av 中文字幕| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 亚洲专区中文字幕在线 | 一边摸一边做爽爽视频免费| 欧美日韩亚洲综合一区二区三区_| 夫妻午夜视频| 免费黄频网站在线观看国产| 69精品国产乱码久久久| 欧美精品亚洲一区二区| av有码第一页| 丰满迷人的少妇在线观看| 国产在线一区二区三区精| 电影成人av| 亚洲,一卡二卡三卡| 国产一区有黄有色的免费视频| 久久性视频一级片| 在线 av 中文字幕| 国产高清不卡午夜福利| 精品一区二区三区av网在线观看 | 视频区图区小说| 成年人午夜在线观看视频| 91精品三级在线观看| 国产成人欧美在线观看 | 亚洲精品美女久久久久99蜜臀 | 男人爽女人下面视频在线观看| 99国产精品免费福利视频| 成年女人毛片免费观看观看9 | 国产亚洲av片在线观看秒播厂| 日韩大码丰满熟妇| 国产片特级美女逼逼视频| 国产一区二区三区综合在线观看| 男女国产视频网站| 亚洲欧美色中文字幕在线| 青草久久国产| 午夜激情av网站| 欧美人与善性xxx| 免费高清在线观看视频在线观看| 综合色丁香网| 免费在线观看视频国产中文字幕亚洲 | 亚洲av男天堂| 飞空精品影院首页| 色网站视频免费| 精品一区二区免费观看| 欧美久久黑人一区二区| 婷婷色av中文字幕| 日韩熟女老妇一区二区性免费视频| 欧美日韩一级在线毛片| 色视频在线一区二区三区| 美女午夜性视频免费| 老鸭窝网址在线观看| 丰满乱子伦码专区| 黄色 视频免费看| 永久免费av网站大全| 成人三级做爰电影| 麻豆乱淫一区二区| 成年动漫av网址| 又大又黄又爽视频免费| 婷婷色综合www| 亚洲第一av免费看| 国产av精品麻豆| 2018国产大陆天天弄谢| 日韩制服丝袜自拍偷拍| 久久国产精品大桥未久av| 极品人妻少妇av视频| 在现免费观看毛片| 精品国产一区二区三区四区第35| 人人妻人人澡人人看| netflix在线观看网站| 亚洲少妇的诱惑av| 亚洲精品视频女| 咕卡用的链子| 在线观看免费视频网站a站| 欧美精品一区二区大全| 久久久久久久久免费视频了| 一区福利在线观看| 色网站视频免费| 亚洲欧美成人综合另类久久久| 亚洲av电影在线观看一区二区三区| 又黄又粗又硬又大视频| 亚洲精品久久成人aⅴ小说| 性少妇av在线| 最近2019中文字幕mv第一页| 亚洲成av片中文字幕在线观看| av福利片在线| 亚洲五月色婷婷综合| 欧美av亚洲av综合av国产av| av视频在线观看入口| 多毛熟女@视频| 又黄又爽又免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区 | 非洲黑人性xxxx精品又粗又长| 非洲黑人性xxxx精品又粗又长| 少妇熟女aⅴ在线视频| 黄色女人牲交| 搡老妇女老女人老熟妇| 色尼玛亚洲综合影院| 国产精品亚洲美女久久久| 一级a爱视频在线免费观看| 97碰自拍视频| 久久精品影院6| 免费看十八禁软件| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 亚洲性夜色夜夜综合| 很黄的视频免费| 999久久久精品免费观看国产| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| 99国产精品一区二区三区| 久久久国产欧美日韩av| 久99久视频精品免费| 9191精品国产免费久久| 午夜a级毛片| 国产av又大| 日韩精品中文字幕看吧| 自线自在国产av| 国产99白浆流出| 欧美一级毛片孕妇| 日本三级黄在线观看| 怎么达到女性高潮| 99国产极品粉嫩在线观看| 满18在线观看网站| 脱女人内裤的视频| 午夜福利,免费看| 97超级碰碰碰精品色视频在线观看| 老司机深夜福利视频在线观看| 少妇被粗大的猛进出69影院| 午夜福利视频1000在线观看 | 久久久水蜜桃国产精品网| 免费在线观看亚洲国产| 国产精品免费视频内射| 久久人妻熟女aⅴ| 天堂影院成人在线观看| 日韩精品青青久久久久久| 亚洲精品美女久久av网站| 99香蕉大伊视频| 亚洲中文字幕日韩| 亚洲av第一区精品v没综合| 女人爽到高潮嗷嗷叫在线视频| 亚洲国产欧美一区二区综合| 非洲黑人性xxxx精品又粗又长| 国产精品免费视频内射| 国产精品永久免费网站| 亚洲五月天丁香| 亚洲成av片中文字幕在线观看| 丁香欧美五月| 亚洲av电影在线进入| 女人被狂操c到高潮| 日本三级黄在线观看| 