• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    2012-12-11 09:27:08李慧泉崔玉民吳興才洪文珊
    物理化學學報 2012年8期
    關(guān)鍵詞:阜陽光催化劑催化活性

    李慧泉 崔玉民,* 吳興才 華 林 洪文珊

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041; 3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    具有不同Bi/Ti摩爾比的BiOI/TiO2(A)光催化劑的結(jié)構(gòu)與性能

    李慧泉1,2崔玉民1,2,*吳興才3,*華 林4洪文珊1

    (1安徽阜陽師范學院化學化工學院,安徽阜陽236041;2安徽環(huán)境污染物降解與監(jiān)測省級實驗室,安徽阜陽236041;3南京大學配位化學國家重點實驗室,南京210093;4新加坡Linovus技術(shù)有限公司研發(fā)中心,新加坡059818)

    在室溫條件下通過沉積法制備了BiOI敏化納米銳鈦礦TiO2(A)光催化劑.用X射線衍射(XRD),X射線光電子能譜(XPS),光致發(fā)光(PL)光譜和紫外-可見漫反射光譜(UV-Vis DRS)等手段對其進行了表征.通過羅丹明B(RhB)催化降解實驗評價了其光催化活性.隨BiOI含量增加,BiOI/TiO2(A)在370-630 nm的吸收強度增強,吸收帶邊紅移增加,紫外和可見光催化活性先增加,當Bi/Ti摩爾比約為1.7%時,各自達到最大值,然后隨BiOI含量的進一步增加而減小.1.7%BiOI/TiO2(A)的可見光活性明顯高于P25,它的紫外光活性也略高于P25.在BiOI含量相近時,BiOI/TiO2(A)比BiOI/P25具有更低的光催化活性.和TiO2(A)相比,1.7%BiOI/TiO2(A)明顯具有更高的紫外和可見光催化活性,這歸因于它在370-630 nm的強吸收、吸收帶邊紅移明顯以及光生電子和空穴的有效轉(zhuǎn)移,減少了電子-空穴對的復(fù)合.

    沉積法;敏化;銳鈦礦;BiOI含量;光催化

    1 Introduction

    Anatase TiO2(A)has been widely used as a photocatalyst for solar energy conversion and degradation of environmental pollutants because of nontoxicity,chemical stability,good photoactivity,and low cost.1-9However,the intrinsic property of TiO2(A)(wide band-gap energy,~3.2 eV)limits its photocatalytic activity in the UV light region.In order to extend TiO2(A)photocatalytic activity into the visible light region,some attempts have been made to sensitize TiO2(A).10-14Among these attempts,CdS is widely studied as an efficient sensitizer to make TiO2(A)response visible light,but it is prone to decompose and leach out hazardous Cd2+ions under photocatalytic reaction systems.15

    Recently,the as-prepared BiOI micro/nanostructure materials have exhibited efficient photocatalytic activity in the degradation of organic pollutants.16-18Owing to BiOI having narrow band-gap energy(~1.8 eV),it could absorb most of visible solar light and may be a potential sensitizer to sensitize wide band-gap semiconductors.Zhang et al.19reported that BiOI/ TiO2heterostructures with different Bi/Ti molar ratios were synthesized by a soft-chemical method at 80°C and BiOI/TiO2heterostructures exhibited much higher visible light photocatalytic activity than TiO2,and the visible light photocatalytic activity enhancement of BiOI/TiO2heterostructures could be attributed to its strong absorption in the visible region and low recombination rate of the electron-hole pairs because of the heterojunction formed between BiOI and TiO2.Sensitization of oxide photocatalysts is one of the well-known methods for enhancing their photocatalytic activity.However,to the best of our knowledge,there were few reports on the BiOI as a sensitizer of TiO2(A),and the effect of Bi/Ti molar ratios on both UV and visible light photocatalytic performances was also rarely investigated.

    In this work,BiOI-sensitisized TiO2(A)catalysts with varying BiOI content were synthesized by a deposition method at room temperature,and effect of BiOI contents on the structure and photocatalytic activity of BiOI/TiO2(A)catalysts were investigated in detail.The structure of the catalysts were characterized by using X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),photoluminescence(PL)spectrum,and UV-Vis diffuse reflectance spectrum(UV-Vis DRS),and the photocatalytic activities were tested by a degradation of RhB.

    2 Experimental

    2.1 Catalyst preparation

    Tetrabutyl titanate(Ti(OC4H9)4)is chemical pure,and butyl alcohol(C4H9OH),acetic acid,ethanol,nitric acid bismuth salt(Bi(NO3)3·5H2O),potassium iodide(KI),ethylene glycol(C2H6O2)are analytical pure.

    The pure TiO2(A)catalysts were prepared by a sol-gel procedure with Ti(OC4H9)4as raw materials.Ti(OC4H9)4(7.0 mL) was added dropwise into one mixture consisting of 3.0 mL of acetic acid(AR)and 30 mL of C4H9OH in a dry atmosphere under roughly stirring,then a certain of deionized water was added dropwise into above mixture solution to carry out hydrolysis until the yellowish transparent sol was obtained,which was allowed to stand for 24 h at room temperature and was dried in air at 110°C for 24 h.Thus,TiO2(A)gel precursor was obtained.Finally,TiO2(A)catalysts were gained by the thermal treatment of TiO2(A)gel precursor in air at 500°C for 3 h and grinding.

    The BiOI-sensitized TiO2(A)catalysts with different BiOI contents,denoted as BiOI/TiO2(A),were prepared by a deposition method.In a typical experiment,different stoichiometric amounts of Bi(NO3)3·5H2O and 30.0 mg KI were dissolved in 20 mL ethylene glycol(AR)to obtain a clear solution I.TiO2(A)(1.0 g)was ultrasonically dispersed into deionized water to form a homogeneous mixture II.Then the solution I was added dropwise into the mixture II under strong stirring.After further agitation for 5.0 h at room temperature,the products obtained were separated centrifugally,washed with ethanol and deionized water and dried at 80°C in air.The final samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017, and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/TiO2(A),respectively.

    Reference BiOI-sensitized TiO2(P25)samples with original Bi/Ti molar ratios of 0.000,0.010,0.012,0.015,0.017,and 0.020 were denoted as 0.0%,1.0%,1.2%,1.5%,1.7%,and 2.0%BiOI/P25,respectively,prepared by the same method.

