• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    2012-12-21 06:34:10馬麗娟王劍鋒賈建峰武海順
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:劍鋒儲氫物理化學(xué)

    馬麗娟 王劍鋒 賈建峰 武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    B12Sc4和B12Ti4團簇的儲氫性質(zhì)

    馬麗娟 王劍鋒 賈建峰*武海順

    (山西師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,山西臨汾041004)

    提出了兩個穩(wěn)定的團簇B12Sc4和B12Ti4,基于理論計算,研究了它們的結(jié)構(gòu)與儲氫性質(zhì).結(jié)果發(fā)現(xiàn),在這兩個穩(wěn)定的團簇中,過渡金屬原子不會聚合在一起而影響它們對氫氣的吸附.B12Sc4最多可以吸附12個氫分子,達到7.25%(質(zhì)量分數(shù))的儲氫量,它的平均每氫分子吸附能量為-10.5 kJ·mol-1.B12Ti4最多只能吸附8個氫分子,儲氫量為4.78%,但其平均每氫分子吸附能量可達-50.2 kJ·mol-1.進一步計算表明,即使在77 K,也需要很高的氫氣壓力才能使12個氫分子都吸附到B12Sc4上.電子結(jié)構(gòu)分析表明,B12Ti4-nH2吸附結(jié)構(gòu)中的Kubas作用要大于相應(yīng)B12Sc4-nH2結(jié)構(gòu)中的Kubas作用.

    硼團簇;金屬摻雜;儲氫;吸附;從頭算

    1 Introduction

    Hydrogen is widely viewed as the next generation of energy carrier to replace the fossil fuels due to its abundance,high chemical energy,and pollution-free burning.1-3However,hydrogen storage is a“bottleneck”for the on-board application of hydrogen as energy carrier.Several ways have been investigated and developed to store hydrogen gas,involving its compression,liquefaction,and adsorption in several metals and metal alloys and so on.Unfortunately,none of these technologies are good enough to satisfy the on-board application of hydrogen energy,even though each way possesses desirable characteristics in certain areas.4-7For example,very high pressure vessels are capable of storing hydrogen about 9%(mass fraction),however,so high pressure will bring serious security problem.The hydrogen storage capacities of many complex hydrides,such as Li3Be2H7,8NaAlH49and so on,10-12in which hydrogen atoms are chemical bonded to metals,are beyond about 6%.However they can not be easily,quickly recovered when exhausted.Highly porous carbon materials13-15and metal organic frameworks(MOF)16,17represent another type of hydrogen storage material,which interact with hydrogen physically,and are kineticly favorable for recharge of hydrogen.However, they can achieve high storage capacity only under very low temperature.At ambient temperature,these materials barely adsorb hydrogen due to weak interaction between hydrogen and the solid materials.

    Zhao et al.18proposed that the fullerene decorated by transition metal may be a good candidate for hydrogen storage. Based on theoretical calculations,they found that Sc decorated C60and C48B12are capable of storing hydrogen about 7%and 8.77%at ambient condition.At the same time,Yildirim and Ciraci19showed that Ti decorated carbon nanotube can approach about 8%hydrogen storage capacity.In both Sc decorated C60and Ti decorated carbon nanotube,the transition metal atoms scatter on the surface of carbon nanomaterials,and bind with hydrogen molecules through Kubas interaction.20

    Unfortunately,Sun?s theoretical investigation21indicated that transition metal atoms on C60will be clustered rather than scattered,and the clustering of the transition metal atoms will significantly reduce the mass percentage of hydrogen storage.Sun et al.22,23found that the clustering problem can be resolved by replacing the transition metal atoms with alkali metal atoms or alkaline-earth metal atoms.However,alkali or alkaline-earth metal doped fullerene can only be used in low temperature due to the small binding energy of hydrogen molecule to them.24,25Moreover,the recent theoretical study shows some alkali metal atoms,such as Na,also will be aggregated on the surface of C60.26

    Meng et al.27found that the Ti atoms on the boron nanotube, contrary to on carbon nanostructure,will keep in isolation from each other.Theoretical calculations showed that metal doped icosahedral B80also does not suffer the clustering problem,being a promising hydrogen storage candidate.28-31

    However,more recent theoretical calculations indicated that the most stable B80and other medium-sized boron clusters have core-shell rather than hollow cage structure.32Zhao and his coworkers33have designed a new type of hydrogen storage media,chained TiBx.They found that the most stable TiB5chain can reach 7.3%hydrogen storage capacity with the average binding energy per H2of 43.7 kJ·mol-1.

    In this work,we propose a Sc doped B12cluster and a Ti doped B12cluster,inspired by our previous foundation of a B12core in B12CO12.34The structures of B12Sc4and B12Ti4,as well as their interactions with H2are discussed in detail.

    2 Computational methods

    All the isomers were optimized at the level of density functional theory(DFT)with Becke?s three-parameter exchange35and Lee-Yang-Parr correlation functional36by using Gaussian 03 program.37The standard split valence basis set 6-31G(d,p) was employed to describe the orbitals of all atoms involved. Geometry optimizations were done with no symmetry restriction.All the reported isomers were characterized at the same level as energy minima by frequency calculations.All the population analyses were based on the data obtained at the B3LYP/ 6-31G(d,p)level.Many investigations demonstrated that MP2 method was more reliable for calculating the weak interaction.38,39So,to obtain accurate average binding energy of H2to B12Sc4or B12Ti4,the single point energy calculations for all B12X4-nH2(X=Sc,Ti),the most stable B12X4and H2were performed at the MP2/6-311G(d,p)level.The average binding energy per H2(ABE/H2)was defined as

    where,E[B12X4],E[H2],and E[B12X4-nH2]are the electronic energies of relaxed B12X4,H2,and B12X4-nH2,respectively;and n is the number of H2molecules.The basis set superposition error(BSSE)has been corrected using the full counterpoise method for all the B12X4-nH2complexes at the MP2/6-311G(d, p)level.

