• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*

    2022-03-12 10:22:28WeishanZHENG鄭偉珊
    關(guān)鍵詞:艷萍

    Weishan ZHENG (鄭偉珊)

    College of Mathematics and Statistics,Hanshan Normal University,Chaozhou 521041,China E-mail:weishanzheng@yeah.net

    Yanping CHEN (陳艷萍)?

    School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China E-mail:yanpingchen@scnu.edu.cn

    Abstract In this paper,a Jacobi-collocation spectral method is developed for a Volterraintegro-differential equation with delay,which contains a weakly singular kernel.We use a function transformation and a variable transformation to change the equation into a new Volterra integral equation defined on the standard interval[-1,1],so that the Jacobi orthogonal polynomial theory can be applied conveniently.In order to obtain high order accuracy for the approximation,the integral term in the resulting equation is approximated by Jacobi spectral quadrature rules.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in both the L∞-norm and the weighted L2-norm.

    Key words Volterra integro-differential equation;pantograph delay;weakly singular kernel;Jacobi-collocation spectral methods;error analysis;convergence analysis

    1 Introduction

    Volterra integro-differential equations with delay arise often in mathematical models of physical and biological phenomena.As they are widely encountered and applied,they must be solved successfully with efficient numerical methods.There has been a lot of study on this subject,such as[6,7,17,21,23,24].This topic has also attracted the attention of famous mathematicians,such as Ali,Brunner and Tang[1],Ishiwata and Muroya[10],Wei and Chen[18].

    As far as we know,very little work has been done on the Volterra delay-integro-differential equations with a weakly singular kernel using spectral approximation.Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain Volterra equations[3,4,19,20,22,25],and they are favoured due to their excellent error properties and their“exponential convergence”being the fastest possible.In this paper,we provide a Jacobi-collocation spectral method for Volterra integro-differential equations with a pantograph delay that contain a weakly singular kernel.In the end,we provide a rigorous error analysis for the proposed method.The spectral rate of convergence for the proposed method is established in the L∞-norm and the weighted L2-norm.

    In this paper,we study the pantograph Volterra delay-integro-differential equation with a weakly singular kernel of the form

    where 0<μ<1,0<q<1,the functions a (t),b (t),g (t)∈C1(I),y (t) are the unknown functions and are supposed to be sufficiently smooth,and K (t,t)0 for t∈I:=[0,T].(t-s)-μis a weak kernel and y (qt) is the pantograph delay.

    To use the theory of orthogonal polynomials,we make the change of variable

    Furthermore,to transfer the integral interval[0,T (1+x)/2]to the interval[-1,x],we make a linear transformation s=T (1+τ)/2,τ∈[-1,x].Then eq.(1.2) becomes

    where

    The main purpose of this work is to use a Jacobi-collocation method to numerically solve the Volterra integro-differential equations with a pantograph delay that contain a weakly singular kernel.We will provide a rigorous error analysis which theoretically justifies the spectral rate of convergence.The rest of the paper is organized as follows:in Section 2,we introduce the Jacobi-collocation spectral approach for (1.3).Some useful lemmas are provided in Section 3;These are are important for the convergence analysis.In Section 4 the convergence analysis is outlined,and Section 5 contains numerical results which will be used to a the theoretical results obtained in the former section.Finally,in Section 6,we end with a conclusion and a discussion of future work.

    Throughout the paper C will denote a generic positive constant that is independent of N,but dependant on T,the given functions and the index μ.