    2.2 Catalyst characterization

    X-ray diffraction were performed on a Philips X?pert diffractometer equipped with Ni-filtered Cu Kαradiation source(λ= 0.15418 nm).The X-ray tube was operated at 40 kV and 40 mA.XPS measurements were carried out using Multilab 2000 XPS system with a monochromatic MgKαsource and a charge neutralizer(Multilab 2000 XPS,Thermo Scientific,America). All binding energies were referenced to contaminant carbon(C 1s:284.6 eV).The PL spectra,obtained at 77 K with an excitation wavelength of 220 nm,were recorded on a CARY Eclipse (America)fluorescence spectrophotometer equipped with a Xe Lamp as an excitation source operating in the front face mode. UV-Vis DRS of the catalysts were determined with a Shimadzu UV-3600 spectrophotometer(Japan)using BaSO4as a reference.The actual Bi/Ti molar ratios of the obtained BiOI/TiO2(A)photocatalysts were detected by IRIS(INTREPID 2)inductively coupled plasma atomic emission spectrometry (ICP-AES,ICP710,Varian,America),and the results are listed in Table 1.

    Table 1 Lattice parameters and cell volumes for different BiOI/TiO2(A)samples

    2.3 Photocatalytic reaction

    The self-degradation of RhB solution was evaluated in the absence of BiOI/TiO2photocatalyst under UV or visible light irradiation for 1.0 h.The photocatalytic activities of BiOI/TiO2(A)catalysts were evaluated by the degradation of rhodamine B(RhB)in an aqueous solution.The UV light was obtained by a high-pressure mercury lamp(300 W).The UV irradiation intensity(the wavelengths below 400 nm)of the reaction solution surface is about 15.0 mW·cm-2(UV-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University). The visible light source was a Xenon-arc lamp(350 W)with the combination of a cut-off filter(>400 nm)to eliminate UV radiation during visible light experiments.The visible irradiation intensity of the reaction solution surface is about 8.0 mW·cm-2(FZ-A radiometer,the Photoelectric Instrument Factory of Beijing Normal University).For each UV and visible light test,40 mL RhB aqueous solution(1.04×10-5mol·L-1) and 0.1 g catalyst catalysts were used.A general procedure was carried out as follows.First,RhB aqueous solution was placed into a water-jacketed reactor maintained at 25°C,and then the catalyst samples were suspended in the solution.The suspension was stirred vigorously for 1.0 h in the dark to establish the adsorption-desorption equilibrium of RhB,then irradiated under visible or UV light.About 3.0 mL solution was withdrawn from the reactor periodically and centrifuged and analyzed for the degradation of RhB using a UV-2450 UV-Vis spectrophotometer.RhB has a maximum absorbance at 554 nm,which was used as a value for monitoring RhB degradation.The absorbance was converted to the RhB concentration in accordance with a standard curve showing a linear relationship between the concentration and the absorbance at this wavelength.

    3 Results and discussion

    3.1 Catalyst structure

    Fig.1 XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contentsBi/Ti molar ratio:(a)0.0%;(b)1.0%;(c)1.2%;(d)1.5%;(e)1.7%;(f)2.0%

    Fig.1 shows the XRD patterns of BiOI/TiO2(A)catalysts with different BiOI contents.It can be seen that 2.0%BiOI/ TiO2(A)exhibits a coexistence of both BiOI and anatase TiO2phases,the peaks around 2θ of 29.7°,31.7°,and 45.5°were indexed to those of tetragonal BiOI(JCPDS No.01-073-2062) and correspond to(012),(110),and(020),respectively.When the amount of BiOI is lower than 1.7%,no significant diffraction peak of BiOI could be detected,which could be ascribed to its lower content and high dispersion on the surface of TiO2(A)particles.The average crystalline sizes of TiO2(A)in the BiOI/TiO2(A)composites were calculated to be 19.6,21.2, 19.1,21.7,25.1,and 24.7 nm for 0.0%,1.0%,1.2%,1.5%, 1.7%,and 2.0%BiOI/TiO2(A),respectively,and the average crystalline sizes of BiOI in the BiOI/TiO2(A)composites were calculated to be 5.4 and 3.7 nm for 1.7%and 2.0%BiOI/TiO2(A),respectively,according to the Scherrer formula:20L=0.90λ/ βcosθ,where L is taken as crystalline size,λ is 0.154 nm,β is the full width half maximum(FWHM)measured in radians on the 2θ scale,and θis the Bragg angle for the diffraction peaks.

    The lattice parameters of BiOI-sensitized samples were calculated using Bragg?s equation(2dsinθ=nλ,d:surface distance, θ:angle between incident surface and reflective surface,n:diffraction series,λ:X-ray wavelength)and a formula of(1/d2= (h2+k2)/a2+l2/c2,a,b,c:cell parameters,d:surface distance,h, k,l:indices of crystal face)from their(101),(004),and(200) diffraction peaks,and the results are listed in Table 1.It can be seen that the lattice parameters of a-axis for all the BiOI-sensitized samples are almost unchanged,while that of the c-axis decreases obviously with increase of BiOI content,indicating a lattice shrinkage along the c-axis due to the sensitization of BiOI.This lattice shrinkage may be attributed to the appearance of bismuth vacancy to reach new charge balance after the substitution of oxygen with iodine.21

    In order to further determine the valence state of bismuth and iodine on the surfaces of the BiOI/TiO2(A),XPS measurements were employed to analyze the 1.7%BiOI/TiO2(A)catalyst.Fig.2(A)reveals the binding energies are 157.8 and 163.2 eV for Bi 4f7/2and Bi 4f5/2,respectively,which indicates that Bi is in the form of Bi3+assigned to BiOI.19The I 3d core level spectrum from Fig.2(B)could be observed at the binding energies of around 630.2 eV(I 3d3/2)and 618.6 eV(I 3d5/2),in agreement with that in BiOI.The above XRD and XPS results verify the existence of BiOI along with TiO2(A).

    3.2 Photocatalytic activity

    Fig.2 XPS spectra of 1.7%BiOI/TiO2(A)catalyst

    Prior to illumination,an adsorption-desorption equilibrium between the photocatalyst and RhB was established in the dark for 1.0 h.The corresponding dark adsorption values for different samples are listed in Table 2.