    3 Results and discussion

    3.1 Structures of B12Sc4and B12Ti4

    Our proposed B12Sc4cluster is shown as isomer 2 in Fig.1, which has D2dsymmetry,and was optimized from an initio structure,isomer 1.Isomer 1 is originated from a stable(BCO)12boron carbonyl compound.29The multiplicity of isomer 2 is 1.To confirm that it is the favorable structure for B12Sc4,other B12Sc4isomers are considered in our work.Isomer 3 in Fig.1 is constructed from the most stable B12and Sc4clusters.The geometry optimization of isomer 3 gives out the isomer 4,which is less stable than 2 about 703.4 kJ·mol-1at the B3LYP/6-31G(d, p)level.Based on the most stable quasiplanar B12and icosahedral B12,40we put four Sc atoms on it in all possible patterns,all these structures were optimized to amorphous structure with higher energy than isomer 2(see Fig.S1 in Supporting Information for their structures and energies).In isomer 2,it is clear that the Sc atoms do not cluster together.

    Fig.1 Initio and optimized structures of two B12Sc4isomers

    Ab initio molecular dynamic(MD)simulation also confirmed that our proposed B12Sc4is stable.The isomer 2 was simulated using 0.5 fs time step in a 14×14×14 simple cubic supercell with Born-Oppenheimer MD implemented in CP2k code.41First,the system was equilibrated at 1000 K in a NVE ensemble with a temperature tolerance of 500 K within 10000 steps.When it achieved equilibrium,we continued the MD at the same condition for another 5000 steps(see Supporting Information for more detail information about the MD calculation configurations).The result shows that our proposed B12Sc4is intact throughout the whole simulation.A similar MD simulation shows that the IhB80Sc12will collapse to a core-shell structure.We expect that our proposed B12Sc4is stable enough at their possible operation temperatures about 300 K.

    Fig.2 Electronic difference density(in×103nm-3)map of a B3ring in B12Sc4

    Fig.3 Occupied valance orbitals of B12Sc4

    To understand the stability of B12Sc4more foundationally,we has performed a detail inspect about the structure of B12Sc4. The energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital(HOMO-LUMO) of B12Sc4is 2.17 eV.In B12Sc4,12 boron atoms form four three-membered rings(B3).The electronic density difference map(Fig.2)of B3ring shows that electrons mainly shift to the center of the ring.It is clear that an open three-center bond is formed other than a strained‘banana bond’.So,B3rings are non-strained rings in B12Sc4.

    Fig.3 lists all the valance orbitals of B12Sc4,which clearly shows that every B3ring,can be considered as a unit,possesses s-like,p-like,and d-like orbitals,when interacting with Sc atoms.Orbitals 49-52 of B12Sc4are formed by the s-like orbitals of B3units,without any node among the electronic cloud within B3rings.Orbitals 53-61,65,66,and 68 are originated from the p-like orbitals,with only one node among the electronic cloud within every B3ring.Moreover,the p-like orbitals of B3can be classified into px-,py-,and pz-like orbitals.In pz-like orbitals(58,65,66,68),the nodal plane is substantially parallel to the B3ring,while in px-and py-like orbitals,the nodal plane is nearly vertical to the B3ring.It should be noticed that some d-like components hybridize into the orbitals 65 and 66 when it interacts with Sc atoms.Orbitals 62-64,67,and 69-72 are mainly formed by the d-like orbital of B3units with some p-like components hybridizing into orbitals 62-64 significantly.

    The B12Ti4has the same topological structure as isomer 2, and has D2dsymmetry and no unpaired electron.The other isomers constructed based on the most stable quasiplanar B12and icosahedral B12as for B12Sc4are also considered(see Fig.S2 in Supporting Information).They are all higher in energy than isomer 2.The same MD simulation as for B12Sc4was performed for it,which also demonstrates that B12Ti4are stable around 1000 K.The most obvious distinction between B12Sc4and B12Ti4is their metal-metal(M-M)distances.The adjacent Sc-Sc distance in B12Sc4is 0.315 nm while Ti-Ti distance in B12Ti4is only 0.294 nm.Too short M-M distance is unfavorable for hydrogen storage.The HOMO-LUMO energy gap of B12Ti4is only 1.21 eV,nearly the half of B12Sc4.

    3.2 Hydrogen molecule adsorption on B12Sc4and

    B12Ti4

    We now turn to the discussion on the adsorption of hydrogen molecules on the B12Sc4and B12Ti4clusters mentioned above. The optimized adsorbing structures with 1,2,and 3 hydrogen molecules on each Sc atom of B12Sc4are shown in Fig.4 as isomer 5(B12Sc4-4H2),6(B12Sc4-8H2),7(B12Sc4-12H2).The adsorbing structure of B12Ti4with one H2on each Ti atom(B12Ti4-4H2) is the same as the corresponding B12Sc4-4H2.B12Ti4can adsorb 8 hydrogen molecules at most.The optimized B12Ti4-8H2is presented in Fig.4 as isomer 8,which is slightly different from B12Sc4-8H2.The average binding energies per hydrogen molecule(ABE/H2),the largest and shortest Sc-H(Ti-H)distances,the bond lengths of hydrogen molecules for both B12Sc4-nH2and B12Ti4-nH2(n=4,8,12 for B12Sc4;n=4,8 for B12Ti4)are listed in Table 1.

    Fig.4 Structures of B12Sc4-nH2and B12Ti4-nH25:B12Sc4-4H2,6:B12Sc4-8H2,7:B12Sc4-12H2,8:B12Ti4-8H2

    Table 1 Average binding energies of H2molecule(in kJ·mol-1per H2),M-H distances(M=Sc,Ti),and bond lengths of H2in B12Sc4-nH2and B12Ti4-nH2(in nm)

