• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二棕櫚酰磷脂酰膽堿/豆固醇脂質(zhì)體液態(tài)有序相的結(jié)構(gòu)性質(zhì):同步輻射X光衍射研究

    2012-12-12 02:42:14鄔瑞光尉志武
    物理化學(xué)學(xué)報(bào) 2012年8期
    關(guān)鍵詞:物理化學(xué)X光脂質(zhì)體

    鄔瑞光 陳 琳 尉志武,*

    (1清華大學(xué)化學(xué)系,生命有機(jī)磷化學(xué)與化學(xué)生物學(xué)教育部重點(diǎn)實(shí)驗(yàn)室,北京100084; 2北京中醫(yī)藥大學(xué)中藥學(xué)院,北京100102)

    1 Introduction

    The cholesterol-rich domain structures in biological membranes of animals,namely rafts or detergent-resistant membrane fractions(DRMs),have been implicated in numerous cellular processes,including signal transduction,protein sorting, cellular entry by toxins and viruses,and viral budding.1-4Several pieces of evidence support the understanding that DRMs exist at liquid ordered(Lo)state.5-7The Lophase was first defined by Ipsen et al.8Generally speaking,this phase has properties that are intermediate between those of the gel and fluid phases. Like the gel phase,the Lophase is characterized by tight acyl-chain packing and relatively extended acyl chains.On the other hand,like lipids in the liquid crystal phase(Lα),lipids in the Lophase exhibit relatively rapid lateral mobility within the bilayer.6,8,9But there are few reports about the more detailed structural properties of the Lophase so far,especially the temperature and concentration dependence of the d-spacings of small-angle and wide-angle X-ray scattering(SAXS and WAXS)of Lophase.

    As the major sterol presenting in mammalian cells,cholesterol has been regarded as a critical component of rafts in cells.10-12Thus investigations concerning the characters of Lophase were mainly focused on lipid mixtures containing cholesterol.Particular efforts have been put on binary mixtures of saturated phosphatidylcholines(or sphingomyelins)and cholesterol so far.

    Not limited to animal cells,DRMs rich in sphingolipid/sterol have also been isolated from plant cells,where the dominant sterol is not cholesterol.13-16Particularly,stigmasterol has been identified as one of the predominant sterols in plant rafts such as in tobacco lipid rafts.14,17For reason that stigmasterol is among the major sterols in plant plasma membranes,18,19its role in the formation of Lophase has become an interesting topic recently.In a study of lipid mixtures containing natural sterols and sphingolipids using fluorescence quenching and detergent insolubility,Xu et al.20have shown that,like cholesterol,stigmasterol promoted the formation of tightly packed liquid ordered domains containing DPPC or sphingomyelin.And both cholesterol and stigmasterol promoted the insolubility of these domains.20There have also been reports on the effects of stigmasterol and other plant sterols on the phase behavior of DPPC multibilayers investigated by differential scanning calorimetry (DSC),X-ray diffraction(XRD),resonance energy transfer, Langmuir monolayer,and detergent-induced solubilization techniques.21-23

    Phosphatidylcholines(PCs)are among the major phospholipids of plasma membranes.24Saturated PCs are known to have very similar physical properties to that of saturated-chain sphingolipids.25Thus DPPC/sterol mixtures have been selected by many research groups as simple model systems of Lophase. Therefore,it is of importance to explore the structural properties of Lophase by studying the stigmasterol-containing DPPC multibilayers.

    We have constructed a partial phase diagram of DPPC/stigmasterol binary mixtures employing XRD,DSC,and freezefracture electron microscopy(FFEM)techniques,26as sketched in Fig.1.In the present paper we will report the structural characters of the concerned phases,particularly the Lophase,of the binary mixtures by analyzing the small-angle and wide-angle XRD patterns.

    2 Materials and methods

    2.1 Materials

    DPPC was purchased from Sigma Chemicals(99%,St.Louis,MO,USA).Stigmasterol was from MP Biomedicals Inc. (95%,Aurora,OH,USA).They were used without further purification.DPPC/stigmasterol mixtures with designated mole ratios were dissolved in chloroform,dried under nitrogen,and then stored in vacuum overnight.The lipid films were hydrated with excess Tris-HCl buffers(50 mmol·L-1Tris-HCl,150 mmol·L-1NaCl,0.1 mmol·L-1CaCl2,pH=7.2)with repeated vortexing and heating-cooling between 60 and 20°C for at least three times and then stored at-20°C at least for 24 h before experiments.The mole fractions of stigmasterol in the binary mixtures were 1.25%,2.5%,4%,5%,7.5%,10%,15%, 20%,22.5%,25%,27.5%,30%,35%,40%,45%.

    2.2 Experimental methods

    Real-time synchrotron XRD experiments were performed at Station BL40B2 of SPring-8,Japan.The SAXS/WAXS data were recorded on-line with an image plate detector.The wavelength was 0.1 nm and camera length was about 400 mm.A standard sample silver behenate was used for calibration.A Linkam thermal stage was used in temperature control.To remove thermal history,all samples have been heated to 65°C and then cooled to 20°C at a rate of 0.5°C·min-1before measurement.The temperature scanning rate was 0.5°C·min-1during the measurement.Time for image exposure,data processing and dumping was 330 s.Electron density distributions across the unit cell of lamellar repeat of the DPPC codispersions containing different molar percentages of stigmasterol were calculated as follows.Integrated intensities I(h)for a range of diffraction orders(h)were obtained from low-angle scattering intensity profiles.Electron density profiles in a one-dimension space x,in arbitrary unit,were then expressed as27-29

    Fig.1 Phase diagram of stigmasterol/DPPC mixture dispersed in excess water(redrawn after Ref.26)and schematic representation of the molecular structures of DPPC and stigmasterol

    where F(h)is the structure factor,g(h)is the phase of F(h)of the hth order diffraction,and d is the repeat spacing of the multibilayers.