    2 Jacobi-Collocation Methods

    Now we introduce the Jacobi polynomialsof indices α,β>-1 which are the solutions to singular Sturm-Liouville problems

    Hereafter,we denote the Jacobi weight function of index (α,β) by ωα,β(x)=(1-x)α(1+x)β(see[2,8,9,16]).We define the“usual”weighted Sobolev spaces as follows:

    For a given N≥0,we denote bythe Jacobi Gauss points,and bythe corresponding Jacobi weights.Then,the Jacobi Gauss integration formula is

    In particular,we denote that

    In order to use the Jacobi-collocation methods naturally,we restate (1.4) as

    Letting v (x)=u (qx+q-1),we have that

    First,eqs.(1.3),(2.7) and (2.8) hold at the collocation pointson[-1,1],associated with ω-μ,-μ,i.e.,

    In order to obtain high order accuracy for the problem (2.9)-(2.11),the main difficulty is to compute the integral term.In particular,for small values of xi,there is little information available for u (τ).To overcome this difficulty,we transfer the integral interval[-1,xi]to a fixed interval[-1,1],

    by using the following variable change:

    Next,using the Jacobi Gauss integration formula,the integration term in (2.12) can be approximated by

    We use uiandto approximate the function values u (xi) and u′(xi)(0≤i≤N),respectively,and use

    Remark 2.1Since Fj,j=0,1,···,N are polynomials of a degree not exceeding N,we have that

    3 Some Useful Lemmas

    In this section,we will give some lemmas which are important for the derivation of the main results of the subsequent section.

    Lemma 3.1(see[2]) Let PNdenote the space of all polynomials of a degree not exceeding N.Assume that the Gauss quadrature formula relative to the Jacobi weight is used to integrate the product vφ,where v∈for some m≥1 and φ∈PN.Then there exists a constant C independent of N such that

    Then the following estimates hold:

    ProofThe inequality (1) can be found in[2].We only prove (2).Let∈PNdenote the interpolant of v at the Chebyshev Gauss points.From (5.5.28) in[2],the interpolation error estimate in the maximum norm is given by

    By using (3.7),Lemma 3.2 and (3.6),we obtain that

    where J (x) is an integrable function,then

    Lemma 3.4(Gronwall inequality) If a non-negative integrable function E (x) satisfies

    where q is a constant and 0<q<1,we get

    ProofUsing the variable change

    where 0<q<1,qx+q-1=q (x+1)-1<x+1-1=x,for x∈(-1,1].

    This,together with (3.11),gives us

    This leads to the result found in (3.12) and (3.13). □

    Lemma 3.5For nonnegative integer r and κ∈(0,1),there exists a constant Cr,κ>0 such that for any function v∈Cr,κ([-1,1]),there exists a polynomial function TNv∈PNsuch that

    where‖·‖r,κis the standard norm in Cr,κ([-1,1]).Actually,as stated in[14,15],TNis a linear operator from Cr,κ([-1,1]) into PN.

    Lemma 3.6(see[5]) Let κ∈(0,1) and M be defined by

    Then,for any function v∈C ([-1,1]),there exists a positive constant C such that

    under the assumption that 0<κ<1-μ,for any x′,x′′∈[-1,1]and x′x′′.This implies that

    Lemma 3.7(see[11]) For all measurable functions f≥0,the generalized Hardy inequality

    holds if and only if

    for the case 1<p≤q<∞.Here,T is an operator of the form (Tf)(x)=,with k (x,t) a given kernel,u,v weight functions,and-∞≤a<b≤∞.

    Lemma 3.8(see[13]) For every bounded function v (x),there exists a constant C independent of v such that

    where Fi(x) is the Lagrange interpolation basis function associated with the Jacobi collocation points.

    4 Error Analysis

    This section is devoted to providing a convergence analysis for the numerical scheme (2.18)-(2.20).The goal is to show that the rate of convergence is exponential and the spectral accuracy can be obtained for the proposed approximations.First,we carry out the convergence analysis in L∞space.