    Now,we begin to discuss the interaction between B12Sc4and H2molecules.In B12Sc4-4H2(5),the shortest Sc-H distance is 0.223 nm,and the average Sc-H distance is 0.229 nm.These Sc-H distances are longer than the normal Sc―H bond length (about 0.18 nm in ScH2molecule42,43).The ABE/H2of B12Sc4-4H2(5)is only-11.6 kJ·mol-1,whereas we have noted that in B80Sc-H2,the binding energy of H2to B80Sc is-42.5 kJ·mol-1.25The large difference of ABE/H2between B12Sc4-4H2and B80Sc-H2indicates that the structure of the BxScydoped cluster has a significant effect on the binding energy of H2adsorbed on it.In B12Sc4-4H2(5),the H―H bond length is 0.077 nm,which is longer than the bond length of an isolated hydrogen molecule (0.074 nm optimized at the B3LYP/6-31G(d,p)level).On C60Sc12,the first H2will dissociate when binding to a Sc atom.13The elongation of the H-H bond length is caused both by the Kubas interaction and induced interaction.We have calculated the K+-H2and Ca2+-H2systems at the B3LYP/6-31G(d,p)level to estimate the effect of the induced interaction to the H-H bond.The result shows that the H-H bond lengths of K+-H2and Ca2+-H2are 0.075 and 0.076 nm,respectively,which both are slightly longer than 0.074 nm of a free H2molecule,and smaller than that of B12Sc4-4H2.The ABE/H2of B12Sc4-8H2(6) and B12Sc4-12H2(7)are-11.9 and-10.4 kJ·mol-1,respectively. With three hydrogen atoms on each Sc atom,the hydrogen storage capacity of B12Sc4-12H2can reach to 7.25%.

    As regards B12Ti4,it can accommodate for 8 hydrogen molecules at most,and reach to 4.78%hydrogen storage capacity only.However,the ABE/H2of B12Ti4-nH2is significantly greater than that of corresponding B12Sc4-nH2,as shown in Table 1. In B12Ti4-4H2,the Ti-H distances range from 0.201 to 0.209 nm,and have an average value of 0.205 nm,being longer than the normal Ti―H bond.The calculated Ti―H bond length in TiH4is about 0.170 nm,44and the experimental values range from 0.169 to 0.184 nm in different compounds.45,46The H-H distance of B12Ti4-4H2is 0.079 nm,which is 0.005 nm longer than thatoffree hydrogen molecule. The ABE/H2of B12Ti4-4H2is-67.5 kJ·mol-1,which is remarkably larger than that of B12Sc4-4H2.The large ABE/H2of B12Ti4-4H2may raise a doubt that the hydrogen molecule will dissociate to atoms in B12Ti4-H2.So,additional calculation about B12Ti4-H2is performed.As a comparison,B12Sc4-H2is also considered.Natural bond orbital(NBO)analysis indicates that the H―H bond is hold in B12Ti4-H2,with a bond length of 0.079 nm.However, the ABE/H2of B12Ti4-H2reaches to-201.0 kJ·mol-1,making it difficult to release the H2molecule.Considered that B12Ti4can adsorb 8 hydrogen molecules at most,it can conclude that B12Ti4is not a good candidate for hydrogen storage.The ABE/ H2of B12Sc4-H2is-12.3 kJ·mol-1,which being similar to that of other B12Sc4-nH2.

    A detail analysis about the orbitals of B12Sc4-4H2and B12Ti4-4H2can account for why the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2.Given that the charge of Ti atoms (NBO charge:1.26|e|)in B12Ti4is smaller than that of Sc atoms (NBO charge:0.95|e|)in B12Sc4,It is rational to conclude that the Kubas interaction in B12Ti4-nH2is more strong than that in B12Sc4-nH2.In B12Sc4-nH2and B12Ti4-nH2,the Kubas interaction involves the interaction of the σ-bonds of H2molecules to unoccupied orbitals of Sc and Ti atoms,as well as the σ*-bonds of H2molecules to occupied orbitals of Sc and Ti atoms.

    In Fig.5,we give out the orbitals mainly located on hydrogen molecules both of B12Sc4-4H2and B12Ti4-4H2.For B12Sc4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 87%to 91%.The contributions from Sc atoms are all below 10%.However,for B12Ti4-4H4,the contributions from hydrogen molecules to these orbitals are in a range of 78%to 85%.The contributions from Ti atoms are in a range of 12%to 15%.The components of these orbitals clearly indicate that there are more electrons in σ-bonds of H2molecules transferred to the d orbital of metal atoms in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.5 Orbitals mainly located on hydrogen molecules in B12Sc4-4H2and B12Ti4-4H2 for B12Sc4-4H2,a:HOMO-22,b:HOMO-21,c:HOMO-20,d:HOMO-19;for B12Ti4-4H2,e:HOMO-24,f:HOMO-23,g:HOMO-22,h:HOMO-21

    Nearby the HOMO orbital,there are five orbitals involving the σ*-bonds of H2molecules and more than 5%contributions from hydrogen molecules are found for B12Ti4-4H4.They are HOMO,HOMO-1,HOMO-2,HOMO-4,and HOMO-5,as listed in Fig.6.The components from H2molecules in these five orbitals are 5.6%,14.0%,5.2%,9.0%,and 9.2%,respectively.For B12Sc4-4H4,only two similar types of orbitals are found.They are HOMO-1 and HOMO-2.The components from H2molecules in these two orbitals are 6.4%and 8.6%,respectively.The components of these orbitals indicate that there are more electrons from the d orbital of metal atoms donated back to the σ*-bonds of H2molecules in B12Ti4-4H4than that in B12Sc4-4H4.

    Fig.6 Orbitals involving the σ*-bonds of H2molecules in B12Sc4-4H2and B12Ti4-4H2for B12Sc4-4H2,a:HOMO-2,b:HOMO-1;for B12Ti4-4H2,c:HOMO-5,d:HOMO-4,e:HOMO-2,f:HOMO-1,g:HOMO

    Above discussion clearly indicates that the Kubas interaction in B12Ti4-4H2is much stronger than that in B12Sc4-4H2.So, it is not surprising that the ABE/H2of B12Ti4-nH2is greater than that of B12Sc4-nH2due to the stronger Kubas interaction.The strong Kubas interaction in B12Ti4-nH2also is implied by the longer H―H bond length.As listed in Table 1,the H―H bond lengths are 0.079 and 0.078 nm in B12Ti4-4H2and B12Ti4-8H2, respectively,being longer than those in B12Sc4-4H2(0.077 nm) and B12Sc4-8H2(0.076 nm).