    The structure amplitude F(h)was set equal to[I(h)]1/2,where I(h)was obtained for each order h by measuring the area under the respective diffraction peak after normalization and background subtraction.27Error and trial method has been employed to solve the phase problem.All possible phase sets have been attempted,but only the phase set of“-,-,+,-,-”was reasonable.This phase combination has also been reported in similar systems including dimyristoylphosphatidylcholine(DMPC)/ cholesterol mixtures,30DPPC/dipalmitoylglycerol(DPG)mixtures,31and DPPC/dimethyl sulfoxide(DMSO)mixtures.32

    Deconvolution of the multicomponent XRD spectra was carried out using PeakFit software(Aisn Software Inc.).The baseline was created by two-point linear method and peak type was Gauss+Lorentz for all the deconvolution treatments.

    3 Results and discussion

    SAXS and WAXS patterns can provide information on long range bilayer organisation and hydrocarbon chain packing of DPPC multibilayers,respectively.The d-spacing of SAXS represents repeat distance of DPPC multibilayers,including the thickness of the bilayer(i.e.,the distance between two phosphate groups)and that of the water layer.The d-spacing of WAXS represents in-plane packing of DPPC hydrocarbon chain in a quasi-hexagonal or hexagonal lattice.27,32

    XRD patterns were recorded over the temperature range of 30 to 60°C at an interval of 2.75°C at a heating rate of 0.5°C· min-1.At least five orders of diffraction have been recorded in the small-angle region for each of the mixed lipid dispersions.

    Representative SAXS and WAXS patterns for dispersions of DPPC containing 15%(x,molar fraction)and 30%(x)stigmasterol are presented in Fig.2.Five orders,including the overlapped fourth and fifth orders,diffractions in the smallangle region can be seen.Literature results have shown that, for DPPC dispersions containing certain amount of sterol, there are two domains coexist no matter below or above the main transition temperature,called sterol-poor and sterol-rich domains,respectively.8,22,26Accordingly,each peak of the five order diffractions was deconvoluted into two subpeaks.Fig.3 shows the deconvoluted results of five SAXS orders of a sample containing 30%(x)sterol at 30°C,including the overlapped 4th and 5th order peaks.The reciprocal spacings can be put into two groups:(0.13,0.26,0.41,0.55,and 0.66 nm-1)and (0.14,0.28,0.42,0.61,and 0.69 nm-1).They are in ratios of 1:2: 3:4:5.

    Fig.4 shows the temperature-dependence of the d-spacings of WAXS of gel,Lo,and Lαphases formed by DPPC/stigmasterol mixtures.The concentrations of stigmasterol are 0 and 5%(x)for gel phase,0,5%,and 10%(x)for Lαphase,and 35%,40%,and 45%(x)for Lophase,respectively.According to Fig.1,these samples are all in single-phase region over a certain temperature range.As shown in Fig.4,the d-spacings of Lophase have a much broader range compared to those of gel phase and Lαphase.The d-spacings of the gel phase and Lαphase increase from 0.420 nm to 0.423 nm and from 0.456 nm to 0.459 nm with temperature,respectively.This corresponds to only about 0.7%in the temperature range.On the contrary, the d-spacings of Lophase show a strong temperature and concentration dependence,varying from 0.422 to 0.460 nm,contributing to about 9%increase.This is consistent with the literature33,34results.Gao and coworkers33also found that the d-spacings of Loof DPPC/stigmasterol mixtures showed a strong temperature dependence.In an experimental study on DPPC/cholesterol codispersions,Clarke and coworkers34also found that the d-spacings of WAXS of the single Lophase had a much wider range than those of gel and Lαphases,varying from 0.420 to 0.495 nm and showing a strong temperature and concentration dependence.Their and our experimental results all suggest such a conclusion:compared with gel and Lαphases, the Lophase has a more diverse range of d-spacings of WAXS. One possible reason that the d-spacing of WAXS of Lophase has marked temperature dependence is that the position of the sterol molecules in DPPC bilayers is temperature-dependent. In a molecular dynamics simulation study,Qin et al.35found that the position of α-tocopherol in phosphatidylcholine bilayers had a strong temperature dependence.The structural role of α-tocopherol and sterol in PC membrane is similar.35

    Fig.2 X-ray diffraction patterns recorded from stigmasterol/DPPC binary mixtures as a function of reciprocal spacing during heating scans at 0.5°C·min-1(a)15%(x,molar fraction)and(b)30%(x)stigmasterol.The temperature interval is 2.75°C.

    Fig.3 Deconvoluted results of all the five orders of the DPPC/ stigmasterol mixture containing 30%(x,molar fraction) sterol at 30°C(a)first order,(b)second order,(c)third,fourth,and fifth order.Open squares represent experimental data,solid lines represent overall fitting spectra,dash and dotted lines represent deconvoluted diffraction spectra of Pβ?and Lo domains,respectively.

