房明磊,蔣利華
(安徽理工大學 理學院,安徽 淮南 232001)
考慮如下非線性方程組
其中F(x):Rn→Rm為連續(xù)可微的。在本文中,我們總是假設(shè)(1)的解集是非空的,記為X*,在所有情況下,‖·‖表示為二范數(shù)。L-M方法是由Levenberg(1944)[1]和Marquardt(1963)[2]提出的,所以稱為Levenberg-Marquardt方法(簡稱為L-M方法)。L-M步是通過求解下述優(yōu)化模型的解來獲取的
λk=‖F(xiàn)k‖+‖JT k Fk‖ λk=‖JTk Fk‖ λk=‖F(xiàn)k‖ λk=‖F(xiàn)k‖2images/BZ_331_641_2880_644_2880.pngfunction n ximages/BZ_331_827_2892_830_2895.png0 Nit Nit Nit Nit Powellsingular 4 110 1883 1563 1233 14-
[1]Levenberg K.A method for the solution of certain nonlinear problems in least squares[J].Quart.Appl.Math.,1944(2):164-166.
[2]Marquardt D W.An algorithm for least-squares estimation of nonlinear inequalities[J].SIAM J.Appl.Math.,1963(11):431-441.
[3]Dennis J E and Schnabel R B.Numerical Methods for Unconstrained Optimization and Nonlinear equations[M].Prentice-Hall,Englewood cliffs,New Jersey,1983.
[4]Yamashita N and Fukushima M.On the rate of convergence of the Levenberg-Marquardt method[J].Computing,2001(15):239-249.
[5]Fan Jinyan and Yuan Y.On the convergence of a new Levenberg-Marquardt mathod,Report,2001-2005,AMSS,Chinese Academy of Sciences.
[6]楊柳,陳艷萍.一種新的Levenberg-Marquardt算法的收斂性[J].計算數(shù)學,2005,27(1):55-62.
[7]Mor J J,Garbow B S and Hillstrom K H.Testing unconstrained optimization software[J].ACM,Trans,Math.Software,1981(7):17-41.