• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    2012-12-21 06:34:10馬麗娟王劍鋒賈建峰武海順
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:劍鋒儲氫物理化學(xué)

    馬麗娟 王劍鋒 賈建峰 武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    馬麗娟 王劍鋒 賈建峰*武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    提出了兩個穩(wěn)定的團簇B12Sc4和B12Ti4,基于理論計算,研究了它們的結(jié)構(gòu)與儲氫性質(zhì).結(jié)果發(fā)現(xiàn),在這兩個穩(wěn)定的團簇中,過渡金屬原子不會聚合在一起而影響它們對氫氣的吸附.B12Sc4最多可以吸附12個氫分子,達到7.25%(質(zhì)量分數(shù))的儲氫量,它的平均每氫分子吸附能量為-10.5 kJ·mol-1.B12Ti4最多只能吸附8個氫分子,儲氫量為4.78%,但其平均每氫分子吸附能量可達-50.2 kJ·mol-1.進一步計算表明,即使在77 K,也需要很高的氫氣壓力才能使12個氫分子都吸附到B12Sc4上.電子結(jié)構(gòu)分析表明,B12Ti4-nH2吸附結(jié)構(gòu)中的Kubas作用要大于相應(yīng)B12Sc4-nH2結(jié)構(gòu)中的Kubas作用.

    硼團簇;金屬摻雜;儲氫;吸附;從頭算

    1 Introduction

    Hydrogen is widely viewed as the next generation of energy carrier to replace the fossil fuels due to its abundance,high chemical energy,and pollution-free burning.1-3However,hydrogen storage is a“bottleneck”for the on-board application of hydrogen as energy carrier.Several ways have been investigated and developed to store hydrogen gas,involving its compression,liquefaction,and adsorption in several metals and metal alloys and so on.Unfortunately,none of these technologies are good enough to satisfy the on-board application of hydrogen energy,even though each way possesses desirable characteristics in certain areas.4-7For example,very high pressure vessels are capable of storing hydrogen about 9%(mass fraction),however,so high pressure will bring serious security problem.The hydrogen storage capacities of many complex hydrides,such as Li3Be2H7,8NaAlH49and so on,10-12in which hydrogen atoms are chemical bonded to metals,are beyond about 6%.However they can not be easily,quickly recovered when exhausted.Highly porous carbon materials13-15and metal organic frameworks(MOF)16,17represent another type of hydrogen storage material,which interact with hydrogen physically,and are kineticly favorable for recharge of hydrogen.However, they can achieve high storage capacity only under very low temperature.At ambient temperature,these materials barely adsorb hydrogen due to weak interaction between hydrogen and the solid materials.

    Zhao et al.18proposed that the fullerene decorated by transition metal may be a good candidate for hydrogen storage. Based on theoretical calculations,they found that Sc decorated C60and C48B12are capable of storing hydrogen about 7%and 8.77%at ambient condition.At the same time,Yildirim and Ciraci19showed that Ti decorated carbon nanotube can approach about 8%hydrogen storage capacity.In both Sc decorated C60and Ti decorated carbon nanotube,the transition metal atoms scatter on the surface of carbon nanomaterials,and bind with hydrogen molecules through Kubas interaction.20

    Unfortunately,Sun?s theoretical investigation21indicated that transition metal atoms on C60will be clustered rather than scattered,and the clustering of the transition metal atoms will significantly reduce the mass percentage of hydrogen storage.Sun et al.22,23found that the clustering problem can be resolved by replacing the transition metal atoms with alkali metal atoms or alkaline-earth metal atoms.However,alkali or alkaline-earth metal doped fullerene can only be used in low temperature due to the small binding energy of hydrogen molecule to them.24,25Moreover,the recent theoretical study shows some alkali metal atoms,such as Na,also will be aggregated on the surface of C60.26

    Meng et al.27found that the Ti atoms on the boron nanotube, contrary to on carbon nanostructure,will keep in isolation from each other.Theoretical calculations showed that metal doped icosahedral B80also does not suffer the clustering problem,being a promising hydrogen storage candidate.28-31

    However,more recent theoretical calculations indicated that the most stable B80and other medium-sized boron clusters have core-shell rather than hollow cage structure.32Zhao and his coworkers33have designed a new type of hydrogen storage media,chained TiBx.They found that the most stable TiB5chain can reach 7.3%hydrogen storage capacity with the average binding energy per H2of 43.7 kJ·mol-1.

    In this work,we propose a Sc doped B12cluster and a Ti doped B12cluster,inspired by our previous foundation of a B12core in B12CO12.34The structures of B12Sc4and B12Ti4,as well as their interactions with H2are discussed in detail.

    2 Computational methods

    All the isomers were optimized at the level of density functional theory(DFT)with Becke?s three-parameter exchange35and Lee-Yang-Parr correlation functional36by using Gaussian 03 program.37The standard split valence basis set 6-31G(d,p) was employed to describe the orbitals of all atoms involved. Geometry optimizations were done with no symmetry restriction.All the reported isomers were characterized at the same level as energy minima by frequency calculations.All the population analyses were based on the data obtained at the B3LYP/ 6-31G(d,p)level.Many investigations demonstrated that MP2 method was more reliable for calculating the weak interaction.38,39So,to obtain accurate average binding energy of H2to B12Sc4or B12Ti4,the single point energy calculations for all B12X4-nH2(X=Sc,Ti),the most stable B12X4and H2were performed at the MP2/6-311G(d,p)level.The average binding energy per H2(ABE/H2)was defined as

    where,E[B12X4],E[H2],and E[B12X4-nH2]are the electronic energies of relaxed B12X4,H2,and B12X4-nH2,respectively;and n is the number of H2molecules.The basis set superposition error(BSSE)has been corrected using the full counterpoise method for all the B12X4-nH2complexes at the MP2/6-311G(d, p)level.