    Now,it is necessary to consider the influences of the temperature and the pressure of hydrogen on the process of the hydrogen storage and release.The changes of Gibbs free energy (ΔG)for the process of B12Sc4+12H2→B12Sc4-12H2were calculated at 77 and 300 K with the hydrogen pressure of 1.013×105Pa.The ΔG at 77 and 300 K are 37.3 and 301.5 kJ·mol-1,respectively.The positive ΔG indicates that high hydrogen pressure is necessary to make hydrogen hold on B12Sc4.As done by Zhao et al.6,the influence of hydrogen pressure can be estimated with ideal gas model for hydrogen.Our calculation shows that B12Sc4-12H2will release hydrogen when the hydrogen pressure drops back below 129.696×105Pa at 77 K.At 300 K,it needs a drastically high pressure to hold the hydrogen on B12Sc4.It should be noted that the ideal gas model can only give a gross estimation,especially at high pressure.So,the real pressure of hydrogen should be lower than that estimated by ideal gas model.For B12Ti4-8H2,at 300 K it will release hydrogen when the hydrogen pressure drops back below 0.02×105Pa.However,it is difficult to release the last hydrogen molecule.It is also hard to release the hydrogen at 77 K.

    4 Conclusions

    In the present work,the structures and hydrogen adsorption properties of B12Sc4and B12Ti4clusters were investigated with the first-principles calculations.Both in B12Sc4and B12Ti4,metal atoms prefer binding to B atoms other than clustering together.The B12Sc4can bind up to 12 H2molecules with an ABE/H2of-10.4 kJ·mol-1,while B12Ti4can only host 8 H2molecules at most with an ABE/H2of-50.3 kJ·mol-1.Indeed,the hydrogen adsorption capacities of B12Sc4and B12Ti4clusters we proposed here are not more excellent than a chained B5Ti structure suggested by other stuffs.However,our works would be useful for guiding the design of the hydrogen storage materials based on transition metal-boron clusters.It is very interesting that we find that in B12Sc4,B3rings have s-,p-,and d-like orbitals when interacting with Sc atom.We also find that the Kubas interaction in B12Ti4-nH2complex is much stronger than that in B12Sc4-nH2complex.

    Supporting Information Available: The geometries of some calculated B12Sc4and B12Ti4isomers and their relative energies have been included.The detail configures for molecular dynamic(MD)calculation also have been listed.Two pieces of movies demonstrating the MD trajectory of B12Sc4and B12Ti4have been provided.This information is available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1) Schlapbach,L.;Züttel,A.Nature 2001,414,353.doi:10.1038/ 35104634

    (2) Coontz,R.;Hanson,B.Science 2004,305,957.doi:10.1126/ science.305.5686.957

    (3) Crabtree,G.W.;Dresselhaus,M.S.;Buchanan,M.V.Phys. Today 2004,57,39.doi:10.1063/1.1878333

    (4) Tao,Z.L.;Peng,B.;Liang,J.;Cheng,F.Y.;Chen,J.Meter. China 2009,28,7. [陶占良,彭 博,梁 靜,程方益,陳 軍.中國材料進展,2009,28,7.]

    (5) Xu,W.;Tao,Z.L.;Chen,J.Prog.Chem.2006,18,2.[許 煒,陶占良,陳 軍.化學(xué)進展,2006,18,2.]

    (6) Zhao,X.B.;Xiao,B.;Fletcher,A.J.;Thomas,K.M.J.Phys. Chem.B 2005,109,8880.

    (7) Qu,D.Chem.Eur.J.2008,14,1040.doi:10.1002/chem. 200701042

    (8) Zaluska,A.;Zaluski,L.;Str?m-Olsen,J.O.Appl.Phys.A 2001, 72,157.doi:10.1007/s003390100783

    (9) Bogdanovic,B.;Schwickardi,M.J.Alloy.Compd.1997,253,1. doi:10.1016/S0925-8388(96)03049-6

    (10) Orimo,S.;Nakamori,Y.;Eliseo,J.R.;Zuttel,A.;Jensen,C.M. Chem.Rev.2007,107,4111.doi:10.1021/cr0501846

    (11)Ning,H.;Tao,X.M.;Wang,M.M.;Cai,J.Q.;Tan,M.Q.Acta Phys.-Chim.Sin.2010,26,2267.[寧 華,陶向明,王芒芒,蔡建秋,譚明秋.物理化學(xué)學(xué)報,2010,26,2267.]doi:10.3866/ PKU.WHXB20100828

    (12) Li,G.X.;Chen,X.W.;Bai,J.D.;Lan,Z.Q.;Guo,J.Acta Phys.-Chim.Sin.2010,26,1448.[黎光旭,陳曉偉,白加棟,藍志強,郭 進.物理化學(xué)學(xué)報,2010,26,1448.]doi:10.3866/ PKU.WHXB20100540

    (13)Wang,H.;Gao,Q.;Hu,J.J.Am.Chem.Soc.2009,131,7016. doi:10.1021/ja8083225

    (14) Miao,Y.L.;Sun,H.;Wang,L.;Sun,Y.X.Acta Phys.-Chim. Sin.2012,28,547.[苗延霖,孫 淮,王 琳,孫迎新.物理化學(xué)學(xué)報,2012,28,547.]doi:10.3866/PKU.WHXB201112301

    (15)Yang,Z.;Xia,Y.;Robert,M.J.Am.Chem.Soc.2007,129, 1673.doi:10.1021/ja067149g

    (16)Koh,K.;Wong-Foy,A.G.;Matzger,A.J.J.Am.Chem.Soc. 2009,131,4184.doi:10.1021/ja809985t

    (17) Zhao,D.;Daren,J.T.;Yuan,D.;Zhou,H.C.Accounts Chem. Res.2011,44,123 and references therein.doi:10.1021/ ar100112y

    (18)Zhao,Y.;Kim,Y.H.;Dillon,A.C.;Heben,M.J.;Zhang,S.B. Phys.Rev.Lett.2005,94,155504.doi:10.1103/PhysRevLett. 94.155504

    (19) Yildirim,T.;Ciraci,S.Phys.Rev.Lett.2005,94,175501.doi: 10.1103/PhysRevLett.94.175501

    (20) Kubas,G.J.J.Organomet.Chem.2001,635,37.doi:10.1016/ S0022-328X(01)01066-X

    (21) Sun,Q.;Wang,Q.;Jena,P.;Kawazoe,Y.J.Am.Chem.Soc. 2005,127,14582.doi:10.1021/ja0550125