    Theorem 4.1Let u (x) be the exact solution of (1.3) with (1.4),which is assumed to be sufficiently smooth.Assume thatare obtained by using the spectral collocation scheme (2.18)-(2.20),together with a polynomial interpolation (2.17).If μ associated with the weakly singular kernel satisfies 0<μ<1 and u∈,then

    provided that N is sufficiently large,where C is a constant independent of N but which will depend on the bounds of the functionsand the index μ,and

    ProofFirst,using the weighted inner product,we note that

    and,by using the discrete inner product,we set

    Then,the numerical scheme (2.18)-(2.20) can be written as

    where (4.6) and (4.7) are obtained by Remark 2.1.By subtracting (4.5) from (2.12),subtracting (4.6) from (2.10) and subtracting (4.7) from (2.11) and letting eu(x)=u (x)-,eu′(x)=u′(x)-,we obtain that

    Using the integration error estimate in Lemma 3.1,we have

    Multiplying Fi(x) on both sides of eqs.(4.8) and (4.9) and summing up from i=0 to i=N yields

    Due to eqs.(4.14)-(4.15),and using Dirichlet’s formula,which states that

    and provided that the integral exists,we obtain

    Denoting D:={(x,s):-1≤s≤x,x∈[-1,1]},we have

    Eq.(4.14) gives

    It follows from the Gronwall inequality in Lemma 3.4 that

    It follows from (4.15) that

    Using Lemma 3.2,and the estimates (4.11) and (4.17),we have

    Due to Lemma 3.3,

    By virtue of Lemma 3.3(2) with m=1,we have that

    We now estimate the term J5(x).It follows from Lemmas 3.5 and 3.6 that

    where in the last step we used Lemma 3.6 under the following assumption:

    We now obtain the estimate forby using (4.16):

    The above estimate,together with (4.17),yields that

    This completes the proof of the theorem. □

    Next we will give the error analysis inspace.

    Theorem 4.2If the hypotheses given in Theorem 4.1 hold,then

    for any κ∈(0,1-μ),provided that N is sufficiently large and C is a constant independent of N,where

    ProofBy using the Gronwall inequality (Lemma 3.4) and the Hardy inequality (Lemma 3.7),we obtain that

    Now,using Lemma 3.8,we have that

    By the convergence result in Theorem 4.1(m=1),we have that

    Due to Lemma 3.3,

    By virtue of Lemma 3.3(1) with m=1,

    Finally,it follows from Lemmas 3.5 and 3.8 that

    where,in the last step,we used Lemma 3.6 for any κ∈(0,1-μ).By the convergence result in Theorem 4.1,we obtain that

    for N sufficiently large and for any κ∈(0,1-μ).The desired estimates (4.18) and (4.19) are obtained. □

    5 Numerical Example

    Writing U′=,U=(u0,u1,···,uN)T,U-1=u-1×(1,1,···,1)Tand V=(v0,v1,···,vN)T,we obtain the following equations of the matrix form from (2.18)-(2.20):

    The entries of the matrices are given by

    We give a numerical example to con firm our analysis.Consider weakly singular Volterra integro-differential equations with a pantograph delay

    Figure 1 Comparison between approximate solution uN and exact solution u (left);Comparison between approximate derivative and exact derivative u′(right)

    Figure 2 The errors u-uN(left) andu′-(right) versus the number of collocation pointsin L∞ and norms

    Table 1 The errors

    Table 1 The errors

    Table 2 The errors

    Table 2 The errors

    6 Conclusion and Future Work

    This paper has given a Jacobi-collocation spectral method for Volterra-integro-differential equations with a pantograph delay which contain a weakly singular kernel (t-s)-μ,0<μ<1,under the hypothesis that the solution is smooth.The main point of this work is that it has demonstrated rigorously that the errors of spectral approximations decay exponentially in both the L∞-norm and the-norm;This is a desired feature for a spectral method.In a future article we will extend our work to the fractional Volterra-integro-differential equations that contain a pantograph delay.