    The effect of BiOI sensitizing on the photocatalytic activity of BiOI/TiO2(A)has been investigated by rhodamine B(RhB) degradation in an aqueous solution under UV and visible light irradiation.Table 2 shows the UV and visible light photocatalytic activities of BiOI/TiO2(A)samples with different BiOI content.It can be seen that under UV or visible light irradiationthe degradation of rhodamine B is much lower without photocatalyst in the reaction system.In comparison,the TiO2(A)and BiOI/TiO2(A)catalysts exhibit higher photocatalytic activities than without photocatalyst for RhB degradation,and the BiOI content in the TiO2(A)exerts great influences on the photocatalytic activity of BiOI/TiO2(A)catalyst.With BiOI content increasing,the photocatalytic activities of BiOI/TiO2(A)under UV and visible light irradiation first increase,reaching a maximum around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/ TiO2(A)catalyst exhibits much higher visible light photoactivity than P25(i.e.0.0%BiOI/P25 in Table 2),and its UV light photoactivity is slightly higher than that of P25,indicating that sensitization of BiOI in the TiO2(A)with optimum BiOI content remarkably enhances the photocatalytic activity of TiO2(A).In comparison,the UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts,22,23which may be attributed to the fact that the existence of an intimate contact between anatase and rutile particles in the P25 catalyst that enhances electron transfer,hindering the recombination of photogenerated electrons and holes.

    Table 2 Dark adsorption values and photocatalytic activities of different catalysts under UV and visible light irradiation for 1.0 h

    Fig.3 UV-Vis spectra of the RhB aqueous solution under UV light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    The UV-Vis spectra of RhB aqueous solution as a function of UV and visible light irradiation time in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts are illustrated in Fig.3 and Fig.4.It can be seen that the visible region peak intensities in the photodegradation of RhB by 1.7%BiOI/TiO2(A)de-crease more obviously than by TiO2(A)during the same irradiation time,which is in agreement with the results of Table 2. The main absorbance of the degraded solution in the presence of 1.7%BiOI/TiO2(A)catalyst gradually shifted from 554 nm to shorter wavelength as the irradiation time was increased,corresponding to the stepwise formation of a series ofN-deethylated intermediates.24Since no new peak appears,the loss of absorbance can be mainly attributed to the degradation reaction.

    Fig.4 UV-Vis spectra of the RhB aqueous solution under visible light irradiation in the presence of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts

    To test the stability of the BiOI/TiO2(A)catalysts for the photocatalytic reaction,the 1.7%BiOI/TiO2(A)catalyst was reused for photocatalytic reaction 4 times under the same conditions and the result is shown in Fig.5.The photocatalytic efficiency of the 1.7%BiOI/TiO2(A)catalyst decreases only 7.0% and 8.5%,respectively,after four cycles under UV and visible light irradiation,which indicate that the catalyst is stable for the photocatalysis of pollutant molecules.

    Fig.5 Cycling runs in photocatalytic degradation of RhB in the presence of 1.7%BiOI/TiO2(A)catalyst under UV and visible light irradiation for 2.0 h

    3.3 Light absorption

    The UV-Vis DRS of BiOI/TiO2(A)catalysts with different BiOI contents are shown in Fig.6.It can be seen that with increasing BiOI content,the absorption intensity increases in the 370-630 nm and the absorption band edge has a redshift.Accordingly,the photocatalytic activities of BiOI/TiO2(A)catalysts under UV and visible light irradiations increase with increasing BiOI content.When the BiOI content is higher than 1.7%,the light absorption intensity of 2.0%BiOI/TiO2(A)catalyst increases further in the 370-630 nm and the absorption band edge shifts further red but the photocatalytic activities of 2.0%BiOI/TiO2(A)catalyst under UV and visible light irradiation decrease remarkably,which may be attributed to the fact that the excessive BiOI with narrow band gap will be acted as the recombination center of electrons and holes,25impeding the photocatalytic activity on the contrary.

    It can be also seen that there are two prominent absorption bands for the BiOI/TiO2(A)catalysts when the amount of BiOI is greater than 1.7%in Fig.6.The former is assigned to the absorption of anatase TiO2,and the latter is attributed to the characteristic absorption of BiOI.23The appearance of two kinds of characteristic absorption bands also testifies that the BiOI/TiO2(A)catalyst is composed of BiOI and TiO2(A).

    TiO2(A)is n-type semiconductor,while BiOI is p-type semiconductor.When TiO2(A)and BiOI are brought in contact,the energy level difference between TiO2(A)and BiOI causes the electrons to flow from higher level TiO2(A)to lower level BiOI.26However,the redistribution of the electrons between BiOI and TiO2(A)is supposed to trigger an upward and downward shift of the band edges,respectively,for BiOI and TiO2(A).27In addition,BiOI particles on the surface of TiO2(A)are very small and their average crystalline sizes for 1.7%and 2.0%BiOI/TiO2(A)catalysts are less than 5.5 nm.Compared with bulk BiOI,the band gap of the BiOI particles becomes broader due to the size quantization effect,therefore the conduction band of the BiOI particle shifts to negative potentials.28,29When BiOI/TiO2(A)catalyst is exposed to UV or visible light, the electrons in the valence band of BiOI will be excited into the conduction band and then injected into the more positive conduction band of TiO2(A).So the photoelectrons are generated from BiOI and transferred across the interface between Bi-OI and TiO2(A)to the surface of TiO2(A),leaving the photogenerated holes in the valence band of BiOI.By this way,the photogenerated electron-hole pairs are effectively separated. The better separation of electrons and holes in the BiOI/TiO2(A)catalysts is confirmed by PL emission spectra of 1.7%Bi-OI/TiO2(A)and TiO2(A)catalysts in Fig.7.

    Fig.6 UV-Vis DRS of BiOI/TiO2(A)catalysts with different initial BiOI contents

    Fig.7 PLspectra of TiO2(A)and 1.7%BiOI/TiO2(A)catalysts recorded at-196°C with the excitation wavelength of 220 nm

    Fig.7 shows the photoluminescence(PL)emission spectra of TiO2(A)and 1.7%BiOI-TiO2(A)catalysts.It is well known that the PL signals of semiconductor materials result from the recombination of photogenerated charge carriers.In general, the lower the PL intensity,the lower the recombination rate of photogenerated electron-hole pairs,and the higher the photocatalytic activity of semiconductor photocatalysts.30-32As shown in Fig.7,TiO2(A)and 1.7%BiOI/TiO2(A)catalysts show a strong and broad peak from 350 to 650 nm,and exhibit an emission peak around at 463 nm,which is an excitonic PL signal.33Compared with that of TiO2(A),the emission peak intensity of 1.7%BiOI/TiO2(A)decreases considerably,indicating that the recombination of photogenerated charge carrier is inhibited greatly in the 1.7%BiOI/TiO2(A)catalysts.Thus photogenerated electron-hole pairs are effectively separated.The efficient charge separation could increase lifetime of charge carriers and enhance the efficiency of interfacial charge transfer to adsorbed substrates,and then improve photocatalytic activity.