999久久久精品免费观看国产| 国产一区二区在线av高清观看| 久久久国产成人免费| 一级a爱视频在线免费观看| 国产一区二区在线av高清观看| 最新美女视频免费是黄的| 波多野结衣高清无吗| 亚洲精品中文字幕一二三四区| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 神马国产精品三级电影在线观看 | 久久国产精品人妻蜜桃| 亚洲国产看品久久| 中文字幕人妻熟女乱码| 12—13女人毛片做爰片一| 精品免费久久久久久久清纯| av天堂久久9| 国产主播在线观看一区二区| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费 | 久久这里只有精品19| 亚洲精品中文字幕在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲第一电影网av| 午夜精品国产一区二区电影| 免费看十八禁软件| 国产熟女xx| 啦啦啦免费观看视频1| 在线观看日韩欧美| 免费在线观看影片大全网站| 久久亚洲真实| 国产精品国产高清国产av| 99国产精品免费福利视频| 国产精品 欧美亚洲| av中文乱码字幕在线| 男女下面插进去视频免费观看| 欧美性长视频在线观看| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 91在线观看av| 99国产精品免费福利视频| 午夜免费鲁丝| 精品一品国产午夜福利视频| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 久9热在线精品视频| 色婷婷久久久亚洲欧美| 国产精品,欧美在线| 日韩欧美国产在线观看| 91字幕亚洲| 免费看十八禁软件| 99国产精品一区二区三区| 欧美日韩乱码在线| 亚洲 欧美一区二区三区| 亚洲精品美女久久久久99蜜臀| 人妻久久中文字幕网| 纯流量卡能插随身wifi吗| 男人的好看免费观看在线视频 | av福利片在线| 麻豆久久精品国产亚洲av| 免费观看人在逋| 色播在线永久视频| 亚洲精品美女久久久久99蜜臀| 国产日韩一区二区三区精品不卡| 男女下面进入的视频免费午夜 | 一夜夜www| 美国免费a级毛片| 老汉色av国产亚洲站长工具| 亚洲精品av麻豆狂野| 在线观看免费视频网站a站| 欧美中文综合在线视频| 人人妻人人澡欧美一区二区 | 国产高清视频在线播放一区| tocl精华| 老熟妇乱子伦视频在线观看| 亚洲,欧美精品.| 黄片播放在线免费| 国产精品久久久av美女十八| 免费久久久久久久精品成人欧美视频| 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区| 亚洲 国产 在线| x7x7x7水蜜桃| 国产午夜福利久久久久久| 午夜精品久久久久久毛片777| av免费在线观看网站| 在线观看午夜福利视频| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 国产成人免费无遮挡视频| 久久国产乱子伦精品免费另类| 狂野欧美激情性xxxx| 一进一出抽搐gif免费好疼| 女警被强在线播放| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 一边摸一边抽搐一进一出视频| 日本 欧美在线| 欧美乱码精品一区二区三区| av视频在线观看入口| 欧美乱码精品一区二区三区| 久久亚洲真实| 欧美日韩瑟瑟在线播放| 夜夜爽天天搞| 欧美 亚洲 国产 日韩一| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 一区二区三区国产精品乱码| 人人妻人人爽人人添夜夜欢视频| 日韩欧美在线二视频| 神马国产精品三级电影在线观看 | 国产精品免费一区二区三区在线| 人妻久久中文字幕网| 一进一出好大好爽视频| 亚洲av电影不卡..在线观看| 国产私拍福利视频在线观看| 欧美色视频一区免费| 99在线人妻在线中文字幕| 午夜久久久在线观看| www.自偷自拍.com| 婷婷丁香在线五月| 成人国产一区最新在线观看| 久久久国产成人精品二区| 亚洲精品中文字幕在线视频| 女人精品久久久久毛片| 好男人电影高清在线观看| bbb黄色大片| 国产精品久久久久久亚洲av鲁大| 久久草成人影院| 亚洲精品在线观看二区| 熟女少妇亚洲综合色aaa.