    3 Results and discussion

    3.1 Structures of B12Sc4and B12Ti4

    Our proposed B12Sc4cluster is shown as isomer 2 in Fig.1, which has D2dsymmetry,and was optimized from an initio structure,isomer 1.Isomer 1 is originated from a stable(BCO)12boron carbonyl compound.29The multiplicity of isomer 2 is 1.To confirm that it is the favorable structure for B12Sc4,other B12Sc4isomers are considered in our work.Isomer 3 in Fig.1 is constructed from the most stable B12and Sc4clusters.The geometry optimization of isomer 3 gives out the isomer 4,which is less stable than 2 about 703.4 kJ·mol-1at the B3LYP/6-31G(d, p)level.Based on the most stable quasiplanar B12and icosahedral B12,40we put four Sc atoms on it in all possible patterns,all these structures were optimized to amorphous structure with higher energy than isomer 2(see Fig.S1 in Supporting Information for their structures and energies).In isomer 2,it is clear that the Sc atoms do not cluster together.

    Fig.1 Initio and optimized structures of two B12Sc4isomers

    Ab initio molecular dynamic(MD)simulation also confirmed that our proposed B12Sc4is stable.The isomer 2 was simulated using 0.5 fs time step in a 14×14×14 simple cubic supercell with Born-Oppenheimer MD implemented in CP2k code.41First,the system was equilibrated at 1000 K in a NVE ensemble with a temperature tolerance of 500 K within 10000 steps.When it achieved equilibrium,we continued the MD at the same condition for another 5000 steps(see Supporting Information for more detail information about the MD calculation configurations).The result shows that our proposed B12Sc4is intact throughout the whole simulation.A similar MD simulation shows that the IhB80Sc12will collapse to a core-shell structure.We expect that our proposed B12Sc4is stable enough at their possible operation temperatures about 300 K.

    Fig.2 Electronic difference density(in×103nm-3)map of a B3ring in B12Sc4

    Fig.3 Occupied valance orbitals of B12Sc4

    To understand the stability of B12Sc4more foundationally,we has performed a detail inspect about the structure of B12Sc4. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMO-LUMO) of B12Sc4is 2.17 eV.In B12Sc4,12 boron atoms form four three-membered rings(B3).The electronic density difference map(Fig.2)of B3ring shows that electrons mainly shift to the center of the ring.It is clear that an open three-center bond is formed other than a strained‘banana bond’.So,B3rings are non-strained rings in B12Sc4.

    Fig.3 lists all the valance orbitals of B12Sc4,which clearly shows that every B3ring,can be considered as a unit,possesses s-like,p-like,and d-like orbitals,when interacting with Sc atoms.Orbitals 49-52 of B12Sc4are formed by the s-like orbitals of B3units,without any node among the electronic cloud within B3rings.Orbitals 53-61,65,66,and 68 are originated from the p-like orbitals,with only one node among the electronic cloud within every B3ring.Moreover,the p-like orbitals of B3can be classified into px-,py-,and pz-like orbitals.In pz-like orbitals(58,65,66,68),the nodal plane is substantially parallel to the B3ring,while in px-and py-like orbitals,the nodal plane is nearly vertical to the B3ring.It should be noticed that some d-like components hybridize into the orbitals 65 and 66 when it interacts with Sc atoms.Orbitals 62-64,67,and 69-72 are mainly formed by the d-like orbital of B3units with some p-like components hybridizing into orbitals 62-64 significantly.

    The B12Ti4has the same topological structure as isomer 2, and has D2dsymmetry and no unpaired electron.The other isomers constructed based on the most stable quasiplanar B12and icosahedral B12as for B12Sc4are also considered(see Fig.S2 in Supporting Information).They are all higher in energy than isomer 2.The same MD simulation as for B12Sc4was performed for it,which also demonstrates that B12Ti4are stable around 1000 K.The most obvious distinction between B12Sc4and B12Ti4is their metal-metal(M-M)distances.The adjacent Sc-Sc distance in B12Sc4is 0.315 nm while Ti-Ti distance in B12Ti4is only 0.294 nm.Too short M-M distance is unfavorable for hydrogen storage.The HOMO-LUMO energy gap of B12Ti4is only 1.21 eV,nearly the half of B12Sc4.

    3.2 Hydrogen molecule adsorption on B12Sc4and

    B12Ti4

    We now turn to the discussion on the adsorption of hydrogen molecules on the B12Sc4and B12Ti4clusters mentioned above. The optimized adsorbing structures with 1,2,and 3 hydrogen molecules on each Sc atom of B12Sc4are shown in Fig.4 as isomer 5(B12Sc4-4H2),6(B12Sc4-8H2),7(B12Sc4-12H2).The adsorbing structure of B12Ti4with one H2on each Ti atom(B12Ti4-4H2) is the same as the corresponding B12Sc4-4H2.B12Ti4can adsorb 8 hydrogen molecules at most.The optimized B12Ti4-8H2is presented in Fig.4 as isomer 8,which is slightly different from B12Sc4-8H2.The average binding energies per hydrogen molecule(ABE/H2),the largest and shortest Sc-H(Ti-H)distances,the bond lengths of hydrogen molecules for both B12Sc4-nH2and B12Ti4-nH2(n=4,8,12 for B12Sc4;n=4,8 for B12Ti4)are listed in Table 1.

    Fig.4 Structures of B12Sc4-nH2and B12Ti4-nH25:B12Sc4-4H2,6:B12Sc4-8H2,7:B12Sc4-12H2,8:B12Ti4-8H2

    Table 1 Average binding energies of H2molecule(in kJ·mol-1per H2),M-H distances(M=Sc,Ti),and bond lengths of H2in B12Sc4-nH2and B12Ti4-nH2(in nm)