    4 Conclusions

    In summary,BiOI-sensitisized TiO2(A)photocatalysts with different BiOI contents have been successfully synthesized by a deposition method at room temperature.The BiOI content exerts great influences on the physicochemical properties and photocatalytic activities of BiOI/TiO2(A)catalysts.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)samples enhances in 370-630 nm and the redshift of absorption band edges increase,and their UV and visible light photocatalytic activities first increase,reaching the maxima around BiOI content of 1.7%,respectively,and then decrease with further increasing BiOI content.The 1.7%BiOI/TiO2(A) catalyst exhibits much higher visible light photoactivity than P25,and its UV light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)catalysts with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A), 1.7%BiOI/TiO2(A)exhibits much higher UV and visible light photoactivity.It can be attributed to the stronger light absorption in 370-630 nm,the obvious red shift of absorption band edge,and the effective transfer of the photogenerated electrons and holes,reducing the recombination of electron-hole pairs. The 1.7%BiOI/TiO2(A)catalyst is stable for the photocatalysis of RhB.

    (1) Chen,X.B.;Liu,L.;Yu,P.Y.;Mao,S.S.Science 2011,331, 746.doi:10.1126/science.1200448

    (2)Qiu,W.;Ren,C.J.;Gong,M.C.;Hou,Y.Z.;Chen,Y.Q.Acta Phys.-Chim.Sin.2011,27,1487. [仇 偉,任成軍,龔茂初,侯云澤,陳耀強.物理化學學報,2011,27,1487.]doi:10.3866/ PKU.WHXB20110621

    (3)Tong,X.;Chen,R.;Chen,T.H.Acta Phys.-Chim.Sin.2011,27, 1941.[佟 欣,陳 睿,陳鐵紅.物理化學學報,2011,27, 1941.]doi:10.3866/PKU.WHXB20110836

    (4) Chen,S.F.;Zhao,W.;Liu,W.;Zhang,S.J.Appl.Surf.Sci. 2008,255,2478.doi:10.1016/j.apsusc.2008.07.115

    (5) Chen,S.F.;Zhang,S.J.;Liu,W.;Zhao,W.J.Hazard.Mater. 2008,155,320.doi:10.1016/j.jhazmat.2007.11.063

    (6) Li,Y.Z.;Kim,S.J.J.Phys.Chem.B 2005,109(25),12309. doi:10.1021/jp0512917

    (7)Wu,J.M.;Yao,J.J.;Yang,H.P.;Fan,Y.N.;Xu,B.L.Acta. Chim.Sin.2010,68(14),1349.[吳俊明,姚俊杰,楊漢培,范以寧,許波連.化學學報,2010,68(14),1349.]

    (8) Li,Y.Z.;Lee,N.H.;Hwang,D.S.;Song,J.S.;Lee,E.G.; Kim,S.J.Langmuir 2004,20(25),10838.

    (9) Sério,S.;Jorge,M.E.M.;Coutinho,M.L.;Hoffmann,S.V.; Limao-Vieira,P.;Nunes,Y.Chem.Phys.Lett.2011,508,71. doi:10.1016/j.cplett.2011.04.002

    (10)Sun,W.T.;Yu,Y.;Pan,H.Y.;Gao,X.F.;Chen,Q.;Peng,L.M. J.Am.Chem.Soc.2008,130,1124.doi:10.1021/ja0777741

    (11)Morikawa,T.;Ohwaki,T.;Suzuki,K.I.;Shinya,M.; Tero-Kubota,S.Appl.Catal.B:Environ.2008,83,56.doi: 10.1016/j.apcatb.2008.01.034

    (12) Mitoraj,D.;Kisch,H.Angew.Chem.Int.Edit.2008,47,9975. doi:10.1002/anie.200800304

    (13) Li,G.S.;Zhang,D.Q.;Yu,J.C.Environ.Sci.Technol.2009, 43,7079.doi:10.1021/es9011993

    (14) Li,L.;Rohrer,G.S.;Salvador,P.A.J.Am.Ceram.Soc.2012, 95,1414.doi:10.1111/j.1551-2916.2012.05076.x

    (15) Zyoud,A.H.;Zaatar,N.;Saadeddin,I.;Ali,C.;Park,D.; Campet,G.;Hilal,H.S.J.Hazard.Mater.2010,173,318.doi: 10.1016/j.jhazmat.2009.08.093

    (16) Xia,J.X.;Yin,S.;Li,H.M.;Xu,H.;Xua,L.;Zhang,Q. Colloids and Surfaces A:Physicochem.Eng.Aspects 2011,387, 23.doi:10.1016/j.colsurfa.2011.07.023

    (17) Li,Y.Y.;Wang,J.S.;Yao,H.C.;Dang,L.Y.;Li,Z.J.J.Mol. Catal.A:Chem.2011,334,116.doi:10.1016/j.molcata. 2010.11.005

    (18)Wang,Y.N.;Deng,K.J.;Zhang,L.Z.J.Phys.Chem.C 2011, 115,14300 doi:10.1021/jp2042069

    (19)Zhang,X.;Zhang,L.Z.;Xie,T.F.;Wang,D.J.J.Phys.Chem. C 2009,113,7371.doi:10.1021/jp900812d

    (20) Galceran,M.;Pujol,M.C.;Zaldo,C.;Díaz,F.;Aguiló,M. J.Phys.Chem.C 2009,113,15497.doi:10.1021/jp901109a

    (21) Huang,G.L.;Zhu,Y.F.J.Phys.Chem.C 2007,111,11952. doi:10.1021/jp071987v

    (22) Hua,X.;Zhang,L.Z.J.Phys.Chem.C 2009,113,1785.

    (23) Bakardjieva,S.;Subrta,J.;?tengla,V.;Dianez,M.J.;Sayagues, M.J.Appl.Catal.B:Environ.2005,58,193.