    (22) Sun,Q.;Jena,P.;Wang,Q.;Marquez,M.J.Am.Chem.Soc. 2006,128,9741.doi:10.1021/ja058330c

    (23) Wang,Q.;Sun,Q.;Jena,P.;Kawazoe,Y.J.Chem.Theory Comput.2009,5,374.doi:10.1021/ct800373g

    (24) Chandrakumar,K.R.S.;Ghosh,S.K.Nano Lett.2008,8,13. doi:10.1021/nl071456i

    (25) Liu,W.;Zhao,Y.H.;Li,Y.;Jiang,Q.;Lavernia,E.J.J.Phys. Chem.C 2009,113,2028.doi:10.1021/jp8091418

    (26) Rabilloud,F.J.Phys.Chem.A 2010,114,7241.doi:10.1021/ jp103124w

    (27) Meng,S.;Kaxiras,E.;Zhang,Z.Nano Lett.2007,7,663.doi: 10.1021/nl062692g

    (28) Zhao,Y.F.;Lusk,M.T.;Dillon,A.C.;Heben,M.J.;Zhang,S. B.Nano Lett.2008,8,157.doi:10.1021/nl072321f

    (29) Li,Y.C.;Zhou,G.;Li,J.;Gu,B.L.;Duan,W.H.J.Phys.Chem. C 2008,112,19268.doi:10.1021/jp807156g

    (30) Wu,G.;Wang,J.L.;Zhang,X.;Zhu,L.J.Phys.Chem.C 2009, 113,7052.doi:10.1021/jp8113732

    (31) Li,M.;Li,Y.;Zhou,Z.;Shen,P.;Chen,Z.Nano Lett.2009,9, 1944.doi:10.1021/nl900116q

    (32) Zhao,J.;Wang,L.;Li,F.;Chen,Z.J.Phys.Chem.A 2010,114, 9969.doi:10.1021/jp1018873

    (33) Li,F.;Zhao,J.;Chen,Z.Nanotechnology 2010,21,134006. doi:10.1088/0957-4484/21/13/134006

    (34) Wu,H.S.;Qin,X.F.;Xu,X.H.;Jiao,H.;Schelyer,P.v.R. J.Am.Chem.Soc.2005,127,2334.doi:10.1021/ja046740f

    (35) Becke,A.D.J.Chem.Phys.1993,98,5648.doi:10.1063/ 1.464913

    (36) Lee,C.;Yang,W.;Parr,R.G.Phys.Rev.B 1988,37,785.

    (37) Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 03, Revision C.01;Gaussian Inc.:Pittsburgh,PA,2004.

    (38) Zhao,Y.;Truhlar,D.G.J.Chem.Theory Comput.2005,1,415. doi:10.1021/ct049851d

    (39) Mohan,N.;VIjayalakshmi,K.P.;Koga,N.;Suresh,C.H. J.Comput.Chem.2010,31,2874.

    (40) Boustani,I.Phys.Rev.B 1997,55,16426.doi:10.1103/ PhysRevB.55.16426

    (41) http:/cp2k.berlios.de.

    (42) Balasubramanina,K.Chem.Phys.Lett.1987,135,288.doi: 10.1016/0009-2614(87)85158-8

    (43) Bauschlicher,C.W.,Jr.;Walch,S.P.J.Chem.Phys.1982,76, 4560.doi:10.1063/1.443532

    (44) Thomas,J.R.;Quelch,G.E.;Seidl,E.T.;Schaefer,H.F.,III. J.Chem.Phys.1992,96,6857.doi:10.1063/1.462575

    (45) Lukens,W.W.,Jr.;Matsunaga,P.T.;Andersen,R.A. Organometallics 1998,17,5240.doi:10.1021/om980601n

    (46) Pattiasina,J.W.;Bolhuis,F.;Teuben,J.H.Angew.Chem.Int. Edit.1987,26,330.doi:10.1002/anie.198703301

    January 15,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    Hydrogen Storage Properties of B12Sc4and B12Ti4Clusters

    MALi-Juan WANG Jian-Feng JIAJian-Feng*WU Hai-Shun
    (School of Chemistry and Materials Science,Shanxi Normal University,Linfen 041004,Shanxi Province,P.R.China)

    The structures and hydrogen storage properties of two stable B12Sc4and B12Ti4clusters have been investigated using ab initio calculations.No metal atom clustering occurs in the clusters.The B12Sc4hosts 12 H2to achieve 7.25%(mass fraction)hydrogen storage capacity with an average binding energy (ABE)of-10.4 kJ·mol-1per H2,while the B12Ti4can only host 8 H2(4.78%,mass fraction)with a higher ABE (-50.2 kJ·mol-1per H2).High hydrogen pressure is needed for B12Sc4to hold 12 H2,even at 77 K. Electronic structure analysis indicates that the Kubas interaction in the B12Ti4-nH2complex is much stronger than that in the B12Sc4-nH2complex.

    Boron cluster;Metal doping;Hydrogen storage;Adsorption;Ab initio calculation

    10.3866/PKU.WHXB201205151

    ?Corresponding author.Email:jjf_sxtu@yahoo.com.cn;Tel:+86-357-2051375.

    The project was supported by the National Basic Research 973 Pre-research Program of China(2010CB635110)and Natural Science Foundation of Shanxi Province,China(2010011012-2).