    猜你喜歡
    艷萍
    Weighted norm inequalities for commutators of the Kato square root of second order elliptic operators on Rn
    基于JavaScript編程語(yǔ)言之 閉包技術(shù)在焦點(diǎn)輪播上的應(yīng)用
    藏在毛衣里的愛
    新少年(2021年3期)2021-03-28 02:30:27
    春分
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    詠江石
    我的發(fā)現(xiàn)
    學(xué)吹泡泡
    可愛的小手套
    Study of TSP based on self-organizing map
    在线观看免费高清a一片| 十分钟在线观看高清视频www | 精品熟女少妇av免费看| 久久国产乱子免费精品| 色吧在线观看| 免费久久久久久久精品成人欧美视频 | 成人国产麻豆网| 高清日韩中文字幕在线| 亚洲美女视频黄频| 最近最新中文字幕免费大全7| 97超视频在线观看视频| 久久ye,这里只有精品| 成人特级av手机在线观看| 一级毛片电影观看| 亚洲精品国产色婷婷电影| 26uuu在线亚洲综合色| 草草在线视频免费看| 国产真实伦视频高清在线观看| 日韩欧美 国产精品| 黄色配什么色好看| 久久久精品免费免费高清| 蜜桃在线观看..| 久久国产精品男人的天堂亚洲 | 日本黄色日本黄色录像| 亚洲国产日韩一区二区| 亚洲欧美成人精品一区二区| av专区在线播放| 人妻 亚洲 视频| 亚洲av中文字字幕乱码综合| 亚洲av在线观看美女高潮| .国产精品久久| 永久免费av网站大全| 亚洲天堂av无毛| 丰满乱子伦码专区| 日韩免费高清中文字幕av| 秋霞在线观看毛片| 麻豆成人午夜福利视频| 建设人人有责人人尽责人人享有的 | 日本欧美国产在线视频| 欧美 日韩 精品 国产| av在线老鸭窝| 亚洲在久久综合| 国产永久视频网站| 久久久久久伊人网av| 国产精品一区二区在线不卡| 一区二区三区乱码不卡18| 天堂俺去俺来也www色官网| 成人美女网站在线观看视频| 高清在线视频一区二区三区| 亚洲av成人精品一区久久| 一级毛片aaaaaa免费看小| 内射极品少妇av片p| av在线蜜桃| 亚洲欧美日韩无卡精品| 久久99蜜桃精品久久| 欧美老熟妇乱子伦牲交| 日韩成人伦理影院| 十八禁网站网址无遮挡 | 一级毛片黄色毛片免费观看视频| 成年美女黄网站色视频大全免费 | 国产乱人偷精品视频| 亚洲国产毛片av蜜桃av| 久久久精品免费免费高清| 99国产精品免费福利视频| 女人久久www免费人成看片| 一个人看视频在线观看www免费| 日韩人妻高清精品专区| 多毛熟女@视频| 水蜜桃什么品种好| kizo精华| 日本与韩国留学比较| 国产精品精品国产色婷婷| 天堂俺去俺来也www色官网| 色5月婷婷丁香| 欧美亚洲 丝袜 人妻 在线| 日本猛色少妇xxxxx猛交久久| 99久久精品国产国产毛片| 欧美极品一区二区三区四区| 久久97久久精品| 亚洲精华国产精华液的使用体验| 国产v大片淫在线免费观看| 最近的中文字幕免费完整| 婷婷色综合www| 嫩草影院入口| 国产免费一区二区三区四区乱码| 在线免费十八禁| 亚洲人与动物交配视频| 99热这里只有是精品在线观看| 18禁动态无遮挡网站| 在线观看一区二区三区激情| 一级毛片aaaaaa免费看小| 免费大片黄手机在线观看| 国产白丝娇喘喷水9色精品| 日本免费在线观看一区| 国产 一区精品| 少妇丰满av| 日韩一本色道免费dvd| 久久久久久久大尺度免费视频| 99热这里只有是精品在线观看| 一级av片app| 成人二区视频| 亚洲精品一区蜜桃| 在线观看免费视频网站a站| 97超碰精品成人国产| 大陆偷拍与自拍| 男的添女的下面高潮视频| 国产精品无大码| www.