    (24) Chen,C.C.;Zhao,W.;Li,J.Y.;Zhao,J.C.Environ.Sci. Technol.2002,36,3604.doi:10.1021/es0205434

    (25)Cao,J.;Xu,B.Y.;Lin,H.L.;Luo,B.D.;Chen,S.F.Chem. Eng.J.2012,185/186,91.

    (26) Lee,Y.L.;Lo,Y.S.Adv.Funct.Mater.2009,19,604.doi: 10.1002/adfm.200800940

    (27) Li,Y.Y.;Wang,J.S.;Liu,B.;Dang,L.Y.;Yao,H.C.;Li,Z.J. Chem.Phys.Lett.2011,508,102.doi:10.1016/j.cplett. 2011.04.019

    (28) Robel,I.;Kuno,M.;Kamat,P.V.J.Am.Chem.Soc.2007,129, 4136.doi:10.1021/ja070099a

    (29)Kongkanand,A.;Tvrdy,K.;Takechi,K.;Kuno,M.;Kamat,P.V. J.Am.Chem.Soc.2008,130,4007.doi:10.1021/ja0782706

    (30)Yu,J.G.;Yu,H.G.;Cheng,B.;Zhao,X.J.;Yu,J.C.;Ho,W.K. J.Phys.Chem.B 2003,107(50),13871.doi:10.1021/ jp036158y

    (31) Li,X.Z.;Li,F.B.;Yang,C.L.;Ge,W.K.J.Photochem. Photobiol.A 2001,141(2-3),209.doi:10.1016/S1010-6030 (01)00446-4

    (32) Jing,L.Q.;Qu,Y.C.;Wang,B.Q.;Li,S.D.;Jiang,B.J.;Yang, L.B.;Fu,W.;Fu,H.G.;Sun,J.Z.Sol.Energy Mat.Sol.Cells 2006,90,1773.doi:10.1016/j.solmat.2005.11.007

    (33) Baiju,K.V.;Zachariah,A.;Shukla,S.;Biju,S.;Reddy,M.L.P.; Warrier,K.G.K.Catal.Lett.2009,130,130.doi:10.1007/ s10562-008-9798-5

    March 19,2012;Revised:May 15,2012;Published on Web:May 16,2012.

    Structure and Properties of BiOI/TiO2(A)Photocatalysts with Different Bi/Ti Molar Ratios

    LI Hui-Quan1,2CUI Yu-Min1,2,*WU Xing-Cai3,*HUA Lin4HONG Wen-Shan1
    (1School of Chemistry and Chemical Engineering,Fuyang Normal College,Fuyang,236041,Anhui Province,P.R.China;2Anhui Provincical Key Laboratory for Degradation and Monitoring of Pollution of the Environment,Fuyang 236041,Anhui Province,P.R.China;3State Key Laboratory of Coordination Chemistry,Nanjing University,Nanjing 210093,P.R.China;4Research District Center,Singapore Linovus Technology Private Limited,059818,Singapore)

    BiOI-sensitized nano-anatase(TiO2(A))photocatalysts were prepared by a deposition method at room temperature,and characterized by X-ray diffraction(XRD),X-ray photoelectron spectroscopy (XPS),and photoluminescence(PL),and UV-Vis diffuse reflectance spectra(UV-Vis DRS).The photocatalytic activities were evaluated by photo-degradation experiments of rhodamine B.With increasing BiOI content,the absorption intensity of BiOI/TiO2(A)increases in the 370-630 nm region and the absorption band edge redshifts.The UV and visible light photocatalytic activities increase,reaching a maximum when the Bi/Ti molar ratio is 1.7%.The 1.7%BiOI/TiO2(A)catalyst exhibits much higher visible-light photoactivity than P25,and its UV-light photoactivity is slightly higher than that of P25.The UV and visible light photocatalytic activities of BiOI/TiO2(A)with similar BiOI content are lower than those of BiOI/P25 catalysts.Compared with TiO2(A),1.7%BiOI/TiO2(A)shows higher UV and visible light photoactivities.This is attributed to the strong absorption in the 370-630 nm region,the redshift of the absorption band edge,and the effective transfer of the photogenerated electrons and holes,which reduces the recombination of electron-hole pairs.

    Deposition method;Sensitized;Anatase;BiOI content;Photocatalysis

    10.3866/PKU.WHXB201205161

    ?Corresponding authors.CUI Yu-Min,Email:cymlh@fync.edu.cn;Tel:+86-558-2596507;Fax:+86-558-2596703.

    WU Xing-Cai,Eamil:wuxingca@nju.edu.cn;Tel:+86-25-83594945;Fax:+86-25-83317761.

    The project was supported by the National Natural Science Foundation of China(21171091)and Natural Science Foundation of Higher Education Institutions inAnhui Province,China(KJ2012A217,KJ2012B136).