    It is well known that 0.42 and 0.46 nm are characteristic dspacings of WAXS of gel phase and Lαphase,respectively.32,34,36They reflect the repeat spacings of hexagonal or quasi-hexagonal arrangements of acyl chains as depicted in a previous publication.37The experimental results that the d-spacing of Lophase varies from 0.422 nm to 0.460 nm may imply that the Lophase owns both the character of gel phase and the character of Lαphase,depending on the composition of the binary mixture and temperature.This is consistent with the conclusion that the character of Lophase covers the characters of both gel phase and Lαphase.6

    Fig.4 shows that the d-spacings of WAXS of Lophase formed by stigmasterol/DPPC mixtures are larger than that of Pβ?phase(the gel phase of Fig.4 includes Pβ?phase and Lβ?phase).This implies that the degree of chain order of Pβ?phase is higher than that of Lophase.This is consistent with our thermodynamic experimental results of stigmasterol/DPPC mixtures.In our earlier work,26the ratio ofwas found to be 1.2(1.2 was the value ofaccording to nonlinear least squares fitting when taking 1.1 as the initial value.andwere defined as the molar phase transition enthalpies of lipid mixtures from Pβ?to Lαand from Loto Lα,respectively).26As far as the ratio is concerned,though the concentration and the temperature of the two“Lα”phases are different,data in Fig.4 suggest that the d-spacings of Lαphase have little dependence on temperature and concentration.Thus it is reasonable to assume that the two“Lα”phases have almost the same degree of chain ordering.Thussuggests that it is an endothermal transition from Pβ?phase to Lophase.This implies that the alkyl chains of Lophase are more disordered than that of Pβ?phase.

    Fig.4 Dependence of d-spacings of WAXS of single Lophase(a),single gel phase(b),and single Lαphase(b)on temperature and stigmasterol concentration

    Fig.5 shows the temperature-dependence of the d-spacings (SAX)of Lβ?,Pβ?,Lo,and Lαphases formed by DPPC/stigmasterol mixtures.The concentrations of stigmasterol are 0 for Lβ?phase,0 and 5%(x)for Pβ?phase,35%,40%,and 45%(x)for Lophase,and 0,5%,and 10%(x)for Lαphase.According to the phase diagram(Fig.1),these samples are all in single-phase region over a certain temperature range.Based on these data, two conclusions can be drawn.Firstly,the d-spacings of various phases of DPPC/stigmasterol multilamellar structures increase in the following sequential order:Lβ?<Lα<Lo<Pβ?.This d-spacing sequence is consistent with that of pure DPPC membranes(Lβ?<Lα<Pβ?).36Not surprisingly,ripple phase shows the longest repeat spacing among the four phases.Surprisingly,the repeat spacing of Lois greater than those of Lβ?and Lα.This is consistent with what Hui and He reported.38We will discuss this further after we have shown the electron density profiles. Secondly,similar to those of Lβ?phase and Lαphase,the d-spacings of Lophase change slightly with temperature and sterol concentration.As shown in Fig.5,the d-spacings of Lβ?,Lα,and Lophases vary from 6.39 to 6.44 nm,6.60 to 6.82 nm,and 6.91 to 7.12 nm in the respective temperature range,increasing only 0.05,0.22,and 0.21 nm,respectively.Clarke and coworkers34reported that the d-spacings of Lophase formed by DPPC(or DMPC)and cholesterol were nearly a constant,varied by only 0.1 nm over the temperature range(5-65°C).Our experimental results are consistent with their conclusions.But the d-spacings of Pβ?phase vary from 7.16 to 8.97 nm,increasing 1.81 nm.Yu et al.32and Matuoka et al.39also reported that the d-spacings of Pβ?phase had a larger range than that of Lβ?phase. Furthermore,careful examination on the data of Lophase (Fig.5)shows that the dependence of d-spacing on stigmasterol concentration is not monotonic.This might have been caused by the sample containing 35%(x)stigmasterol.As shown in Fig.1,the right boundary of the two-phase region below 40°C is very close to 35%(x).Taking the error of the concentration of this sample and that of the boundary into account,the sample may not be a pure Lophase,but containing a small amount of ripple phase.This might have caused greater d-spacing values than they should be since the d-spacing of Pβ?phase is much larger than that of Lophase.

    Fig.5 Temperature dependence of SAXS d-spacings of various DPPC/stigmasterol codispersions at different phase statesThe concentrations of stigmasterol are:0%(○),5%(Δ),10%(□),35%(■), 40%(●),and 45%(▲).Inset shows the temperature dependence of dP-Pof Lo phase which coexists with sterol-poor domains.

    Fig.6 d-spacings of the Lophase(○)and coexisting Pβ?phase(□) or Lαphase(Δ)

    As shown in Fig.1,the Lophase coexists with Pβ?phase below 40.8°C(the temperature of three-phase line)and coexists with Lαphase above 40.8°C.Thus the d-spacings of the two phases at the same temperature are almost fixed at a given temperature.We deconvoluted the second order of the SAXS patterns at a given temperature to deduce the d-spacings of Lophase and another coexisted phase.The results are summarized in Fig.6.The d-spacings of the two phases at each temperature represent the average of at least three sample concentrations. There are two obvious differences between the d-spacings of the Lophase and another coexisted phase.Firstly,the change of d-spacing of another coexisted phase is much larger than that of the Lophase.As shown in Fig.6,the d-spacing of another coexisted phase decreases from 8.05 to 6.43 nm,making a 20% decrease compared to only 6%decrease from 7.28 to 6.87 nm for Lophase.Secondly,the d-spacing of another coexisted phase decreases drastically at around 40°C while that of the Lophase decreases much gradually over the temperature range.