色视频.com| 久久人人爽人人爽人人片va| 国产精品一区二区在线不卡| 欧美xxxx黑人xx丫x性爽| 欧美成人午夜免费资源| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 国产亚洲一区二区精品| 少妇高潮的动态图| 中文精品一卡2卡3卡4更新| 麻豆成人午夜福利视频| 人妻制服诱惑在线中文字幕| 亚洲自偷自拍三级| 一级毛片我不卡| 青春草国产在线视频| 欧美日韩精品成人综合77777| 欧美日韩在线观看h| 国产一区二区在线观看日韩| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 欧美精品国产亚洲| 国产精品一区二区在线不卡| 一本久久精品| 我要看黄色一级片免费的| 国产精品一区二区在线不卡| 国产免费一区二区三区四区乱码| 最近2019中文字幕mv第一页| 国产黄色视频一区二区在线观看| 熟女av电影| 国产精品福利在线免费观看| 亚洲综合精品二区| 久久精品熟女亚洲av麻豆精品| 在线观看av片永久免费下载| 国产成人免费无遮挡视频| 伊人久久国产一区二区| 国产高潮美女av| 色视频在线一区二区三区| 久久久久久人妻| 亚洲欧美精品自产自拍| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 偷拍熟女少妇极品色| 午夜精品国产一区二区电影| 日本-黄色视频高清免费观看| 免费av中文字幕在线| 欧美丝袜亚洲另类| 夜夜看夜夜爽夜夜摸| 亚洲欧洲日产国产| 久久久久久久大尺度免费视频| 国产av码专区亚洲av| 亚洲内射少妇av| 国产亚洲一区二区精品| 在线看a的网站| 噜噜噜噜噜久久久久久91| 香蕉精品网在线| 欧美日韩综合久久久久久| 日韩av免费高清视频| 青春草国产在线视频| 国产黄片美女视频| 大片电影免费在线观看免费| 中文字幕制服av| av.在线天堂| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| av福利片在线观看| 视频中文字幕在线观看| av在线app专区| 成人毛片a级毛片在线播放| 久久综合国产亚洲精品| 又爽又黄a免费视频| 91午夜精品亚洲一区二区三区| 国精品久久久久久国模美| 伊人久久国产一区二区| 欧美精品一区二区免费开放| 成人无遮挡网站| 久久精品熟女亚洲av麻豆精品| 欧美日韩视频精品一区| 精品一区二区三区视频在线| 亚洲中文av在线| 国产国拍精品亚洲av在线观看| 国产亚洲一区二区精品| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 亚洲av中文字字幕乱码综合| 日本vs欧美在线观看视频 | 国内精品宾馆在线| 岛国毛片在线播放| 激情 狠狠 欧美| 欧美高清性xxxxhd video| 男女免费视频国产| 久久国产亚洲av麻豆专区| 大又大粗又爽又黄少妇毛片口| 国产精品成人在线| 国产片特级美女逼逼视频| 人人妻人人爽人人添夜夜欢视频 | 国产精品欧美亚洲77777| 午夜精品国产一区二区电影| 日韩欧美 国产精品| 一区二区三区四区激情视频| 在线观看一区二区三区激情| 少妇人妻 视频| 国产精品久久久久久精品电影小说 | 成人国产av品久久久| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| av免费在线看不卡| 国产91av在线免费观看| 日产精品乱码卡一卡2卡三| 美女内射精品一级片tv| 熟女av电影| 亚洲一级一片aⅴ在线观看| 国产乱来视频区| 国产精品久久久久久久电影| 久久精品久久精品一区二区三区| 国产av一区二区精品久久 | a 毛片基地| 成人综合一区亚洲| 国产成人aa在线观看| 狂野欧美白嫩少妇大欣赏| tube8黄色片| 欧美高清成人免费视频www| 成人亚洲精品一区在线观看 | 亚洲一级一片aⅴ在线观看| 