    國家自然科學基金(21171091)和安徽省高校省級自然科學基金(KJ2012A217,KJ2012B136)資助項目

    O644

    猜你喜歡
    阜陽光催化劑催化活性
    第二屆淮河文化論壇在阜陽舉行
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    陶瓷學報(2019年6期)2019-10-27 01:18:18
    合肥至霍邱至阜陽高速公路今年開建
    安徽阜陽潁上:“產(chǎn)業(yè)花”結(jié)出“脫貧果”
    Pr3+/TiO2光催化劑的制備及性能研究
    關(guān)于把阜陽建成區(qū)域中心城市的思考
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見光催化活性
    BiVO4光催化劑的改性及其在水處理中的應(yīng)用研究進展
    g-C3N4/TiO2復(fù)合光催化劑的制備及其性能研究
    日韩av在线大香蕉| 国产一区二区三区视频了| 亚洲第一青青草原| 黄色丝袜av网址大全| 国产亚洲精品久久久久5区| 人人澡人人妻人| 天堂√8在线中文| 国产野战对白在线观看| 国产成人精品久久二区二区免费| 色av中文字幕| 欧美另类亚洲清纯唯美| 啦啦啦免费观看视频1| 夜夜看夜夜爽夜夜摸| 国产精品影院久久| 国产99白浆流出| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 亚洲第一青青草原| 欧美一区二区精品小视频在线| 午夜精品国产一区二区电影| 国产蜜桃级精品一区二区三区| 国产精品香港三级国产av潘金莲| 可以在线观看毛片的网站| 在线天堂中文资源库| 精品高清国产在线一区| 欧美另类亚洲清纯唯美| 在线观看日韩欧美| 18禁裸乳无遮挡免费网站照片 | 大型黄色视频在线免费观看| 日本 欧美在线| 俄罗斯特黄特色一大片| 老汉色∧v一级毛片| 日日爽夜夜爽网站| 很黄的视频免费| 久久久精品国产亚洲av高清涩受| 国产片内射在线| 欧美绝顶高潮抽搐喷水| 99久久久亚洲精品蜜臀av| 97人妻精品一区二区三区麻豆 | 18禁国产床啪视频网站| 欧美日韩亚洲综合一区二区三区_| 日本 欧美在线| 国产成人一区二区三区免费视频网站| 欧美大码av| 欧美性长视频在线观看| 乱人伦中国视频| 国产精品免费一区二区三区在线| 黄频高清免费视频| 国内精品久久久久久久电影| 免费在线观看日本一区| 在线观看66精品国产| 国产在线观看jvid| 亚洲国产精品999在线| 老司机深夜福利视频在线观看| 亚洲色图综合在线观看| 欧美成人免费av一区二区三区| 嫁个100分男人电影在线观看| 久久亚洲真实| 国产区一区二久久| 夜夜躁狠狠躁天天躁| 9热在线视频观看99| 国产亚洲精品第一综合不卡| 十八禁网站免费在线| 人成视频在线观看免费观看| 精品欧美一区二区三区在线| 黄色毛片三级朝国网站| 亚洲精品中文字幕在线视频| 99国产精品免费福利视频| 大型av网站在线播放| 国产成人一区二区三区免费视频网站| 久久国产精品人妻蜜桃| 少妇 在线观看| 欧美av亚洲av综合av国产av| 一二三四社区在线视频社区8| 久久久久久久久久久久大奶| 久久草成人影院| 99国产精品99久久久久| 亚洲精品av麻豆狂野| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 可以在线观看毛片的网站| 欧美成人免费av一区二区三区| 极品人妻少妇av视频| 9色porny在线观看| 手机成人av网站| 亚洲 国产 在线| www.999成人在线观看| 免费搜索国产男女视频| 亚洲第一欧美日韩一区二区三区| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看| 在线观看www视频免费| 成人av一区二区三区在线看| 亚洲av美国av| 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 中文字幕精品免费在线观看视频| 97碰自拍视频| 久久久水蜜桃国产精品网| 国产精品久久久久久人妻精品电影| 亚洲欧美激情综合另类| 精品高清国产在线一区| 日本免费一区二区三区高清不卡 | 性欧美人与动物交配| 波多野结衣巨乳人妻| 老汉色∧v一级毛片| 国产精品久久久久久精品电影 | 欧美黄色淫秽网站| 亚洲国产日韩欧美精品在线观看 | 国产三级黄色录像| 一级作爱视频免费观看| 日日夜夜操网爽| 欧美成人午夜精品| 国产免费av片在线观看野外av| 最近最新免费中文字幕在线| 伦理电影免费视频| www日本在线高清视频| 欧美最黄视频在线播放免费| 国产精品九九99| 99国产精品免费福利视频| 男人舔女人下体高潮全视频| 日本 av在线| 久久精品影院6| 99精品久久久久人妻精品| 99精品在免费线老司机午夜| 一区二区三区高清视频在线| 视频区欧美日本亚洲| 99久久国产精品久久久| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆 | 午夜福利免费观看在线| 精品无人区乱码1区二区| 男男h啪啪无遮挡| 精品人妻1区二区| 亚洲性夜色夜夜综合| 国产97色在线日韩免费| 免费在线观看视频国产中文字幕亚洲| 欧美黑人精品巨大| 给我免费播放毛片高清在线观看| 国产1区2区3区精品| 亚洲成人精品中文字幕电影| 日本 欧美在线| 亚洲在线自拍视频| 国产三级在线视频| 免费搜索国产男女视频| 国产99久久九九免费精品| 日韩精品青青久久久久久| 亚洲狠狠婷婷综合久久图片| 色综合欧美亚洲国产小说| 麻豆成人av在线观看| 人人妻人人爽人人添夜夜欢视频| 精品一区二区三区四区五区乱码| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 亚洲专区中文字幕在线| 日本免费a在线| www.熟女人妻精品国产| 午夜视频精品福利| 一夜夜www| 日韩欧美国产在线观看| 精品电影一区二区在线| 国产高清有码在线观看视频 | 一个人观看的视频www高清免费观看 | 久久热在线av| 亚洲全国av大片| 91av网站免费观看| 国产aⅴ精品一区二区三区波| 免费在线观看影片大全网站| 日本免费a在线| 亚洲欧洲精品一区二区精品久久久| 国产一级毛片七仙女欲春2 | 非洲黑人性xxxx精品又粗又长| 9191精品国产免费久久| 在线观看免费视频网站a站| 十八禁人妻一区二区| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 波多野结衣一区麻豆| 黑人操中国人逼视频| 中文字幕人成人乱码亚洲影| 青草久久国产| 熟妇人妻久久中文字幕3abv| 亚洲,欧美精品.