    To estimate the thicknesses of the bilayer and the water layer,the relative electron density profiles of Loand Lαphases from 44 to 52°C have been calculated.Taking the DPPC/stigmasterol mixture containing 20%(x)sterol as an example, Fig.7 shows the representative electron density profiles of DPPC/stigmasterol mixtures containing 20%(x)sterol at 44°C. The top pattern is the electron density profile of Lophase and the bottom pattern,Lαphase.As shown in Fig.7,the thickness of the bilayer(i.e.,the distance between two phosphate groups) and that of the water layer are 4.38 and 2.23 nm for Lαphase, while 4.62 and 2.43 nm for Lophase,respectively.Though accurate estimation of electron density profiles of the ripple phase at temperature below 41°C was not possible due to the low resolution of the diffraction peaks of the ripple phase,reliable results of Lophase at temperature below 41°C can be obtained.All the derived thickness of the bilayer(dP-P)and thickness of water layer(dw)are summarized in Table 1.The dP-Pand dwat each temperature represent the average of at least three sample concentrations.

    Fig.7 One-dimensional electron density profiles constructed from the XRD patterns for the sterol-poor(lower)and sterol-rich (upper)domains of DPPC codispersions containing 20%(x) stigmasterol at 44°C

    Three conclusions concerning the Lophase can be drawn from the data in Table 1.Firstly,the bilayer thickness of Lophase is larger than that of Lαphase at all temperatures.This is consistent with the present understanding that the Lophase is characterized by tight acyl-chain packing and relatively extended acyl chains,while Lαphase is characterized by conformationally disordered acyl chains.6,8,40Atomic force microscopy (AFM)experiment also showed that the bilayer thickness of Lophase is larger than that of Lαphase.41

    Secondly,the thickness of water layer of Lophase is larger than that of Lαphase at all temperatures.This is consistent with the published experimental results,which showed that the hydration degree of cholesterol-containing DPPC multibilayers was a little higher than that of pure DPPC.42Therefore,it is reasonable that Lophase has a larger thickness of water layer than Lαphase since the sterol concentration of Lophase is largerthan that of the coexisted Lαphase from 44 to 52°C

    Table 1 dP-Pand dwof Loand Lαphases in the two-phase region at various temperatures

    Thirdly,the thickness of bilayer of Lophase decreases slightly with increasing temperature,as shown in inset of Fig.5.Not only temperature,but also sterol concentration influences the bilayer thickness.Due to the fact that the compositions of the Lophase which coexists with a sterol-poor domain at different temperatures are different as defined by the right boundaries of the two-phase regions of Fig.1,the change in dP-Pis the result of changes in both temperature and concentration.According to Fig.4(a),the alkyl chains of Lophase become more disordered with increasing temperature or sterol concentration,so increasing temperature or concentration will decrease the dP-Pvalue.According to Fig.1,the sterol concentration of the right boundary line decreases with increasing temperature up to 40.8°C(the temperature of three-phase line),so the effects of temperature and concentraton on the dP-Pare contrary in this temperature range.The general trend of decreasing dP-Pwith increasing temperature indicates that temperature plays the dominating role.When temperature is above 40.8°C,the sterol concentration of the Lophase increases with increasing temperature,so the effects of temperature and concentraton on the dP-Pare consistent,thus the dP-Pdecreases with increasing temperature more drastically than below 40.8°C.

    As shown in Table 1,both dP-Pand dwof Lophase decrease with increasing temperature below 44°C,thus the d-spacings decrease with increasing temperature below 44°C.Also shown in Table 1,though the dwof Lophase increases slightly with increasing temperature above 44°C,the dP-Pof Lophase decreases more drastically,thus the d-spacing decreases with increasing temperature above 44°C.

    4 Conclusions

    The characters of Lophase of DPPC/stigmasterol codispensions have been studied by XRD technique.The lamellar spacings of Lophase change slightly with the sterol concentration and temperature.Compared with gel and Lαphases,the d-spacings of WAXS of Lophase have a broader range,varying from 0.422 to 0.460 nm in the temperature range from 30 to 52°C, suggesting that Lophase has a diverse range of properties,covering possibly the characters of both gel phase and Lαphase. The electron density profiles show that both the thickness of bilayer and that of water layer of Lophase are larger than those of Lαphase.In addition,the thickness of bilayer of Lophase decreases with increasing temperature.

    (1)Sun,R.G.;Zhang,J.;Hao,C.C.;Chen,Y.Y.;Yang,Q.Chem. J.Chin.Univ.2011,32,2062.[孫潤(rùn)廣,張 靜,郝長(zhǎng)春,陳瑩瑩,楊 謙.高等學(xué)?;瘜W(xué)學(xué)報(bào),2011,32,2062.]

    (2) Verma,S.P.Curr.Drug Targets 2009,10,51.doi:10.2174/ 138945009787122851

    (3) Orlowski,S.;Coméra,C.;Tercé,F.;Collet,X.Eur.Biophys.J. 2006,36,869.

    (4) Szabo,G.;Dolganiuc,A.;Dai,Q.J.Immunol.2007,178,1243.