    Now,we begin to discuss the interaction between B12Sc4and H2molecules.In B12Sc4-4H2(5),the shortest Sc-H distance is 0.223 nm,and the average Sc-H distance is 0.229 nm.These Sc-H distances are longer than the normal Sc―H bond length (about 0.18 nm in ScH2molecule42,43).The ABE/H2of B12Sc4-4H2(5)is only-11.6 kJ·mol-1,whereas we have noted that in B80Sc-H2,the binding energy of H2to B80Sc is-42.5 kJ·mol-1.25The large difference of ABE/H2between B12Sc4-4H2and B80Sc-H2indicates that the structure of the BxScydoped cluster has a significant effect on the binding energy of H2adsorbed on it.In B12Sc4-4H2(5),the H―H bond length is 0.077 nm,which is longer than the bond length of an isolated hydrogen molecule (0.074 nm optimized at the B3LYP/6-31G(d,p)level).On C60Sc12,the first H2will dissociate when binding to a Sc atom.13The elongation of the H-H bond length is caused both by the Kubas interaction and induced interaction.We have calculated the K+-H2and Ca2+-H2systems at the B3LYP/6-31G(d,p)level to estimate the effect of the induced interaction to the H-H bond.The result shows that the H-H bond lengths of K+-H2and Ca2+-H2are 0.075 and 0.076 nm,respectively,which both are slightly longer than 0.074 nm of a free H2molecule,and smaller than that of B12Sc4-4H2.The ABE/H2of B12Sc4-8H2(6) and B12Sc4-12H2(7)are-11.9 and-10.4 kJ·mol-1,respectively. With three hydrogen atoms on each Sc atom,the hydrogen storage capacity of B12Sc4-12H2can reach to 7.25%.

    As regards B12Ti4,it can accommodate for 8 hydrogen molecules at most,and reach to 4.78%hydrogen storage capacity only.However,the ABE/H2of B12Ti4-nH2is significantly greater than that of corresponding B12Sc4-nH2,as shown in Table 1. In B12Ti4-4H2,the Ti-H distances range from 0.201 to 0.209 nm,and have an average value of 0.205 nm,being longer than the normal Ti―H bond.The calculated Ti―H bond length in TiH4is about 0.170 nm,44and the experimental values range from 0.169 to 0.184 nm in different compounds.45,46The H-H distance of B12Ti4-4H2is 0.079 nm,which is 0.005 nm longer than thatoffree hydrogen molecule. The ABE/H2of B12Ti4-4H2is-67.5 kJ·mol-1,which is remarkably larger than that of B12Sc4-4H2.The large ABE/H2of B12Ti4-4H2may raise a doubt that the hydrogen molecule will dissociate to atoms in B12Ti4-H2.So,additional calculation about B12Ti4-H2is performed.As a comparison,B12Sc4-H2is also considered.Natural bond orbital(NBO)analysis indicates that the H―H bond is hold in B12Ti4-H2,with a bond length of 0.079 nm.However, the ABE/H2of B12Ti4-H2reaches to-201.0 kJ·mol-1,making it difficult to release the H2molecule.Considered that B12Ti4can adsorb 8 hydrogen molecules at most,it can conclude that B12Ti4is not a good candidate for hydrogen storage.The ABE/ H2of B12Sc4-H2is-12.3 kJ·mol-1,which being similar to that of other B12Sc4-nH2.

    A detail analysis about the orbitals of B12Sc4-4H2and B12Ti4-4H2can account for why the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2.Given that the charge of Ti atoms (NBO charge:1.26|e|)in B12Ti4is smaller than that of Sc atoms (NBO charge:0.95|e|)in B12Sc4,It is rational to conclude that the Kubas interaction in B12Ti4-nH2is more strong than that in B12Sc4-nH2.In B12Sc4-nH2and B12Ti4-nH2,the Kubas interaction involves the interaction of the σ-bonds of H2molecules to unoccupied orbitals of Sc and Ti atoms,as well as the σ*-bonds of H2molecules to occupied orbitals of Sc and Ti atoms.

    In Fig.5,we give out the orbitals mainly located on hydrogen molecules both of B12Sc4-4H2and B12Ti4-4H2.For B12Sc4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 87%to 91%.The contributions from Sc atoms are all below 10%.However,for B12Ti4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 78%to 85%.The contributions from Ti atoms are in a range of 12%to 15%.The components of these orbitals clearly indicate that there are more electrons in σ-bonds of H2molecules transferred to the d orbital of metal atoms in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.5 Orbitals mainly located on hydrogen molecules in B12Sc4-4H2and B12Ti4-4H2 for B12Sc4-4H2,a:HOMO-22,b:HOMO-21,c:HOMO-20,d:HOMO-19;for B12Ti4-4H2,e:HOMO-24,f:HOMO-23,g:HOMO-22,h:HOMO-21

    Nearby the HOMO orbital,there are five orbitals involving the σ*-bonds of H2molecules and more than 5%contributions from hydrogen molecules are found for B12Ti4-4H4.They are HOMO,HOMO-1,HOMO-2,HOMO-4,and HOMO-5,as listed in Fig.6.The components from H2molecules in these five orbitals are 5.6%,14.0%,5.2%,9.0%,and 9.2%,respectively.For B12Sc4-4H4,only two similar types of orbitals are found.They are HOMO-1 and HOMO-2.The components from H2molecules in these two orbitals are 6.4%and 8.6%,respectively.The components of these orbitals indicate that there are more electrons from the d orbital of metal atoms donated back to the σ*-bonds of H2molecules in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.6 Orbitals involving the σ*-bonds of H2molecules in B12Sc4-4H2and B12Ti4-4H2for B12Sc4-4H2,a:HOMO-2,b:HOMO-1;for B12Ti4-4H2,c:HOMO-5,d:HOMO-4,e:HOMO-2,f:HOMO-1,g:HOMO

    Above discussion clearly indicates that the Kubas interaction in B12Ti4-4H2is much stronger than that in B12Sc4-4H2.So, it is not surprising that the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2due to the stronger Kubas interaction.The strong Kubas interaction in B12Ti4-nH2also is implied by the longer H―H bond length.As listed in Table 1,the H―H bond lengths are 0.079 and 0.078 nm in B12Ti4-4H2and B12Ti4-8H2, respectively,being longer than those in B12Sc4-4H2(0.077 nm) and B12Sc4-8H2(0.076 nm).