| 久久久国产成人免费| 国产亚洲精品一区二区www| 欧美在线黄色| 国产精华一区二区三区| 搡老熟女国产l中国老女人| 国产又色又爽无遮挡免费看| 欧美人与性动交α欧美精品济南到| 亚洲午夜理论影院| 97人妻精品一区二区三区麻豆 | av福利片在线| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 欧美精品啪啪一区二区三区| 黄色视频不卡| 日本三级黄在线观看| 悠悠久久av| 少妇裸体淫交视频免费看高清 | 日本一区二区免费在线视频| 老司机午夜福利在线观看视频| 黑人欧美特级aaaaaa片| 国产免费男女视频| 涩涩av久久男人的天堂| 亚洲aⅴ乱码一区二区在线播放 | 视频区欧美日本亚洲| 亚洲人成伊人成综合网2020| 97人妻天天添夜夜摸| 极品人妻少妇av视频| 日本撒尿小便嘘嘘汇集6| 中文字幕久久专区| 少妇裸体淫交视频免费看高清 | 黄色视频,在线免费观看| 丝袜美腿诱惑在线| 大陆偷拍与自拍| cao死你这个sao货| 极品人妻少妇av视频| av免费在线观看网站| 琪琪午夜伦伦电影理论片6080| 成人三级做爰电影| 亚洲av成人不卡在线观看播放网| 久久久久久久久久久久大奶| 韩国av一区二区三区四区| 在线观看免费视频网站a站| 香蕉国产在线看| 窝窝影院91人妻| 久久国产精品男人的天堂亚洲| 国产成年人精品一区二区| 美女 人体艺术 gogo| 天天一区二区日本电影三级 | 一级毛片精品| 午夜福利欧美成人| 久久香蕉激情| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 欧美成人免费av一区二区三区| 午夜视频精品福利| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区av网在线观看| 久久国产精品男人的天堂亚洲| 给我免费播放毛片高清在线观看| 超碰成人久久| 视频区欧美日本亚洲| 国产片内射在线| 神马国产精品三级电影在线观看 | 色综合站精品国产| 91大片在线观看| 午夜影院日韩av| 亚洲精华国产精华精| 真人做人爱边吃奶动态| 亚洲成人国产一区在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲五月色婷婷综合| 日韩视频一区二区在线观看| 91大片在线观看| 色在线成人网| 国产极品粉嫩免费观看在线| 精品久久久久久久人妻蜜臀av | 亚洲精华国产精华精| 婷婷丁香在线五月| ponron亚洲| 久久精品成人免费网站| 亚洲va日本ⅴa欧美va伊人久久| 1024香蕉在线观看| 国产成人欧美在线观看| 欧美亚洲日本最大视频资源| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看 | 这个男人来自地球电影免费观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产日韩欧美精品在线观看 | 18禁美女被吸乳视频| 后天国语完整版免费观看| 少妇的丰满在线观看| 可以在线观看毛片的网站| 久久亚洲精品不卡| 欧美色欧美亚洲另类二区 | 免费在线观看亚洲国产| 丝袜在线中文字幕| 久久精品91无色码中文字幕| 在线十欧美十亚洲十日本专区| 亚洲精品粉嫩美女一区| 9色porny在线观看| 亚洲激情在线av| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 国产熟女午夜一区二区三区| 亚洲五月色婷婷综合| 少妇裸体淫交视频免费看高清 | 禁无遮挡网站| 欧美乱码精品一区二区三区| 成人免费观看视频高清| 欧美一级a爱片免费观看看 | 欧美日本亚洲视频在线播放| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 日韩高清综合在线| 激情在线观看视频在线高清| 精品国产乱码久久久久久男人| 日日夜夜操网爽| 两个人免费观看高清视频| 久久久精品国产亚洲av高清涩受| 12—13女人毛片做爰片一| 母亲3免费完整高清在线观看| 无限看片的www在线观看| 天堂√8在线中文| 正在播放国产对白刺激| 亚洲片人在线观看| 女人精品久久久久毛片| 人人妻,人人澡人人爽秒播| 欧美乱妇无乱码| 9热在线视频观看99| 香蕉丝袜av| 一级毛片精品| 免费高清视频大片| 精品久久久久久久久久免费视频| 日本欧美视频一区| 女人被狂操c到高潮| 久久人人97超碰香蕉20202| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av| 熟妇人妻久久中文字幕3abv| 91av网站免费观看| 成人永久免费在线观看视频| 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 国产亚洲欧美在线一区二区| 国产精品野战在线观看| 久久精品影院6| 黄片播放在线免费| 国产精品二区激情视频| 脱女人内裤的视频| 99在线人妻在线中文字幕| 黄色a级毛片大全视频| 久久中文看片网| 亚洲欧洲精品一区二区精品久久久| 久久亚洲精品不卡| 国产av一区在线观看免费| 男女下面进入的视频免费午夜 | 我的亚洲天堂| 91精品三级在线观看| 久久人人爽av亚洲精品天堂| 亚洲成av片中文字幕在线观看| 高清在线国产一区| 亚洲成人国产一区在线观看| 精品久久久久久久久久免费视频| 亚洲av成人av| 久久国产亚洲av麻豆专区| 精品国产美女av久久久久小说| 精品国产一区二区久久| 欧美日韩一级在线毛片| 午夜成年电影在线免费观看| 欧美亚洲日本最大视频资源| 亚洲成av片中文字幕在线观看| 老司机午夜十八禁免费视频| 国产亚洲精品av在线| 免费看a级黄色片| 国产精品爽爽va在线观看网站 | 欧美成人免费av一区二区三区| 国产精品久久久av美女十八| 熟女少妇亚洲综合色aaa.