    (5) Schroeder,R.;London,E.;Brown,D.A.Proc.Nati.Acad.Sci. U.S.A.1994,91,12130.doi:10.1073/pnas.91.25.12130

    (6) Sharmin,N.A.;Brown,D.A.;London,E.Biochemistry 1997, 36,10944.doi:10.1021/bi971167g

    (7) Sinha,M.;Mishra,S.;Joshi,P.G.Eur.Biophys.J.2003,32, 381.doi:10.1007/s00249-003-0281-3

    (8) Ipsen,J.H.;Karlstroem,G.;Mouritsen,O.G.;Wennerstroem, H.;Zuckermann,M.J.Biochim.Biophys.Acta 1987,905,162. doi:10.1016/0005-2736(87)90020-4

    (9)Almeida,P.F.F.;Vaz,W.L.C.;Thompson,T.E.Biochemistry 1992,31,6739.doi:10.1021/bi00144a013

    (10) Brown,D.A.;London,E.Annu.Rev.Cell Dev.Biol.1998,14, 111.doi:10.1146/annurev.cellbio.14.1.111

    (11) Brown,D.A.;London,E.J.Membr.Biol.1998,164,103.doi: 10.1007/s002329900397

    (12) Simons,K.;Toomre,D.Nat.Rev.Mol.Cell Biol.2000,1,31. doi:10.1038/35036052

    (13) Peskan,T.;Westermann,M.;Oelmuller,R.Eur.J.Biochem. 2000,267,6989.doi:10.1046/j.1432-1327.2000.01776.x

    (14) Mongrand,S.;Morel,J.;Laroche,J.;Claverol,S.;Carde,J.P. J.Biol.Chem.2004,279,36277.doi:10.1074/jbc.M403440200

    (15) Borner,G.H.H.;Sherrier,D.J.;Weimar,T.;Michaelson,L.V.; Hawkins,N.D.Plant Physiol.2005,137,104.doi:10.1104/ pp.104.053041

    (16) Dufourc,E.J.J.Chem.Biol.2008,1,63.doi:10.1007/s12154-008-0010-6

    (17) Martin,S.W.;Glover,B.J.;Davies,J.M.Trends Plant Sci. 2005,10,263.doi:10.1016/j.tplants.2005.04.004

    (18) Demel,R.A.;Kruyff,B.D.Biochim.Biophys.Acta 1976,457, 109.

    (19) Mckersie,B.D.;Lepock,J.R.;Kruuv,J.;Thompson,J.E. Biochim.Biophys.Acta 1978,508,197.doi:10.1016/0005-2736 (78)90325-5

    (20) Xu,X.L.;Bittman,R.;Duportail,G.;Heissler,D.;Vilcheze,C.; London,E.J.Biol.Chem.2001,276,33540.doi:10.1074/jbc. M104776200

    (21) McKersie,B.D.;Thompson,J.E.Plant Physiol.1979,63,802. doi:10.1104/pp.63.5.802

    (22) Halling,K.K.;Slotte,J.P.Biochim.Biophys.Acta 2004,1664, 161.doi:10.1016/j.bbamem.2004.05.006

    (23) Su,Y.L.;Li,Q.Z.;Chen,L.;Yu,Z.W.Colloid Surf.APhysicochem.Eng.Aspects 2007,293,123.doi:10.1016/ j.colsurfa.2006.07.016

    (24)Wu,R.G.;Wang,Y.R.;Wu,F.G.;Zhou,H.W.;Zhang,X.H.; Hou,J.L.J.Therm.Anal.Calorim.2012,109,311.doi: 10.1007/s10973-012-2331-5.

    (25) Ohvo-Rekil?,H.;Ramstedt,B.;Leppim?ki,P.;Slotte,J.P.Prog. Lipid Res.2002,41,66.doi:10.1016/S0163-7827(01)00020-0

    (26) Wu,R.G.;Chen,L.;Yu,Z.W.;Quinn,P.J.Biochim.Biophys. Acta 2006,1758,764.doi:10.1016/j.bbamem.2006.04.017

    (27) McIntosh,T.J.;Magid,A.D.;Simon,S.A.Biochemistry 1989, 28,7904.doi:10.1021/bi00445a053

    (28)Wu,F.G.;Jia,Q.;Wu,R.G.;Yu,Z.W.J.Phys.Chem.B 2011, 115,8559.doi:10.1021/jp200733y

    (29)Gao,W.Y.;Chen,L.;Wu,R.G.;Yu,Z.W.;Quinn,P.J.J.Phys. Chem.B 2008,112,8375.doi:10.1021/jp712032v

    (30) McIntosh,T.J.;Simon,S.A.Biochemistry 1986,25,4058.doi: 10.1021/bi00362a011

    (31) Quinn,P.J.;Takahashi,H.;Hatta,I.Biophys.J.1995,68,1374. doi:10.1016/S0006-3495(95)80310-3

    (32) Yu,Z.W.;Quinn,P.J.Biophys.J.1995,69,1456.doi:10.1016/ S0006-3495(95)80015-9

    (33)Gao,W.Y.;Chen,L.;Wu,F.G.;Yu,Z.W.Acta Phys.-Chim. Sin.2008,24,1149.[高文穎,陳 琳,吳富根,尉志武.物理化學(xué)學(xué)報(bào),2008,24,1149.]doi:10.1016/S1872-1508(08) 60050-9