亚洲精品久久午夜乱码| 亚洲国产色片| 内地一区二区视频在线| 亚洲精品一二三| 午夜福利网站1000一区二区三区| 观看av在线不卡| 男女国产视频网站| 国产精品久久久久成人av| 丝袜喷水一区| 国产乱人视频| 国产亚洲精品久久久com| 国产成人一区二区在线| 亚洲欧洲日产国产| 国产免费又黄又爽又色| 亚洲国产av新网站| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 国产片特级美女逼逼视频| 五月开心婷婷网| 中国国产av一级| 亚洲av在线观看美女高潮| 欧美区成人在线视频| 亚洲av国产av综合av卡| 成年女人在线观看亚洲视频| 国产黄片美女视频| 亚洲精品日韩在线中文字幕| 国产成人免费观看mmmm| 亚洲国产欧美人成| 国语对白做爰xxxⅹ性视频网站| 韩国av在线不卡| 婷婷色av中文字幕| 国产精品成人在线| 亚洲,一卡二卡三卡| av在线老鸭窝| 少妇人妻一区二区三区视频| 能在线免费看毛片的网站| 美女cb高潮喷水在线观看| 久久 成人 亚洲| 成人二区视频| 一个人看视频在线观看www免费| 国产精品成人在线| 国产精品人妻久久久影院| 欧美性感艳星| 纯流量卡能插随身wifi吗| 亚洲av二区三区四区| 深夜a级毛片| 精品久久国产蜜桃| a 毛片基地| 国产成人午夜福利电影在线观看| 交换朋友夫妻互换小说| 麻豆国产97在线/欧美| 久久人人爽av亚洲精品天堂 | 女的被弄到高潮叫床怎么办| 伦精品一区二区三区| av在线观看视频网站免费| 一级二级三级毛片免费看| 成年免费大片在线观看| 人人妻人人看人人澡| 亚洲精品自拍成人| 一级毛片电影观看| 99热这里只有是精品在线观看| 国产伦理片在线播放av一区| 国产精品无大码| 国产在视频线精品| 美女脱内裤让男人舔精品视频| 久久97久久精品| 中文资源天堂在线| 黑人猛操日本美女一级片| 久久久a久久爽久久v久久| 少妇被粗大猛烈的视频| 欧美日韩亚洲高清精品| 欧美日韩精品成人综合77777| a级毛色黄片| 日韩人妻高清精品专区| 欧美精品亚洲一区二区| 在线观看av片永久免费下载| 黄色视频在线播放观看不卡| 我的老师免费观看完整版| 国语对白做爰xxxⅹ性视频网站| 国产在线免费精品| av国产精品久久久久影院| 91狼人影院| 亚洲精品国产色婷婷电影| 成年女人在线观看亚洲视频| 有码 亚洲区| 中文在线观看免费www的网站| 26uuu在线亚洲综合色| 国产精品久久久久久精品古装| 男女啪啪激烈高潮av片| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 91久久精品国产一区二区成人| 99国产精品免费福利视频| 久久久久人妻精品一区果冻| 人人妻人人看人人澡| 色哟哟·www| 夜夜爽夜夜爽视频| 亚州av有码| 久久久久久久久久久丰满| 亚洲av中文av极速乱| 观看美女的网站| 精品视频人人做人人爽| 色哟哟·www| 亚洲国产毛片av蜜桃av| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站 | 91久久精品国产一区二区三区| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 能在线免费看毛片的网站| 亚洲成色77777| 国产高清有码在线观看视频| 国产成人freesex在线| 国产精品精品国产色婷婷| 国产又色又爽无遮挡免| 国产亚洲最大av| 国产伦精品一区二区三区四那| 久久久国产一区二区| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 99热这里只有是精品50| 我的女老师完整版在线观看| 老师上课跳d突然被开到最大视频| 亚洲美女视频黄频| 精品亚洲成a人片在线观看 | 在线观看免费视频网站a站| 欧美精品国产亚洲| 日韩一区二区视频免费看| 国产男人的电影天堂91| 少妇精品久久久久久久| 国产一区亚洲一区在线观看| 一级毛片aaaaaa免费看小| 免费久久久久久久精品成人欧美视频 | 国产精品.