    Now,it is necessary to consider the influences of the temperature and the pressure of hydrogen on the process of the hydrogen storage and release.The changes of Gibbs free energy (ΔG)for the process of B12Sc4+12H2→B12Sc4-12H2were calculated at 77 and 300 K with the hydrogen pressure of 1.013×105Pa.The ΔG at 77 and 300 K are 37.3 and 301.5 kJ·mol-1,respectively.The positive ΔG indicates that high hydrogen pressure is necessary to make hydrogen hold on B12Sc4.As done by Zhao et al.6,the influence of hydrogen pressure can be estimated with ideal gas model for hydrogen.Our calculation shows that B12Sc4-12H2will release hydrogen when the hydrogen pressure drops back below 129.696×105Pa at 77 K.At 300 K,it needs a drastically high pressure to hold the hydrogen on B12Sc4.It should be noted that the ideal gas model can only give a gross estimation,especially at high pressure.So,the real pressure of hydrogen should be lower than that estimated by ideal gas model.For B12Ti4-8H2,at 300 K it will release hydrogen when the hydrogen pressure drops back below 0.02×105Pa.However,it is difficult to release the last hydrogen molecule.It is also hard to release the hydrogen at 77 K.

    4 Conclusions

    In the present work,the structures and hydrogen adsorption properties of B12Sc4and B12Ti4clusters were investigated with the first-principles calculations.Both in B12Sc4and B12Ti4,metal atoms prefer binding to B atoms other than clustering together.The B12Sc4can bind up to 12 H2molecules with an ABE/H2of-10.4 kJ·mol-1,while B12Ti4can only host 8 H2molecules at most with an ABE/H2of-50.3 kJ·mol-1.Indeed,the hydrogen adsorption capacities of B12Sc4and B12Ti4clusters we proposed here are not more excellent than a chained B5Ti structure suggested by other stuffs.However,our works would be useful for guiding the design of the hydrogen storage materials based on transition metal-boron clusters.It is very interesting that we find that in B12Sc4,B3rings have s-,p-,and d-like orbitals when interacting with Sc atom.We also find that the Kubas interaction in B12Ti4-nH2complex is much stronger than that in B12Sc4-nH2complex.

    Supporting Information Available: The geometries of some calculated B12Sc4and B12Ti4isomers and their relative energies have been included.The detail configures for molecular dynamic(MD)calculation also have been listed.Two pieces of movies demonstrating the MD trajectory of B12Sc4and B12Ti4have been provided.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/ 35104634

    (2) Coontz,R.;Hanson,B.Science 2004,305,957.doi:10.1126/ science.305.5686.957

    (3) Crabtree,G.W.;Dresselhaus,M.S.;Buchanan,M.V.Phys. Today 2004,57,39.doi:10.1063/1.1878333

    (4) Tao,Z.L.;Peng,B.;Liang,J.;Cheng,F.Y.;Chen,J.Meter. China 2009,28,7. [陶占良,彭 博,梁 靜,程方益,陳 軍.中國材料進展,2009,28,7.]

    (5) Xu,W.;Tao,Z.L.;Chen,J.Prog.Chem.2006,18,2.[許 煒,陶占良,陳 軍.化學(xué)進展,2006,18,2.]

    (6) Zhao,X.B.;Xiao,B.;Fletcher,A.J.;Thomas,K.M.J.Phys. Chem.B 2005,109,8880.

    (7) Qu,D.Chem.Eur.J.2008,14,1040.doi:10.1002/chem. 200701042

    (8) Zaluska,A.;Zaluski,L.;Str?m-Olsen,J.O.Appl.Phys.A 2001, 72,157.doi:10.1007/s003390100783

    (9) Bogdanovic,B.;Schwickardi,M.J.Alloy.Compd.1997,253,1. doi:10.1016/S0925-8388(96)03049-6

    (10) Orimo,S.;Nakamori,Y.;Eliseo,J.R.;Zuttel,A.;Jensen,C.M. Chem.Rev.2007,107,4111.doi:10.1021/cr0501846

    (11)Ning,H.;Tao,X.M.;Wang,M.M.;Cai,J.Q.;Tan,M.Q.Acta Phys.-Chim.Sin.2010,26,2267.[寧 華,陶向明,王芒芒,蔡建秋,譚明秋.物理化學(xué)學(xué)報,2010,26,2267.]doi:10.3866/ PKU.WHXB20100828

    (12) Li,G.X.;Chen,X.W.;Bai,J.D.;Lan,Z.Q.;Guo,J.Acta Phys.-Chim.Sin.2010,26,1448.[黎光旭,陳曉偉,白加棟,藍志強,郭 進.物理化學(xué)學(xué)報,2010,26,1448.]doi:10.3866/ PKU.WHXB20100540

    (13)Wang,H.;Gao,Q.;Hu,J.J.Am.Chem.Soc.2009,131,7016. doi:10.1021/ja8083225

    (14) Miao,Y.L.;Sun,H.;Wang,L.;Sun,Y.X.Acta Phys.-Chim. Sin.2012,28,547.[苗延霖,孫 淮,王 琳,孫迎新.物理化學(xué)學(xué)報,2012,28,547.]doi:10.3866/PKU.WHXB201112301

    (15)Yang,Z.;Xia,Y.;Robert,M.J.Am.Chem.Soc.2007,129, 1673.doi:10.1021/ja067149g

    (16)Koh,K.;Wong-Foy,A.G.;Matzger,A.J.J.Am.Chem.Soc. 2009,131,4184.doi:10.1021/ja809985t

    (17) Zhao,D.;Daren,J.T.;Yuan,D.;Zhou,H.C.Accounts Chem. Res.2011,44,123 and references therein.doi:10.1021/ ar100112y

    (18)Zhao,Y.;Kim,Y.H.;Dillon,A.C.;Heben,M.J.;Zhang,S.B. Phys.Rev.Lett.2005,94,155504.doi:10.1103/PhysRevLett. 94.155504

    (19) Yildirim,T.;Ciraci,S.Phys.Rev.Lett.2005,94,175501.doi: 10.1103/PhysRevLett.94.175501

    (20) Kubas,G.J.J.Organomet.Chem.2001,635,37.doi:10.1016/ S0022-328X(01)01066-X

    (21) Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.J.Am.Chem.Soc. 2005,127,14582.doi:10.1021/ja0550125

    (22) Sun,Q.;Jena,P.;Wang,Q.;Marquez,M.J.Am.Chem.Soc. 2006,128,9741.doi:10.1021/ja058330c