    (34) Clarke,J.A.;Heron,A.J.;Seddon,J.M.;Law,R.V.Biophys.J. 2006,90,2383.doi:10.1529/biophysj.104.056499

    (35) Qin,S.S.;Yu,Z.W.Acta Phys.-Chim.Sin.2011,27,213. [秦姍姍,尉志武.物理化學(xué)學(xué)報(bào),2011,27,213.]doi:10.3866/ PKU.WHXB20110109

    (36) Tristram-Nagle,S.;Moore,T.;Petrache,H.I.;Nagle,J.F. Biochim.Biophys.Acta 1998,1369,19.doi:10.1016/S0005-2736(97)00197-1

    (37)Gao,W.Y.;Yu,Z.W.Chin.J.Chem.2008,26,1596.[高文穎,尉志武.中國(guó)化學(xué),2008,26,1596.]doi:10.1002/ cjoc.200890288

    (38) Hui,S.W.;He,N.B.Biochmeistry 1983,22,1159.doi:10.1021/ bi00274a026

    (39) Matuoka,S.;Kato,S.;Hatta,I.Biophys.J.1994,67,728.doi: 10.1016/S0006-3495(94)80533-8

    (40) Sankaram,M.B.;Thompson,T.E.Biochemistry 1990,29, 10676.doi:10.1021/bi00499a015

    (41) Rinia,H.A.;Snel,M.M.E.;Jan,P.J.M.FEBS Lett.2001,501, 92.doi:10.1016/S0014-5793(01)02636-9

    (42) Bach,D.;Miller,I.R.Chem.Phys.Lipids 2005,136,67.doi: 10.1016/j.chemphyslip.2005.04.001