| 精品电影一区二区在线| 欧美色欧美亚洲另类二区 | 满18在线观看网站| 午夜福利影视在线免费观看| 母亲3免费完整高清在线观看| 欧美乱码精品一区二区三区| 亚洲男人天堂网一区| 久久青草综合色| 国产蜜桃级精品一区二区三区| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 午夜久久久久精精品| 巨乳人妻的诱惑在线观看| 在线播放国产精品三级| 免费少妇av软件| 国产成人啪精品午夜网站| 久久人人精品亚洲av| 国产精品亚洲av一区麻豆| 亚洲精品一区av在线观看| 电影成人av| 亚洲欧美精品综合一区二区三区| 俄罗斯特黄特色一大片| 美女国产高潮福利片在线看| av在线天堂中文字幕| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 国产成+人综合+亚洲专区| 久久香蕉国产精品| 中文字幕精品免费在线观看视频| 成人亚洲精品一区在线观看| 亚洲自偷自拍图片 自拍| 亚洲狠狠婷婷综合久久图片| 不卡av一区二区三区| 亚洲av电影在线进入| 欧美 亚洲 国产 日韩一| 露出奶头的视频| 自拍欧美九色日韩亚洲蝌蚪91| 黄色女人牲交| 精品日产1卡2卡| 一进一出好大好爽视频| 多毛熟女@视频| 国产成年人精品一区二区| 两个人看的免费小视频| or卡值多少钱| 中文字幕av电影在线播放| 两个人视频免费观看高清| 99久久99久久久精品蜜桃| 日本 欧美在线| 岛国在线观看网站| 亚洲五月婷婷丁香| 国产精品98久久久久久宅男小说| 国产精品美女特级片免费视频播放器 | www日本在线高清视频| 久久精品影院6| 国产精品亚洲美女久久久| 久久天躁狠狠躁夜夜2o2o| 国产精品1区2区在线观看.| 在线观看免费午夜福利视频| 国产高清视频在线播放一区| 老司机福利观看| 男人舔女人下体高潮全视频| 高潮久久久久久久久久久不卡| 丝袜美腿诱惑在线| 在线观看免费视频日本深夜| 一级,二级,三级黄色视频| ponron亚洲| 国产成人影院久久av| 少妇 在线观看| 很黄的视频免费| 亚洲国产看品久久| √禁漫天堂资源中文www| avwww免费| 国产精品电影一区二区三区| 久久久水蜜桃国产精品网| 午夜免费鲁丝| 99国产极品粉嫩在线观看| 18禁美女被吸乳视频| 日日夜夜操网爽| 午夜影院日韩av| 中文字幕另类日韩欧美亚洲嫩草| 热re99久久国产66热| 波多野结衣av一区二区av| 母亲3免费完整高清在线观看| 女性被躁到高潮视频| 美女高潮喷水抽搐中文字幕| 久久伊人香网站| 变态另类丝袜制服| 免费在线观看完整版高清| 51午夜福利影视在线观看| 性欧美人与动物交配| 亚洲色图av天堂| 国产亚洲精品久久久久久毛片| 国产精品免费视频内射| 在线天堂中文资源库| 国产亚洲欧美98| 午夜激情av网站| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 一二三四在线观看免费中文在| 女人高潮潮喷娇喘18禁视频| 久久久国产精品麻豆| 日本vs欧美在线观看视频| 亚洲国产精品合色在线| 亚洲成人国产一区在线观看| 国产极品粉嫩免费观看在线| 狂野欧美激情性xxxx| 熟妇人妻久久中文字幕3abv| 午夜福利高清视频| 高清黄色对白视频在线免费看| 精品久久久久久久久久免费视频| 神马国产精品三级电影在线观看 | 国语自产精品视频在线第100页| 岛国视频午夜一区免费看| 国产区一区二久久| 色综合婷婷激情| 国产精品久久久久久精品电影 | 国产精品一区二区精品视频观看| 国产91精品成人一区二区三区| 国产麻豆69| 少妇 在线观看| 亚洲无线在线观看| 可以免费在线观看a视频的电影网站| 国产精品一区二区精品视频观看| 国产亚洲欧美在线一区二区| 国产欧美日韩综合在线一区二区| 国产亚洲精品一区二区www| 国产一区二区在线av高清观看| 老司机福利观看| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 亚洲成av片中文字幕在线观看| 欧美一级a爱片免费观看看 | 黄色女人牲交| 亚洲精品国产色婷婷电影| 在线观看一区二区三区| 亚洲国产中文字幕在线视频| 韩国精品一区二区三区| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区mp4| 日韩高清综合在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 99国产极品粉嫩在线观看| 高清毛片免费观看视频网站| 日韩精品中文字幕看吧|