    (23) Wang,Q.;Sun,Q.;Jena,P.;Kawazoe,Y.J.Chem.Theory Comput.2009,5,374.doi:10.1021/ct800373g

    (24) Chandrakumar,K.R.S.;Ghosh,S.K.Nano Lett.2008,8,13. doi:10.1021/nl071456i

    (25) Liu,W.;Zhao,Y.H.;Li,Y.;Jiang,Q.;Lavernia,E.J.J.Phys. Chem.C 2009,113,2028.doi:10.1021/jp8091418

    (26) Rabilloud,F.J.Phys.Chem.A 2010,114,7241.doi:10.1021/ jp103124w

    (27) Meng,S.;Kaxiras,E.;Zhang,Z.Nano Lett.2007,7,663.doi: 10.1021/nl062692g

    (28) Zhao,Y.F.;Lusk,M.T.;Dillon,A.C.;Heben,M.J.;Zhang,S. B.Nano Lett.2008,8,157.doi:10.1021/nl072321f

    (29) Li,Y.C.;Zhou,G.;Li,J.;Gu,B.L.;Duan,W.H.J.Phys.Chem. C 2008,112,19268.doi:10.1021/jp807156g

    (30) Wu,G.;Wang,J.L.;Zhang,X.;Zhu,L.J.Phys.Chem.C 2009, 113,7052.doi:10.1021/jp8113732

    (31) Li,M.;Li,Y.;Zhou,Z.;Shen,P.;Chen,Z.Nano Lett.2009,9, 1944.doi:10.1021/nl900116q

    (32) Zhao,J.;Wang,L.;Li,F.;Chen,Z.J.Phys.Chem.A 2010,114, 9969.doi:10.1021/jp1018873

    (33) Li,F.;Zhao,J.;Chen,Z.Nanotechnology 2010,21,134006. doi:10.1088/0957-4484/21/13/134006

    (34) Wu,H.S.;Qin,X.F.;Xu,X.H.;Jiao,H.;Schelyer,P.v.R. J.Am.Chem.Soc.2005,127,2334.doi:10.1021/ja046740f

    (35) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/ 1.464913

    (36) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (37) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.01;Gaussian Inc.:Pittsburgh,PA,2004.

    (38) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2005,1,415. doi:10.1021/ct049851d

    (39) Mohan,N.;VIjayalakshmi,K.P.;Koga,N.;Suresh,C.H. J.Comput.Chem.2010,31,2874.

    (40) Boustani,I.Phys.Rev.B 1997,55,16426.doi:10.1103/ PhysRevB.55.16426

    (41) http:/cp2k.berlios.de.

    (42) Balasubramanina,K.Chem.Phys.Lett.1987,135,288.doi: 10.1016/0009-2614(87)85158-8

    (43) Bauschlicher,C.W.,Jr.;Walch,S.P.J.Chem.Phys.1982,76, 4560.doi:10.1063/1.443532

    (44) Thomas,J.R.;Quelch,G.E.;Seidl,E.T.;Schaefer,H.F.,III. J.Chem.Phys.1992,96,6857.doi:10.1063/1.462575

    (45) Lukens,W.W.,Jr.;Matsunaga,P.T.;Andersen,R.A. Organometallics 1998,17,5240.doi:10.1021/om980601n

    (46) Pattiasina,J.W.;Bolhuis,F.;Teuben,J.H.Angew.Chem.Int. Edit.1987,26,330.doi:10.1002/anie.198703301

    January 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Hydrogen Storage Properties of B12Sc4and B12Ti4Clusters

    MALi-Juan WANG Jian-Feng JIAJian-Feng*WU Hai-Shun
    (School of Chemistry and Materials Science,Shanxi Normal University,Linfen 041004,Shanxi Province,P.R.China)

    The structures and hydrogen storage properties of two stable B12Sc4and B12Ti4clusters have been investigated using ab initio calculations.No metal atom clustering occurs in the clusters.The B12Sc4hosts 12 H2to achieve 7.25%(mass fraction)hydrogen storage capacity with an average binding energy (ABE)of-10.4 kJ·mol-1per H2,while the B12Ti4can only host 8 H2(4.78%,mass fraction)with a higher ABE (-50.2 kJ·mol-1per H2).High hydrogen pressure is needed for B12Sc4to hold 12 H2,even at 77 K. Electronic structure analysis indicates that the Kubas interaction in the B12Ti4-nH2complex is much stronger than that in the B12Sc4-nH2complex.

    Boron cluster;Metal doping;Hydrogen storage;Adsorption;Ab initio calculation

    10.3866/PKU.WHXB201205151

    ?Corresponding author.Email:jjf_sxtu@yahoo.com.cn;Tel:+86-357-2051375.

    The project was supported by the National Basic Research 973 Pre-research Program of China(2010CB635110)and Natural Science Foundation of Shanxi Province,China(2010011012-2).