久久久| 欧美zozozo另类| 岛国毛片在线播放| 99久久综合免费| 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 不卡视频在线观看欧美| 美女福利国产在线 | 国产精品精品国产色婷婷| 日韩成人伦理影院| 久久久久久久精品精品| 三级经典国产精品| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 一级片'在线观看视频| 激情 狠狠 欧美| 日本av手机在线免费观看| 男人狂女人下面高潮的视频| 插逼视频在线观看| 九色成人免费人妻av| 国产v大片淫在线免费观看| 国产亚洲5aaaaa淫片| 亚洲高清免费不卡视频| 涩涩av久久男人的天堂| 中文字幕制服av| 波野结衣二区三区在线| 日韩欧美精品免费久久| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃| 激情五月婷婷亚洲| 亚洲国产精品国产精品| 美女主播在线视频| 欧美精品亚洲一区二区| 亚洲av二区三区四区| 激情五月婷婷亚洲| 丝瓜视频免费看黄片| 91久久精品电影网| 欧美一区二区亚洲| 国产一区有黄有色的免费视频| 亚洲精品久久久久久婷婷小说| 国精品久久久久久国模美| 免费黄频网站在线观看国产| 久久热精品热| 欧美成人a在线观看| 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| av不卡在线播放| 国产精品不卡视频一区二区| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 久久ye,这里只有精品| 麻豆成人av视频| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| 毛片女人毛片| 国产乱人视频| 久热久热在线精品观看| 搡女人真爽免费视频火全软件| 亚洲图色成人| 欧美精品国产亚洲| 日韩成人伦理影院| 在线观看免费高清a一片| 大陆偷拍与自拍| 亚洲av免费高清在线观看| 国内少妇人妻偷人精品xxx网站| 韩国av在线不卡| 国产 一区精品| 内地一区二区视频在线| 日韩中文字幕视频在线看片 | 亚洲国产精品专区欧美| 亚洲第一av免费看| 男女国产视频网站| 99re6热这里在线精品视频| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 国产成人aa在线观看| av播播在线观看一区| 欧美 日韩 精品 国产| 99久久精品热视频| 久久国产精品男人的天堂亚洲 | 日韩,欧美,国产一区二区三区| 大片免费播放器 马上看| 精品熟女少妇av免费看| 久久人人爽人人片av| 国产精品无大码| 亚洲不卡免费看| 精品午夜福利在线看| 另类亚洲欧美激情| 综合色丁香网| 插逼视频在线观看| 免费黄色在线免费观看| 26uuu在线亚洲综合色| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 人妻一区二区av| 亚洲成人手机| 亚洲av欧美aⅴ国产| 2021少妇久久久久久久久久久| 日韩一本色道免费dvd| 一级av片app| 美女国产视频在线观看| 日韩欧美一区视频在线观看 | 亚洲av综合色区一区| 菩萨蛮人人尽说江南好唐韦庄| tube8黄色片| 欧美国产精品一级二级三级 | 哪个播放器可以免费观看大片| 尤物成人国产欧美一区二区三区| 午夜激情久久久久久久| 尾随美女入室| 男男h啪啪无遮挡| 欧美三级亚洲精品| 建设人人有责人人尽责人人享有的 | 国产精品精品国产色婷婷| 女性生殖器流出的白浆| 男人爽女人下面视频在线观看| 午夜福利在线在线| 久久精品国产a三级三级三级| 