    猜你喜歡
    物理化學(xué)X光脂質(zhì)體
    PEG6000修飾的流感疫苗脂質(zhì)體的制備和穩(wěn)定性
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    仿生武器大揭秘
    給動(dòng)物拍張X光片
    人眼X光
    超濾法測(cè)定甘草次酸脂質(zhì)體包封率
    中成藥(2018年2期)2018-05-09 07:20:08
    Chemical Concepts from Density Functional Theory
    TPGS修飾青蒿琥酯脂質(zhì)體的制備及其體外抗腫瘤活性
    中成藥(2017年3期)2017-05-17 06:08:52
    還在喂奶,能照X光嗎?
    媽媽寶寶(2017年2期)2017-02-21 01:21:28
    亚洲精品乱久久久久久| 90打野战视频偷拍视频| 97在线人人人人妻| 午夜精品国产一区二区电影| 成年人午夜在线观看视频| 一本久久精品| 国产老妇伦熟女老妇高清| 午夜福利影视在线免费观看| 中文字幕精品免费在线观看视频| 真人做人爱边吃奶动态| 一级片'在线观看视频| 欧美一级毛片孕妇| 亚洲欧洲日产国产| 国产亚洲午夜精品一区二区久久| 久久久久视频综合| 国产精品亚洲av一区麻豆| 亚洲人成伊人成综合网2020| 国产区一区二久久| 午夜激情久久久久久久| 久久久国产一区二区| 成人三级做爰电影| 国产人伦9x9x在线观看| av一本久久久久| 91大片在线观看| 国产1区2区3区精品| 中文字幕av电影在线播放| 9191精品国产免费久久| 国产精品久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看 | cao死你这个sao货| 中亚洲国语对白在线视频| 久久精品亚洲av国产电影网| 国产成人免费观看mmmm| 婷婷丁香在线五月| √禁漫天堂资源中文www| 夫妻午夜视频| 脱女人内裤的视频| netflix在线观看网站| 中文字幕精品免费在线观看视频| 亚洲专区国产一区二区| 在线观看66精品国产| 国产一区二区三区视频了| 好男人电影高清在线观看| 在线亚洲精品国产二区图片欧美| 每晚都被弄得嗷嗷叫到高潮| 老熟妇仑乱视频hdxx| 久久精品亚洲熟妇少妇任你| 国产精品久久久久成人av| 黑人巨大精品欧美一区二区mp4| 精品一区二区三区视频在线观看免费 | 久久久久久久国产电影| 自线自在国产av| 伊人久久大香线蕉亚洲五| 伊人久久大香线蕉亚洲五| 国产高清激情床上av| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 成人黄色视频免费在线看| 国产熟女午夜一区二区三区| 色婷婷av一区二区三区视频| 人妻久久中文字幕网| 亚洲第一欧美日韩一区二区三区 | 99久久99久久久精品蜜桃| 9191精品国产免费久久| 午夜激情av网站| 亚洲伊人色综图| 国产精品影院久久| 在线观看人妻少妇| 精品一品国产午夜福利视频| 国产欧美日韩一区二区三| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 男人舔女人的私密视频| 欧美激情高清一区二区三区| 亚洲欧洲日产国产| 国产一区二区三区视频了| 国产欧美亚洲国产| 午夜精品久久久久久毛片777| 一级毛片女人18水好多| 99国产极品粉嫩在线观看| 亚洲人成77777在线视频| 99热网站在线观看| 国产成+人综合+亚洲专区| 色在线成人网| 大型av网站在线播放| 国产男女内射视频| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女 | 亚洲人成电影免费在线| 美国免费a级毛片| 新久久久久国产一级毛片| 中文字幕另类日韩欧美亚洲嫩草| 婷婷丁香在线五月| 97人妻天天添夜夜摸| av视频免费观看在线观看| 亚洲av国产av综合av卡| 啦啦啦在线免费观看视频4| 91字幕亚洲| 免费高清在线观看日韩| 国产区一区二久久| 亚洲熟女毛片儿| 一本一本久久a久久精品综合妖精| 波多野结衣一区麻豆| 国产精品电影一区二区三区 | 露出奶头的视频| 两人在一起打扑克的视频| 超碰成人久久| 国产91精品成人一区二区三区 | 在线观看人妻少妇| 欧美精品一区二区大全| 国产精品欧美亚洲77777| 国产精品亚洲一级av第二区| 午夜福利视频在线观看免费| 久久久国产欧美日韩av| 热re99久久精品国产66热6| 老汉色∧v一级毛片| 精品亚洲成a人片在线观看| 亚洲第一青青草原| 热99re8久久精品国产| 国产亚洲精品一区二区www | 天堂动漫精品| 一本色道久久久久久精品综合| 欧美国产精品va在线观看不卡| 日韩成人在线观看一区二区三区| 高清毛片免费观看视频网站 | 男人操女人黄网站| 国产99久久九九免费精品| www.自偷自拍.com| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 亚洲欧美日韩另类电影网站| 国产一区二区激情短视频| 国产97色在线日韩免费| 曰老女人黄片| 美女高潮喷水抽搐中文字幕| 色婷婷av一区二区三区视频| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 日本wwww免费看| 老司机深夜福利视频在线观看| 欧美变态另类bdsm刘玥| 三级毛片av免费| 国产精品久久久久成人av| 两个人免费观看高清视频| 欧美日韩成人在线一区二区| 一本综合久久免费| 两个人免费观看高清视频| 成人黄色视频免费在线看| 午夜91福利影院| 久久狼人影院| 精品国产乱码久久久久久小说| 一区二区三区乱码不卡18| 亚洲国产看品久久| 一边摸一边抽搐一进一小说 | 午夜精品国产一区二区电影| 交换朋友夫妻互换小说| 久久影院123| 91字幕亚洲| 最近最新中文字幕大全免费视频| 久久 成人 亚洲| 欧美av亚洲av综合av国产av| 青草久久国产| 欧美激情久久久久久爽电影 | 成人精品一区二区免费| 美女午夜性视频免费| 十八禁人妻一区二区| 亚洲色图综合在线观看| 少妇精品久久久久久久| 男女边摸边吃奶| 一级毛片女人18水好多| 久久久国产欧美日韩av| 国产黄色免费在线视频| 99精品在免费线老司机午夜| 亚洲欧美色中文字幕在线| 又大又爽又粗| 91精品国产国语对白视频| 国产精品麻豆人妻色哟哟久久| 母亲3免费完整高清在线观看| 精品国产乱子伦一区二区三区| 免费看a级黄色片| 国产精品自产拍在线观看55亚洲 | 99国产精品一区二区三区| 一区福利在线观看| 欧美成狂野欧美在线观看| 淫妇啪啪啪对白视频| 另类精品久久| 少妇裸体淫交视频免费看高清 | 人成视频在线观看免费观看| netflix在线观看网站| 午夜福利乱码中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 欧美激情 高清一区二区三区| 精品国产乱码久久久久久小说| 女性被躁到高潮视频| 他把我摸到了高潮在线观看 | 久久国产精品男人的天堂亚洲| 亚洲五月婷婷丁香| 咕卡用的链子| 亚洲精品美女久久久久99蜜臀| 性少妇av在线| www日本在线高清视频| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 亚洲精品粉嫩美女一区| 自拍欧美九色日韩亚洲蝌蚪91| 黄色 视频免费看| 18禁美女被吸乳视频| 欧美久久黑人一区二区| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 