    973計劃前期研究專項課題(2010CB635110)與山西省自然科學(xué)基金(2010011012-2)資助項目

    O641

    猜你喜歡
    劍鋒儲氫物理化學(xué)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    站用儲氫瓶式容器組缺陷及檢測方法
    我國固定式儲氫壓力容器發(fā)展現(xiàn)狀綜述
    蛼螯燒賣
    美食(2022年5期)2022-05-07 22:27:35
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    張劍鋒書畫作品選登
    Chemical Concepts from Density Functional Theory
    篆刻
    對聯(lián)(2018年11期)2018-02-22 07:04:14
    儲氫合金La0.74Mg0.26Ni2.55Co0.55Al0.2Fe0.1的制備與電化學(xué)性能
    久久久精品欧美日韩精品| 热99在线观看视频| 久久精品国产清高在天天线| 偷拍熟女少妇极品色| 极品教师在线免费播放| 久久久久国内视频| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 九色国产91popny在线| 91九色精品人成在线观看| 在线观看免费视频日本深夜| 一进一出抽搐gif免费好疼| 日本五十路高清| 久久精品国产自在天天线| 午夜福利高清视频| 波多野结衣高清无吗| 一a级毛片在线观看| 乱人视频在线观看| 精品欧美国产一区二区三| 免费在线观看成人毛片| 亚洲男人的天堂狠狠| 看黄色毛片网站| 欧美+日韩+精品| 两个人的视频大全免费| 亚洲av成人不卡在线观看播放网| 国产99白浆流出| 午夜福利在线观看免费完整高清在 | 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 国产国拍精品亚洲av在线观看 | 成人鲁丝片一二三区免费| 久久伊人香网站| 国产激情偷乱视频一区二区| 成人国产综合亚洲| 身体一侧抽搐| 午夜免费观看网址| 十八禁人妻一区二区| 亚洲av电影不卡..在线观看| 国产精品一区二区三区四区免费观看 | 桃红色精品国产亚洲av| 最近最新中文字幕大全电影3| 又紧又爽又黄一区二区| 国产伦精品一区二区三区视频9 | 欧美乱色亚洲激情| 午夜福利18| 叶爱在线成人免费视频播放| 亚洲一区高清亚洲精品| 免费看光身美女| 午夜福利18| 色老头精品视频在线观看| 老汉色∧v一级毛片| 欧美午夜高清在线| 久久性视频一级片| 高清在线国产一区| 亚洲中文字幕日韩| 在线免费观看的www视频| 午夜老司机福利剧场| 高清在线国产一区| 成人特级黄色片久久久久久久| 香蕉av资源在线| 99久久无色码亚洲精品果冻| 国产久久久一区二区三区| 男插女下体视频免费在线播放| 日本在线视频免费播放| 日韩中文字幕欧美一区二区| 欧美黑人欧美精品刺激| 99精品久久久久人妻精品| 精品国内亚洲2022精品成人| 亚洲精品亚洲一区二区| 久久久精品欧美日韩精品| av片东京热男人的天堂| 亚洲最大成人中文| 搡女人真爽免费视频火全软件 | 又黄又粗又硬又大视频| 成人三级黄色视频| 亚洲欧美日韩卡通动漫| 精品日产1卡2卡| 少妇高潮的动态图| 色综合亚洲欧美另类图片| 久久天躁狠狠躁夜夜2o2o| 日韩欧美国产在线观看| 成年女人看的毛片在线观看| 男女床上黄色一级片免费看| 精品熟女少妇八av免费久了| 18+在线观看网站| 免费看a级黄色片| 亚洲av一区综合| 亚洲精品456在线播放app | 香蕉久久夜色| 一a级毛片在线观看| 中亚洲国语对白在线视频| 精品人妻一区二区三区麻豆 | 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 久久久久久人人人人人| 国产精品精品国产色婷婷| 最新在线观看一区二区三区| 老司机深夜福利视频在线观看| 啦啦啦免费观看视频1| 亚洲欧美日韩卡通动漫| 久久国产精品人妻蜜桃| 亚洲电影在线观看av| 亚洲国产欧洲综合997久久,| bbb黄色大片| 日韩欧美在线乱码| 91av网一区二区| 一夜夜www| 亚洲人成网站在线播| 免费av不卡在线播放| 精品国产三级普通话版| 五月玫瑰六月丁香| 俄罗斯特黄特色一大片| 麻豆国产av国片精品| 99久久精品国产亚洲精品| 日日夜夜操网爽| 1000部很黄的大片| 舔av片在线| 欧美3d第一页| 久久国产精品影院| 国产一区二区亚洲精品在线观看| 99久久精品国产亚洲精品| 久久精品国产亚洲av涩爱 | 亚洲五月天丁香| 最近最新中文字幕大全电影3| 亚洲国产精品合色在线| 村上凉子中文字幕在线| 亚洲精华国产精华精| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品综合一区在线观看| 亚洲中文字幕日韩| 91av网一区二区| 在线观看美女被高潮喷水网站 | 日韩av在线大香蕉| 久久九九热精品免费| 婷婷丁香在线五月| 国产av麻豆久久久久久久| av天堂中文字幕网| 精品久久久久久,| 国产精品三级大全| 日本一二三区视频观看| 精品久久久久久成人av| 韩国av一区二区三区四区| 两个人的视频大全免费| 精品国产美女av久久久久小说| 91在线精品国自产拍蜜月 | 男人舔奶头视频| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 日韩欧美精品v在线| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 夜夜看夜夜爽夜夜摸| 琪琪午夜伦伦电影理论片6080| 少妇的丰满在线观看| 小说图片视频综合网站| 色吧在线观看| 精品久久久久久久毛片微露脸| 国产一级毛片七仙女欲春2| 最好的美女福利视频网| 久久中文看片网| 国产亚洲av嫩草精品影院| 国产探花在线观看一区二区| 成年女人看的毛片在线观看| 19禁男女啪啪无遮挡网站| 日本一二三区视频观看| 精品久久久久久成人av| 亚洲欧美日韩无卡精品| 长腿黑丝高跟| 母亲3免费完整高清在线观看| aaaaa片日本免费| 99久久99久久久精品蜜桃| 亚洲精品成人久久久久久| 最近最新中文字幕大全免费视频| 99热6这里只有精品| 少妇的逼水好多| 12—13女人毛片做爰片一| 在线免费观看的www视频| 好男人在线观看高清免费视频| 日日夜夜操网爽| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 婷婷丁香在线五月| 欧美日韩综合久久久久久 | 欧美日韩福利视频一区二区| 亚洲人成网站高清观看| 