2018国产大陆天天弄谢| 亚洲最大成人中文| 插阴视频在线观看视频| 成年美女黄网站色视频大全免费 | 老司机影院成人| 精品人妻偷拍中文字幕| 18禁动态无遮挡网站| 日韩三级伦理在线观看| 亚洲性久久影院| 一级毛片我不卡| 午夜福利高清视频| 亚洲人成网站在线播| 国产成人精品婷婷| 国产在线视频一区二区| 一本一本综合久久| 久久国产乱子免费精品| 亚洲av成人精品一区久久| 丰满迷人的少妇在线观看| 久久国产精品大桥未久av | 免费看不卡的av| 男男h啪啪无遮挡| 欧美精品人与动牲交sv欧美| 中文字幕制服av| 欧美精品国产亚洲| 国产一区二区三区综合在线观看 | 这个男人来自地球电影免费观看 | 亚洲精品中文字幕在线视频 | 一级二级三级毛片免费看| 老司机影院毛片| 最近的中文字幕免费完整| 最新中文字幕久久久久| 亚洲三级黄色毛片| 久久97久久精品| 高清黄色对白视频在线免费看 | 免费大片黄手机在线观看| 久久国内精品自在自线图片| 一区二区三区精品91| 久久精品国产a三级三级三级| 免费av中文字幕在线| 看十八女毛片水多多多| 欧美xxxx性猛交bbbb| 国产一区二区在线观看日韩| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| av福利片在线观看| 日韩一区二区三区影片| 成人国产av品久久久| 日韩一区二区三区影片| 高清日韩中文字幕在线| 色5月婷婷丁香| 婷婷色综合www| 欧美精品一区二区免费开放| 99热这里只有是精品50| 国产精品欧美亚洲77777| 国产精品国产av在线观看| 成人漫画全彩无遮挡| 99re6热这里在线精品视频| 舔av片在线| 色5月婷婷丁香| 日韩成人av中文字幕在线观看| 成人高潮视频无遮挡免费网站| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 色5月婷婷丁香| 偷拍熟女少妇极品色| 国产伦理片在线播放av一区| 青青草视频在线视频观看| 国产在线视频一区二区| 少妇猛男粗大的猛烈进出视频| 欧美最新免费一区二区三区| 成人无遮挡网站| 国产成人精品久久久久久| 麻豆成人午夜福利视频| 亚洲成人中文字幕在线播放| 久久久久久人妻| 十分钟在线观看高清视频www | 热99国产精品久久久久久7| 91久久精品电影网| 国产精品国产三级国产专区5o| 成人黄色视频免费在线看| 丝瓜视频免费看黄片| 99久久中文字幕三级久久日本| av在线老鸭窝| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 欧美成人一区二区免费高清观看| 亚洲精品,欧美精品| 观看免费一级毛片| 久久精品久久精品一区二区三区| 22中文网久久字幕| 99久久人妻综合| 欧美一区二区亚洲| 成人毛片60女人毛片免费| 中文字幕制服av| 亚洲精品国产成人久久av| 亚洲成人av在线免费| 简卡轻食公司| 亚洲真实伦在线观看| 纯流量卡能插随身wifi吗| 日韩欧美一区视频在线观看 | 亚洲欧美日韩无卡精品| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 亚洲精品一区蜜桃| 国产精品欧美亚洲77777| 亚洲成人av在线免费| 亚洲精品中文字幕在线视频 | 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 视频区图区小说| 国产色爽女视频免费观看| 国产男人的电影天堂91| 欧美97在线视频| 舔av片在线| 国产白丝娇喘喷水9色精品| 中文字幕精品免费在线观看视频 | 亚洲av福利一区| 日日摸夜夜添夜夜添av毛片| 国精品久久久久久国模美| 国产精品久久久久久久电影| 久久久久国产精品人妻一区二区| 日产精品乱码卡一卡2卡三| 51国产日韩欧美| av网站免费在线观看视频| 建设人人有责人人尽责人人享有的 | 国产精品无大码| 国产一级毛片在线|