    973計劃前期研究專項課題(2010CB635110)與山西省自然科學(xué)基金(2010011012-2)資助項目

    O641

    猜你喜歡
    劍鋒儲氫物理化學(xué)
    Topological photonic states in gyromagnetic photonic crystals:Physics,properties,and applications
    站用儲氫瓶式容器組缺陷及檢測方法
    我國固定式儲氫壓力容器發(fā)展現(xiàn)狀綜述
    蛼螯燒賣
    美食(2022年5期)2022-05-07 22:27:35
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    張劍鋒書畫作品選登
    Chemical Concepts from Density Functional Theory
    篆刻
    對聯(lián)(2018年11期)2018-02-22 07:04:14
    儲氫合金La0.74Mg0.26Ni2.55Co0.55Al0.2Fe0.1的制備與電化學(xué)性能
    99热6这里只有精品| 91久久精品国产一区二区成人| 国产精品av视频在线免费观看| 看十八女毛片水多多多| 国产免费又黄又爽又色| 亚洲图色成人| 亚洲精品中文字幕在线视频 | 国产高清三级在线| 97在线人人人人妻| 国产精品麻豆人妻色哟哟久久| 老师上课跳d突然被开到最大视频| 亚洲av在线观看美女高潮| 在线观看人妻少妇| 久热这里只有精品99| 久久精品国产亚洲av涩爱| 九草在线视频观看| 只有这里有精品99| 久久久久久久午夜电影| 男人爽女人下面视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 99久久九九国产精品国产免费| 国产精品无大码| 久久久久久国产a免费观看| 在现免费观看毛片| 久久这里有精品视频免费| 永久网站在线| 有码 亚洲区| 老司机影院成人| 在线观看人妻少妇| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 一二三四中文在线观看免费高清| 亚洲不卡免费看| 岛国毛片在线播放| 成人黄色视频免费在线看| 国产高清国产精品国产三级 | 日本一本二区三区精品| 1000部很黄的大片| 欧美另类一区| 色视频www国产| 国产精品不卡视频一区二区| 亚洲熟女精品中文字幕| 国精品久久久久久国模美| 超碰97精品在线观看| 中文资源天堂在线| 自拍偷自拍亚洲精品老妇| 综合色av麻豆| 亚洲欧美日韩另类电影网站 | 在线精品无人区一区二区三 | 午夜亚洲福利在线播放| 免费在线观看成人毛片| 日韩在线高清观看一区二区三区| 亚洲欧美精品专区久久| 亚洲国产精品成人综合色| 国产v大片淫在线免费观看| 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 亚洲精品国产成人久久av| 国产黄色视频一区二区在线观看| 欧美老熟妇乱子伦牲交| 婷婷色综合大香蕉| 97热精品久久久久久| av在线app专区| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 日韩免费高清中文字幕av| 国产乱人偷精品视频| 免费av不卡在线播放| 草草在线视频免费看| 亚洲国产精品成人综合色| 免费黄网站久久成人精品| 网址你懂的国产日韩在线| 最新中文字幕久久久久| 日日摸夜夜添夜夜爱| 久久久久久久大尺度免费视频| 十八禁网站网址无遮挡 | 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 如何舔出高潮| av天堂中文字幕网| 久久久久久伊人网av| 国产成人91sexporn| 成人无遮挡网站| 久久韩国三级中文字幕| 在线免费观看不下载黄p国产| 亚洲图色成人| 伦理电影大哥的女人| 成人黄色视频免费在线看| 欧美另类一区| 亚洲av免费高清在线观看| 亚洲国产精品国产精品| 中国美白少妇内射xxxbb| 国内精品美女久久久久久| 久久久久精品久久久久真实原创| 久久ye,这里只有精品| 国产精品精品国产色婷婷| 国产在视频线精品| 免费黄网站久久成人精品| 成人综合一区亚洲| 亚洲精品一二三| 亚洲色图av天堂| 22中文网久久字幕| 最新中文字幕久久久久| 爱豆传媒免费全集在线观看| 久久久久久久精品精品| 免费看a级黄色片| 国产高潮美女av| 精华霜和精华液先用哪个| 大片电影免费在线观看免费| 久久韩国三级中文字幕| 日韩一区二区三区影片| 亚洲不卡免费看| 国产日韩欧美在线精品| 国产免费一级a男人的天堂| 高清av免费在线| 少妇熟女欧美另类| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 国产乱来视频区| 十八禁网站网址无遮挡 | 搞女人的毛片| 波多野结衣巨乳人妻| 国产精品精品国产色婷婷| 久久人人爽人人爽人人片va| 99九九线精品视频在线观看视频| av国产免费在线观看| av国产免费在线观看| 国产午夜福利久久久久久| 三级国产精品欧美在线观看| 深夜a级毛片| 777米奇影视久久| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 女的被弄到高潮叫床怎么办| 联通29元200g的流量卡| 国产精品.久久久| 日日啪夜夜撸| 一本色道久久久久久精品综合| 在线观看美女被高潮喷水网站| 熟女人妻精品中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产免费福利视频在线观看| 久久6这里有精品| 又爽又黄a免费视频| 两个人的视频大全免费| 69人妻影院| 欧美高清性xxxxhd video| 肉色欧美久久久久久久蜜桃 | 亚洲人成网站高清观看| 精品人妻视频免费看| 午夜福利视频精品| 美女被艹到高潮喷水动态| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 国产午夜精品一二区理论片| 97人妻精品一区二区三区麻豆| 国模一区二区三区四区视频| 日韩一区二区视频免费看| 国产 一区精品| 久久午夜福利片| 国产高清三级在线| 精品久久久久久久久亚洲| 插阴视频在线观看视频| av在线亚洲专区| 日韩不卡一区二区三区视频在线| 水蜜桃什么品种好| 少妇高潮的动态图| 欧美另类一区| 内地一区二区视频在线| 2022亚洲国产成人精品| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 