一级黄色大片毛片| 九九久久精品国产亚洲av麻豆| 性色av乱码一区二区三区2| 中出人妻视频一区二区| 国产精品99久久99久久久不卡| 热99在线观看视频| 日韩高清综合在线| 欧美大码av| 成人特级黄色片久久久久久久| 亚洲av免费在线观看| 俺也久久电影网| 国产在线精品亚洲第一网站| 亚洲中文字幕日韩| 国产成年人精品一区二区| 亚洲成av人片免费观看| av黄色大香蕉| 1000部很黄的大片| 国产精品三级大全| 99精品久久久久人妻精品| 9191精品国产免费久久| 此物有八面人人有两片| 久久精品影院6| 亚洲国产色片| 国产精品电影一区二区三区| 最好的美女福利视频网| 两个人视频免费观看高清| 久久草成人影院| 激情在线观看视频在线高清| 国产精品av视频在线免费观看| 男女视频在线观看网站免费| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 国产亚洲欧美在线一区二区| 午夜激情欧美在线| 丁香六月欧美| 精品国产亚洲在线| 精品乱码久久久久久99久播| 久久性视频一级片| 国产精品野战在线观看| 我的老师免费观看完整版| 岛国视频午夜一区免费看| 日韩高清综合在线| 日韩欧美在线乱码| 99热只有精品国产| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品在线观看二区| 真人一进一出gif抽搐免费| 伊人久久精品亚洲午夜| АⅤ资源中文在线天堂| 日本在线视频免费播放| 国产真实伦视频高清在线观看 | 露出奶头的视频| 一本精品99久久精品77| 亚洲乱码一区二区免费版| 久久性视频一级片| h日本视频在线播放| 丰满乱子伦码专区| 久久久久久久亚洲中文字幕 | 免费人成视频x8x8入口观看| netflix在线观看网站| 精品国产美女av久久久久小说| 美女高潮的动态| 三级国产精品欧美在线观看| 亚洲无线在线观看| 夜夜躁狠狠躁天天躁| 亚洲成人中文字幕在线播放| 一级黄片播放器| 女同久久另类99精品国产91| 欧美日韩乱码在线| 窝窝影院91人妻| 精品国产三级普通话版| 成年女人毛片免费观看观看9| 1000部很黄的大片| 桃红色精品国产亚洲av| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| 天堂网av新在线| 热99在线观看视频| 老司机午夜福利在线观看视频| 12—13女人毛片做爰片一| 色精品久久人妻99蜜桃| 成人国产综合亚洲| 男女之事视频高清在线观看| 在线播放无遮挡| 99精品欧美一区二区三区四区| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 国产精品98久久久久久宅男小说| 久久6这里有精品| 9191精品国产免费久久| 成年女人永久免费观看视频| 99热这里只有是精品50| 色在线成人网| 欧美xxxx黑人xx丫x性爽| 欧美日本视频| 美女黄网站色视频| 中文字幕精品亚洲无线码一区| 亚洲精品一卡2卡三卡4卡5卡| 偷拍熟女少妇极品色| 丁香六月欧美| 久久精品影院6| 日韩欧美国产在线观看| 久久99热这里只有精品18| 国产单亲对白刺激| 村上凉子中文字幕在线| bbb黄色大片| 亚洲一区二区三区色噜噜| 一区二区三区免费毛片| 国产精品98久久久久久宅男小说| 亚洲aⅴ乱码一区二区在线播放| 午夜视频国产福利| 在线视频色国产色| 久久久久九九精品影院| 丁香六月欧美| 午夜福利在线观看免费完整高清在 | 在线看三级毛片| 午夜日韩欧美国产| 亚洲欧美日韩无卡精品| 国产成人福利小说| 亚洲欧美日韩高清专用| 国产高清videossex| 在线a可以看的网站| 嫩草影视91久久| 亚洲中文字幕日韩| 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 国产精品野战在线观看| 久久国产乱子伦精品免费另类| 可以在线观看的亚洲视频| 国产亚洲精品久久久久久毛片| 有码 亚洲区| 成人鲁丝片一二三区免费| 日韩精品中文字幕看吧| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久 | 国产精品一区二区三区四区免费观看 | 精品久久久久久成人av| 三级国产精品欧美在线观看| 久久久久久久午夜电影| 狂野欧美白嫩少妇大欣赏| 午夜精品一区二区三区免费看| 日韩人妻高清精品专区| 嫩草影院精品99| e午夜精品久久久久久久| 久久久久免费精品人妻一区二区| 男人舔奶头视频| a级毛片a级免费在线| 久久久国产成人免费| 久久精品国产综合久久久| 亚洲精品成人久久久久久| 精品久久久久久久末码| 日本一本二区三区精品| 大型黄色视频在线免费观看| 久久九九热精品免费| 小说图片视频综合网站| 黄片大片在线免费观看| 国产精品久久久久久久电影 | 麻豆成人av在线观看| 亚洲五月天丁香| 亚洲色图av天堂| 久久6这里有精品| 国产亚洲精品av在线| 午夜免费观看网址| 亚洲人与动物交配视频| 亚洲成av人片在线播放无| 欧美日本亚洲视频在线播放| 91久久精品国产一区二区成人 | 色老头精品视频在线观看| 一夜夜www| 一个人看视频在线观看www免费 | 日本黄大片高清| 青草久久国产| 成人av一区二区三区在线看| 在线观看日韩欧美| 男人舔奶头视频| 美女 人体艺术 gogo| 中文字幕av成人在线电影| bbb黄色大片| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 亚洲 国产 在线| 无人区码免费观看不卡| 男女午夜视频在线观看| 中出人妻视频一区二区| 日本 av在线| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 婷婷丁香在线五月| 九九久久精品国产亚洲av麻豆| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 亚洲人成网站高清观看| 有码 亚洲区| 天堂av国产一区二区熟女人妻| 老汉色av国产亚洲站长工具| 免费一级毛片在线播放高清视频| 亚洲无线在线观看| 国产成+人综合+亚洲专区| 免费观看人在逋| 亚洲欧美日韩东京热| 久久6这里有精品| 亚洲av五月六月丁香网| 99riav亚洲国产免费| 欧美三级亚洲精品| 久9热在线精品视频| ponron亚洲| 亚洲成人久久爱视频| 日韩欧美国产一区二区入口| 久久精品国产99精品国产亚洲性色| 国产午夜精品久久久久久一区二区三区 | 色综合婷婷激情| 天天添夜夜摸| 久久久久国产精品人妻aⅴ院| 久久6这里有精品| 日本熟妇午夜| 亚洲熟妇熟女久久| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美国产一区二区入口| 