| 老司机靠b影院| 久久婷婷人人爽人人干人人爱 | 日韩av在线大香蕉| 成人亚洲精品av一区二区| 免费无遮挡裸体视频| 国产免费av片在线观看野外av| 日本免费a在线| 中文字幕久久专区| 国产精品影院久久| 亚洲无线在线观看| 欧美老熟妇乱子伦牲交| 后天国语完整版免费观看| 国产熟女xx| 亚洲欧美日韩无卡精品| 成人手机av| 757午夜福利合集在线观看| 国产精品香港三级国产av潘金莲| 一级片免费观看大全| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 亚洲视频免费观看视频| 三级毛片av免费| 麻豆一二三区av精品| 色哟哟哟哟哟哟| 亚洲熟妇熟女久久| 日韩大码丰满熟妇| 精品久久久久久久人妻蜜臀av | 亚洲中文av在线| 50天的宝宝边吃奶边哭怎么回事| 色综合亚洲欧美另类图片| 两人在一起打扑克的视频| 99国产极品粉嫩在线观看| 亚洲色图 男人天堂 中文字幕| 欧美日韩精品网址| 夜夜爽天天搞| 又黄又粗又硬又大视频| 国产一区二区激情短视频| 高潮久久久久久久久久久不卡| 亚洲国产看品久久| 国产精品久久电影中文字幕| 国产又爽黄色视频| 久久久国产成人精品二区| 久久国产乱子伦精品免费另类| 中文字幕人妻熟女乱码| 黑人巨大精品欧美一区二区mp4| 亚洲五月婷婷丁香| 亚洲专区中文字幕在线| 亚洲一区高清亚洲精品| 久久精品aⅴ一区二区三区四区| av福利片在线| 国产成+人综合+亚洲专区| 美女高潮到喷水免费观看| 欧美日韩亚洲综合一区二区三区_| 91大片在线观看| 精品人妻1区二区| 亚洲国产精品sss在线观看| 精品少妇一区二区三区视频日本电影| 久久精品国产亚洲av香蕉五月| 最近最新中文字幕大全免费视频| 成人亚洲精品av一区二区| 国产精品乱码一区二三区的特点 | 国产成人系列免费观看| 亚洲黑人精品在线| 中文字幕久久专区| 亚洲男人天堂网一区| 欧美最黄视频在线播放免费| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 美女免费视频网站| 精品无人区乱码1区二区| 两性夫妻黄色片| 成人国产综合亚洲| 国产高清有码在线观看视频 | 91字幕亚洲| 久久亚洲真实| 国产精品1区2区在线观看.| 欧美激情高清一区二区三区| 欧美精品亚洲一区二区| 69av精品久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲av熟女| 亚洲午夜理论影院| 一个人观看的视频www高清免费观看 | 97超级碰碰碰精品色视频在线观看| 一进一出抽搐gif免费好疼| 国产色视频综合| 精品电影一区二区在线| 可以在线观看的亚洲视频| 女同久久另类99精品国产91| 午夜精品在线福利| 国产99白浆流出| 国产av精品麻豆| 黑人操中国人逼视频| 变态另类丝袜制服| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 激情在线观看视频在线高清| 亚洲一码二码三码区别大吗| 妹子高潮喷水视频| 后天国语完整版免费观看| 日韩精品青青久久久久久| 午夜老司机福利片| 精品一品国产午夜福利视频| 欧美日韩亚洲国产一区二区在线观看| 日本精品一区二区三区蜜桃| 女人爽到高潮嗷嗷叫在线视频| 99国产精品一区二区蜜桃av| 亚洲自偷自拍图片 自拍| 夜夜爽天天搞| 国产成人欧美| 久久香蕉激情| 日本欧美视频一区| 亚洲人成伊人成综合网2020| 午夜a级毛片| 精品久久久久久久久久免费视频| 亚洲精品美女久久久久99蜜臀| 黑人操中国人逼视频| 国产精品日韩av在线免费观看 | 99国产综合亚洲精品| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av高清一级| 午夜两性在线视频| 免费在线观看黄色视频的| 麻豆久久精品国产亚洲av| 欧美乱妇无乱码| 757午夜福利合集在线观看| 琪琪午夜伦伦电影理论片6080| 午夜成年电影在线免费观看| 国产三级在线视频| 国产成人精品无人区| 91九色精品人成在线观看| avwww免费| 国产午夜福利久久久久久| 国产av精品麻豆| 法律面前人人平等表现在哪些方面| 精品国产亚洲在线| 一级,二级,三级黄色视频| 欧美日本视频| 黑丝袜美女国产一区| 天堂影院成人在线观看| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| www日本在线高清视频| 变态另类丝袜制服| 久久久久久久久免费视频了| 成人三级黄色视频| e午夜精品久久久久久久| 亚洲熟女毛片儿| 久久久久久国产a免费观看| 亚洲欧美精品综合久久99| 黑人巨大精品欧美一区二区mp4| 日韩av在线大香蕉| 真人做人爱边吃奶动态| 天堂√8在线中文| 国产精品永久免费网站| 精品国产超薄肉色丝袜足j| 可以在线观看的亚洲视频| 亚洲成人久久性| 欧美中文日本在线观看视频| 色在线成人网| 日韩欧美在线二视频| 女生性感内裤真人,穿戴方法视频| 丁香六月欧美| 亚洲国产欧美一区二区综合| 亚洲一区中文字幕在线| 99在线视频只有这里精品首页| 久久人人精品亚洲av| 亚洲第一欧美日韩一区二区三区| 亚洲成av片中文字幕在线观看| 黄片播放在线免费| 51午夜福利影视在线观看| 777久久人妻少妇嫩草av网站| 国产极品粉嫩免费观看在线| 国产精品综合久久久久久久免费 | 成人永久免费在线观看视频| 亚洲精华国产精华精| 侵犯人妻中文字幕一二三四区| a级毛片在线看网站| 成人国产一区最新在线观看| av片东京热男人的天堂| avwww免费| 一二三四在线观看免费中文在| 99久久久亚洲精品蜜臀av| 一区福利在线观看| 欧美色欧美亚洲另类二区 | av电影中文网址| 免费观看人在逋| 又黄又爽又免费观看的视频| a级毛片在线看网站| 老汉色∧v一级毛片| 免费不卡黄色视频| 波多野结衣av一区二区av| 人妻久久中文字幕网| 国产野战对白在线观看| 91精品三级在线观看| 精品国内亚洲2022精品成人| 久久香蕉国产精品| 欧美不卡视频在线免费观看 | 啪啪无遮挡十八禁网站| 日韩精品青青久久久久久| 亚洲欧洲精品一区二区精品久久久| 国产精品精品国产色婷婷| 一级a爱视频在线免费观看| 国产成人av教育| 91麻豆精品激情在线观看国产| 国产精品亚洲美女久久久| 美女大奶头视频| av网站免费在线观看视频| 中文字幕色久视频| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| 一级片免费观看大全| 成人精品一区二区免费| 一进一出好大好爽视频| 国产精品永久免费网站| 在线观看免费视频网站a站| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 在线观看午夜福利视频| 精品一区二区三区视频在线观看免费| 久久久国产成人免费| 精品国产亚洲在线| 99精品久久久久人妻精品| 女同久久另类99精品国产91| 久久香蕉激情| av天堂在线播放| 精品国产一区二区久久| 黄片小视频在线播放| 欧美日韩瑟瑟在线播放| 亚洲国产精品成人综合色| 人人妻,人人澡人人爽秒播| 黄色a级毛片大全视频| 国产成人精品无人区| 成人特级黄色片久久久久久久| 精品欧美一区二区三区在线| 欧美日韩中文字幕国产精品一区二区三区 | 中文字幕色久视频| 国产又爽黄色视频| 亚洲av片天天在线观看| a在线观看视频网站| 大型黄色视频在线免费观看| 最新美女视频免费是黄的| 高清黄色对白视频在线免费看| 777久久人妻少妇嫩草av网站| 亚洲免费av在线视频| 一二三四社区在线视频社区8| 精品国产乱子伦一区二区三区| 国产三级黄色录像| 成人永久免费在线观看视频| 18美女黄网站色大片免费观看| 欧美亚洲日本最大视频资源|