美女国产视频在线观看| 日韩一区二区三区影片| 亚洲成人av在线免费| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久精品人妻少妇| 亚洲欧美清纯卡通| 亚洲国产日韩一区二区| 国产亚洲午夜精品一区二区久久 | 亚洲av免费在线观看| 少妇人妻精品综合一区二区| 五月开心婷婷网| 国产男人的电影天堂91| 久久久久久久大尺度免费视频| 国产免费福利视频在线观看| 少妇猛男粗大的猛烈进出视频 | 欧美日韩视频高清一区二区三区二| 国产乱人偷精品视频| 亚洲精品自拍成人| 日韩免费高清中文字幕av| 91精品一卡2卡3卡4卡| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 精品一区二区三卡| 日本wwww免费看| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| av国产精品久久久久影院| 国产色婷婷99| 精品一区二区免费观看| 国产v大片淫在线免费观看| 身体一侧抽搐| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 七月丁香在线播放| 在线亚洲精品国产二区图片欧美 | 婷婷色av中文字幕| 欧美精品一区二区大全| 一区二区三区免费毛片| 久久鲁丝午夜福利片| 2018国产大陆天天弄谢| 国产乱人偷精品视频| 久久99精品国语久久久| 国产片特级美女逼逼视频| 日韩,欧美,国产一区二区三区| 亚洲内射少妇av| 中文字幕亚洲精品专区| 久久99蜜桃精品久久| 免费观看的影片在线观看| 亚洲无线观看免费| 亚洲国产欧美人成| 国产一区有黄有色的免费视频| 国产午夜精品久久久久久一区二区三区| 好男人视频免费观看在线| 久久久欧美国产精品| 精品一区二区免费观看| 中文字幕制服av| 久久久亚洲精品成人影院| 嫩草影院入口| 国产成人freesex在线| 国产成人精品婷婷| 97在线人人人人妻| 最新中文字幕久久久久| 免费看日本二区| 成人毛片a级毛片在线播放| 免费观看无遮挡的男女| 精品少妇黑人巨大在线播放| 嫩草影院精品99| 国产大屁股一区二区在线视频| 欧美成人a在线观看| 亚洲av不卡在线观看| 国内少妇人妻偷人精品xxx网站| 一个人观看的视频www高清免费观看| 精品久久久久久久人妻蜜臀av| 精品久久久久久电影网| 超碰97精品在线观看| 中文天堂在线官网| 色婷婷久久久亚洲欧美| 亚洲经典国产精华液单| 欧美性感艳星| 久久久欧美国产精品| 亚洲一级一片aⅴ在线观看| 亚洲成人一二三区av| 国产爱豆传媒在线观看| 亚洲最大成人手机在线| 高清午夜精品一区二区三区| 卡戴珊不雅视频在线播放| 人妻 亚洲 视频| 美女国产视频在线观看| 欧美成人午夜免费资源| 国产精品福利在线免费观看| 久久人人爽人人片av| av.在线天堂| 丝袜美腿在线中文| 免费av观看视频| 大码成人一级视频| 乱码一卡2卡4卡精品| 美女主播在线视频| 成人二区视频| 一区二区三区精品91| 国产亚洲av嫩草精品影院| 久久鲁丝午夜福利片| 国产高清国产精品国产三级 | 成人毛片a级毛片在线播放| 国模一区二区三区四区视频| 男女无遮挡免费网站观看| 久久久亚洲精品成人影院| www.色视频.com| 亚洲国产色片| 欧美高清成人免费视频www| 亚洲精品乱码久久久久久按摩| 久久韩国三级中文字幕| 国产在线一区二区三区精| 人体艺术视频欧美日本| 在线观看一区二区三区| 国产免费一区二区三区四区乱码| 在线亚洲精品国产二区图片欧美 | 日本色播在线视频| 天天躁日日操中文字幕| 丝袜喷水一区| 日韩一本色道免费dvd| 久久人人爽av亚洲精品天堂 | 联通29元200g的流量卡| 一区二区三区精品91| 欧美成人a在线观看| 联通29元200g的流量卡| 日本色播在线视频| 亚洲最大成人手机在线| 国产精品人妻久久久久久| 成人黄色视频免费在线看| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 女人十人毛片免费观看3o分钟| 91狼人影院| 一级a做视频免费观看| 久久久久久久亚洲中文字幕| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 亚洲天堂av无毛| 99热6这里只有精品| 成人毛片a级毛片在线播放| 禁无遮挡网站| av.在线天堂| 午夜老司机福利剧场| www.av在线官网国产| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| 国产欧美日韩精品一区二区| 国产男女内射视频| 日韩电影二区| 男女边吃奶边做爰视频| 小蜜桃在线观看免费完整版高清| 久久久久久久午夜电影| 成年女人在线观看亚洲视频 | 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 免费人成在线观看视频色| 亚洲一级一片aⅴ在线观看| 尤物成人国产欧美一区二区三区| 一级毛片 在线播放| 国产在线一区二区三区精| 久久精品久久久久久噜噜老黄| 极品教师在线视频| 2021天堂中文幕一二区在线观| 亚洲精品成人av观看孕妇| 在线观看av片永久免费下载| 水蜜桃什么品种好| 交换朋友夫妻互换小说| 欧美xxxx性猛交bbbb| 22中文网久久字幕| 一级黄片播放器| 国产永久视频网站| 欧美xxxx性猛交bbbb| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 国产乱人视频| 在线免费观看不下载黄p国产| 亚洲激情五月婷婷啪啪| 韩国高清视频一区二区三区| 97人妻精品一区二区三区麻豆| 亚洲成人一二三区av| 日韩欧美精品v在线| 性色av一级| 一区二区三区精品91| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 免费看av在线观看网站| 看非洲黑人一级黄片| 成人亚洲精品av一区二区| 看非洲黑人一级黄片| 在线亚洲精品国产二区图片欧美 | 久久精品熟女亚洲av麻豆精品| xxx大片免费视频| 中文字幕久久专区| 国产精品三级大全| 99久久精品一区二区三区| 精品久久国产蜜桃| 亚洲精华国产精华液的使用体验| 欧美日韩视频高清一区二区三区二| 欧美+日韩+精品| 黄色怎么调成土黄色| 内射极品少妇av片p| 天美传媒精品一区二区| 国产精品一区二区三区四区免费观看| 一区二区三区免费毛片| 国产成人精品久久久久久| 五月天丁香电影| 午夜福利网站1000一区二区三区| 国产成人aa在线观看| 国产永久视频网站| 99热这里只有是精品在线观看| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 