国产单亲对白刺激| 久久亚洲精品不卡| 国产又黄又爽又无遮挡在线| 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 欧美一区二区亚洲| 亚洲色图av天堂| 久久久久国内视频| 成人av一区二区三区在线看| 97超级碰碰碰精品色视频在线观看| 亚洲成人精品中文字幕电影| 色av中文字幕| 黄片小视频在线播放| 怎么达到女性高潮| 国产一区二区三区在线臀色熟女| 亚洲欧美日韩东京热| 欧美黑人巨大hd| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 12—13女人毛片做爰片一| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久久黄片| 中文字幕高清在线视频| 性色av乱码一区二区三区2| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 亚洲成人久久性| 热99re8久久精品国产| 最好的美女福利视频网| 欧洲精品卡2卡3卡4卡5卡区| 五月玫瑰六月丁香| 久久精品国产综合久久久| 亚洲七黄色美女视频| 变态另类成人亚洲欧美熟女| tocl精华| 99国产极品粉嫩在线观看| 91麻豆av在线| 日韩欧美三级三区| 午夜免费男女啪啪视频观看 | 国产老妇女一区| 麻豆国产av国片精品| 午夜福利在线在线| 国产精品久久电影中文字幕| 88av欧美| 欧美乱码精品一区二区三区| 免费搜索国产男女视频| 国产免费一级a男人的天堂| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 成人一区二区视频在线观看| 丁香欧美五月| 亚洲天堂国产精品一区在线| 丰满乱子伦码专区| 国内精品一区二区在线观看| 嫁个100分男人电影在线观看| 国产爱豆传媒在线观看| 国产精品亚洲av一区麻豆| 国产主播在线观看一区二区| 看免费av毛片| 午夜亚洲福利在线播放| 国产精品久久久久久久电影 | 欧美在线黄色| 国产aⅴ精品一区二区三区波| 亚洲精品粉嫩美女一区| 亚洲最大成人中文| 人妻夜夜爽99麻豆av| 免费在线观看成人毛片| 亚洲美女视频黄频| 成人一区二区视频在线观看| 搡老妇女老女人老熟妇| 国产精品98久久久久久宅男小说| tocl精华| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 久久精品综合一区二区三区| 色老头精品视频在线观看| 禁无遮挡网站| 日本与韩国留学比较| 免费看日本二区| 少妇人妻一区二区三区视频| 国产精品亚洲av一区麻豆| 日本与韩国留学比较| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 91久久精品国产一区二区成人 | 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 别揉我奶头~嗯~啊~动态视频| 国产三级在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美性感艳星| 成人国产综合亚洲| 国产真实乱freesex| 午夜福利18| 一本精品99久久精品77| 嫩草影院精品99| 黄色成人免费大全| 久99久视频精品免费| 国产一区在线观看成人免费| 免费观看精品视频网站| 日本a在线网址| 国产99白浆流出| 美女高潮的动态| 18禁国产床啪视频网站| 中文资源天堂在线| 高清毛片免费观看视频网站| 欧美又色又爽又黄视频| 日本在线视频免费播放| 午夜福利免费观看在线| 老司机在亚洲福利影院| 18禁黄网站禁片午夜丰满| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 51午夜福利影视在线观看| 亚洲精品在线美女| 久久草成人影院| 亚洲18禁久久av| 欧美绝顶高潮抽搐喷水| 亚洲欧美日韩高清专用| 国产一区在线观看成人免费| 成人一区二区视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看影片大全网站| 亚洲精品456在线播放app | 国产欧美日韩一区二区三| 午夜日韩欧美国产| 亚洲精品久久国产高清桃花| 人人妻人人澡欧美一区二区| 最近最新中文字幕大全电影3| 叶爱在线成人免费视频播放| 亚洲 欧美 日韩 在线 免费| www国产在线视频色| 国产精品一区二区三区四区久久| 国产精品乱码一区二三区的特点| 亚洲av免费高清在线观看| 亚洲国产精品sss在线观看| 国产色爽女视频免费观看| 国内毛片毛片毛片毛片毛片| 全区人妻精品视频| 久久精品国产99精品国产亚洲性色| 99精品欧美一区二区三区四区| 国产成+人综合+亚洲专区| 成年人黄色毛片网站| 亚洲成人精品中文字幕电影| 高潮久久久久久久久久久不卡| 一个人免费在线观看电影| 三级国产精品欧美在线观看| 欧美极品一区二区三区四区| 欧美一区二区国产精品久久精品| 三级男女做爰猛烈吃奶摸视频| aaaaa片日本免费| 丰满人妻一区二区三区视频av | 90打野战视频偷拍视频| h日本视频在线播放| 精品无人区乱码1区二区| www.色视频.com| 99久久99久久久精品蜜桃| 午夜免费激情av| 神马国产精品三级电影在线观看| 国产在视频线在精品| 超碰av人人做人人爽久久 | 欧美xxxx黑人xx丫x性爽| 日本五十路高清| 国产在线精品亚洲第一网站| 最近最新中文字幕大全免费视频| 日韩人妻高清精品专区| 国产在视频线在精品| 制服丝袜大香蕉在线| 色哟哟哟哟哟哟| 婷婷丁香在线五月| 琪琪午夜伦伦电影理论片6080| 日本成人三级电影网站| 最新在线观看一区二区三区| 亚洲av成人av| 国产精品98久久久久久宅男小说| 亚洲成a人片在线一区二区| 五月玫瑰六月丁香| 少妇高潮的动态图| 国内精品久久久久久久电影| 美女黄网站色视频| 国内精品一区二区在线观看| 少妇人妻精品综合一区二区 | 国产激情欧美一区二区| 成年女人永久免费观看视频| 一个人看视频在线观看www免费 | 夜夜看夜夜爽夜夜摸| 在线看三级毛片| 国产高清激情床上av| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看 | 欧美区成人在线视频| 1024手机看黄色片| 精品人妻偷拍中文字幕| 欧美色欧美亚洲另类二区| 在线观看一区二区三区| 欧美一级a爱片免费观看看| 长腿黑丝高跟| 久久久久免费精品人妻一区二区| 午夜福利在线观看吧| 1000部很黄的大片| 老司机午夜福利在线观看视频| 美女高潮喷水抽搐中文字幕| 在线国产一区二区在线| 丝袜美腿在线中文| 两个人的视频大全免费| e午夜精品久久久久久久| 免费av毛片视频|