久久国产乱子免费精品| 国产久久久一区二区三区| 少妇人妻久久综合中文| 日韩视频在线欧美| 欧美另类一区| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 国产一区二区三区综合在线观看 | av线在线观看网站| 我的女老师完整版在线观看| 欧美97在线视频| 国产国拍精品亚洲av在线观看| 精品视频人人做人人爽| 青春草亚洲视频在线观看| 色5月婷婷丁香| 少妇裸体淫交视频免费看高清| 久久鲁丝午夜福利片| 卡戴珊不雅视频在线播放| 三级男女做爰猛烈吃奶摸视频| 亚洲综合精品二区| 成人毛片a级毛片在线播放| 少妇人妻精品综合一区二区| 亚洲熟女精品中文字幕| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 国产在视频线精品| 国产女主播在线喷水免费视频网站| 亚洲国产最新在线播放| 大话2 男鬼变身卡| 51国产日韩欧美| 免费高清在线观看视频在线观看| 女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 精品久久久噜噜| 成人特级av手机在线观看| 人妻一区二区av| 啦啦啦中文免费视频观看日本| 白带黄色成豆腐渣| 春色校园在线视频观看| 久久久久久九九精品二区国产| 日韩一区二区三区影片| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 夫妻午夜视频| 亚洲在久久综合| av卡一久久| 午夜福利在线观看免费完整高清在| 成年人午夜在线观看视频| 日日啪夜夜撸| 亚洲美女搞黄在线观看| 精品午夜福利在线看| 亚洲欧美一区二区三区国产| 国产午夜福利久久久久久| 国产黄色视频一区二区在线观看| 久久精品人妻少妇| 如何舔出高潮| 国内揄拍国产精品人妻在线| 国产 一区 欧美 日韩| 啦啦啦在线观看免费高清www| 人人妻人人看人人澡| 岛国毛片在线播放| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 国产精品一二三区在线看| 精品国产乱码久久久久久小说| 国产综合懂色| 国产国拍精品亚洲av在线观看| 另类亚洲欧美激情| 丰满乱子伦码专区| 成人美女网站在线观看视频| av免费观看日本| 国产 精品1| 黄色日韩在线| 国产亚洲最大av| 晚上一个人看的免费电影| 国产永久视频网站| 五月天丁香电影| 国产精品国产三级专区第一集| 久热久热在线精品观看| 97超视频在线观看视频| 国产精品不卡视频一区二区| 天天躁日日操中文字幕| 91久久精品电影网| 性色av一级| 日韩制服骚丝袜av| 国产欧美日韩精品一区二区| av国产精品久久久久影院| 一级毛片黄色毛片免费观看视频| 亚洲欧美一区二区三区国产| 99热国产这里只有精品6| 久久久a久久爽久久v久久| 一级毛片电影观看| 女人久久www免费人成看片| 禁无遮挡网站| 自拍偷自拍亚洲精品老妇| 国产在线一区二区三区精| 国产成人福利小说| 十八禁网站网址无遮挡 | av在线播放精品| 国产熟女欧美一区二区| 麻豆乱淫一区二区| 亚洲国产精品专区欧美| 国产午夜精品一二区理论片| 一个人观看的视频www高清免费观看| 大话2 男鬼变身卡| 一级av片app| 97超视频在线观看视频| 91狼人影院| 日韩欧美精品免费久久| 2022亚洲国产成人精品| 高清在线视频一区二区三区| 国产视频首页在线观看| 看十八女毛片水多多多| 国产美女午夜福利| 精品国产三级普通话版| 成年女人在线观看亚洲视频 | 午夜福利在线观看免费完整高清在| 人妻系列 视频| 亚洲综合色惰| 熟女av电影| 美女内射精品一级片tv| 日韩av不卡免费在线播放| 国产精品蜜桃在线观看| 国产av不卡久久| 内射极品少妇av片p| 免费观看的影片在线观看| 国产精品成人在线| 涩涩av久久男人的天堂| 欧美性猛交╳xxx乱大交人| 欧美日韩综合久久久久久| 一级黄片播放器| 菩萨蛮人人尽说江南好唐韦庄| 波多野结衣巨乳人妻| av卡一久久| 日韩av不卡免费在线播放| 熟妇人妻不卡中文字幕| 麻豆国产97在线/欧美| 精品酒店卫生间| 国产 精品1| 成人国产麻豆网| 80岁老熟妇乱子伦牲交| 欧美成人a在线观看| 久久精品人妻少妇| 伊人久久国产一区二区| 久久影院123| 国产有黄有色有爽视频| 免费看av在线观看网站| 大码成人一级视频| 久久鲁丝午夜福利片| av女优亚洲男人天堂| 少妇被粗大猛烈的视频| 免费人成在线观看视频色| 亚洲aⅴ乱码一区二区在线播放| 成人毛片a级毛片在线播放| 成人亚洲精品av一区二区| 有码 亚洲区| 三级经典国产精品| 亚洲精品成人av观看孕妇| 久久久久久久久大av| 国产伦精品一区二区三区四那| 毛片一级片免费看久久久久| 男女啪啪激烈高潮av片| 亚洲av在线观看美女高潮| 搡老乐熟女国产| 一级毛片黄色毛片免费观看视频| 干丝袜人妻中文字幕| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久成人| 亚洲av免费高清在线观看| av免费观看日本| 美女被艹到高潮喷水动态| 六月丁香七月| 神马国产精品三级电影在线观看| 国产大屁股一区二区在线视频| 在线观看美女被高潮喷水网站| 亚洲av日韩在线播放| 中文字幕免费在线视频6| 激情五月婷婷亚洲| 国产熟女欧美一区二区| 蜜桃亚洲精品一区二区三区| 国产精品三级大全| 成人亚洲欧美一区二区av| 久久精品国产亚洲网站| 各种免费的搞黄视频| 久久精品国产亚洲av涩爱| 久久久久精品性色| 久久99热这里只有精品18| 亚洲性久久影院| 中文乱码字字幕精品一区二区三区| 最新中文字幕久久久久| 97超碰精品成人国产| 亚洲精品国产av成人精品| 中文欧美无线码| 精品久久久噜噜| 天天躁日日操中文字幕| 国产精品偷伦视频观看了| 极品少妇高潮喷水抽搐| 一级毛片久久久久久久久女| 亚洲精品aⅴ在线观看| 欧美高清性xxxxhd video| 久久影院123| 麻豆久久精品国产亚洲av| 欧美极品一区二区三区四区| 国产高清国产精品国产三级 | 精品久久国产蜜桃| 亚洲成人av在线免费| 国产一级毛片在线| 国产成人福利小说| 色网站视频免费| 国产v大片淫在线免费观看| 久久久久久久午夜电影| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品国产av成人精品| 日韩欧美 国产精品| 色视频www国产| 色吧在线观看| 人人妻人人看人人澡| av在线播放精品| 国产老妇女一区| 国产中年淑女户外野战色| 五月伊人婷婷丁香| 国产一区有黄有色的免费视频|