一本一本久久a久久精品综合妖精| av片东京热男人的天堂| 国产亚洲av高清不卡| 一个人免费在线观看的高清视频| 国产片内射在线| 成人国产一区最新在线观看| 一区二区三区精品91| 女人爽到高潮嗷嗷叫在线视频| 91麻豆精品激情在线观看国产 | 欧美日韩视频精品一区| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 亚洲av欧美aⅴ国产| 99精品在免费线老司机午夜| 国产精品免费一区二区三区在线 | 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 香蕉国产在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧美激情在线| 极品教师在线免费播放| 制服人妻中文乱码| 国产一区有黄有色的免费视频| tocl精华| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯 | 精品国产亚洲在线| www.999成人在线观看| 国产av又大| 怎么达到女性高潮| 不卡一级毛片| 久久午夜亚洲精品久久| 欧美大码av| 不卡一级毛片| 国产在线免费精品| 欧美日韩福利视频一区二区| 午夜日韩欧美国产| 极品少妇高潮喷水抽搐| 久久精品国产亚洲av高清一级| 国产成人啪精品午夜网站| 侵犯人妻中文字幕一二三四区| 精品乱码久久久久久99久播| tocl精华| 亚洲av片天天在线观看| 午夜福利视频在线观看免费| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 国产亚洲一区二区精品| 十八禁网站网址无遮挡| 两人在一起打扑克的视频| 欧美日韩精品网址| 国产av精品麻豆| 搡老乐熟女国产| 丁香欧美五月| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 久久久久久久精品吃奶| 一区二区三区国产精品乱码| 亚洲精品粉嫩美女一区| 国产高清国产精品国产三级| 搡老岳熟女国产| 精品国产乱码久久久久久小说| 在线观看免费视频日本深夜| 久久精品91无色码中文字幕| 欧美日韩精品网址| 黄色视频,在线免费观看| 黄色a级毛片大全视频| 久久狼人影院| 久久久久视频综合| 18禁观看日本| 久久精品亚洲av国产电影网| 午夜两性在线视频| 国产福利在线免费观看视频| 国产精品熟女久久久久浪| 人人妻人人澡人人爽人人夜夜| 久久久久久久久免费视频了| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 亚洲欧美日韩另类电影网站| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 在线天堂中文资源库| 最新美女视频免费是黄的| 91成人精品电影| 三级毛片av免费| 黄色 视频免费看| 高清毛片免费观看视频网站 | 大码成人一级视频| 国产在线一区二区三区精| 香蕉国产在线看| 麻豆乱淫一区二区| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 色94色欧美一区二区| 久久久久久久久免费视频了| 黄片小视频在线播放| www.精华液| 啦啦啦免费观看视频1| 国产区一区二久久| 国产深夜福利视频在线观看| 精品一区二区三区四区五区乱码| 久久人人97超碰香蕉20202| 一区在线观看完整版| 麻豆成人av在线观看| 欧美在线一区亚洲| 色播在线永久视频| av有码第一页| 丝袜美足系列| 午夜福利免费观看在线| 日日爽夜夜爽网站| 午夜福利,免费看| 一级毛片电影观看| avwww免费| 国产单亲对白刺激| 亚洲成人免费av在线播放| 精品国产乱码久久久久久小说| 亚洲精品中文字幕在线视频| 制服诱惑二区| 12—13女人毛片做爰片一| 青草久久国产| 欧美日韩黄片免| 黄片大片在线免费观看| 欧美精品亚洲一区二区| 久久人妻熟女aⅴ| 欧美乱码精品一区二区三区| 香蕉丝袜av| 一级a爱视频在线免费观看| 精品免费久久久久久久清纯 | 精品亚洲成a人片在线观看| 精品一区二区三区四区五区乱码| 97在线人人人人妻| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 精品国产乱码久久久久久小说| 亚洲国产欧美日韩在线播放| 国产欧美日韩一区二区精品| 精品一区二区三区视频在线观看免费 | 中文亚洲av片在线观看爽 | 黄色丝袜av网址大全| 日韩欧美一区视频在线观看| 正在播放国产对白刺激| 搡老岳熟女国产| 大码成人一级视频| 国产日韩欧美在线精品| 91麻豆av在线| 一区二区日韩欧美中文字幕| 国产高清videossex| 日韩欧美一区视频在线观看| 搡老乐熟女国产| 18禁国产床啪视频网站| 国产人伦9x9x在线观看| 1024香蕉在线观看| 精品第一国产精品| 亚洲成人国产一区在线观看| 天堂8中文在线网| 久热这里只有精品99| 极品人妻少妇av视频| 欧美日韩av久久| 黄色视频不卡| 亚洲avbb在线观看| 妹子高潮喷水视频| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 亚洲三区欧美一区| 欧美日韩中文字幕国产精品一区二区三区 | 国产午夜精品久久久久久| 可以免费在线观看a视频的电影网站| 国产亚洲一区二区精品| 久久中文字幕一级| 人人澡人人妻人| 欧美在线黄色| aaaaa片日本免费| 亚洲全国av大片| 最新的欧美精品一区二区| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区 | 91成人精品电影| 青草久久国产| 欧美乱码精品一区二区三区| 国产91精品成人一区二区三区 | 欧美午夜高清在线| 国产精品 国内视频| 男男h啪啪无遮挡| 一区二区日韩欧美中文字幕| 国产一区二区在线观看av| 在线观看66精品国产| 亚洲九九香蕉| 啦啦啦在线免费观看视频4| 国产91精品成人一区二区三区 | 国产成人系列免费观看| 中文字幕人妻熟女乱码| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 日日爽夜夜爽网站| 欧美老熟妇乱子伦牲交| 亚洲第一欧美日韩一区二区三区 | 中文字幕另类日韩欧美亚洲嫩草| 黄片播放在线免费| 欧美黑人精品巨大| 18禁裸乳无遮挡动漫免费视频| 国产成人欧美| 最新的欧美精品一区二区| 色婷婷久久久亚洲欧美| 亚洲av电影在线进入| 91老司机精品| 他把我摸到了高潮在线观看 | 免费少妇av软件| 99精品久久久久人妻精品| 亚洲欧美激情在线| 国产免费福利视频在线观看| 欧美日韩av久久| 99riav亚洲国产免费| 美女视频免费永久观看网站| 国产精品美女特级片免费视频播放器 | 亚洲五月婷婷丁香| 少妇粗大呻吟视频| 一区二区av电影网| 国产精品久久久av美女十八| 亚洲精品国产色婷婷电影| 日本精品一区二区三区蜜桃| 中文字幕高清在线视频| 香蕉丝袜av| 下体分泌物呈黄色| 大香蕉久久成人网| 在线亚洲精品国产二区图片欧美| av片东京热男人的天堂| 久久国产精品男人的天堂亚洲| 欧美国产精品一级二级三级| 捣出白浆h1v1| 国产成+人综合+亚洲专区| 欧美精品一区二区大全| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 免费看a级黄色片| 亚洲色图av天堂| 亚洲精华国产精华精| 久久国产精品影院| 纵有疾风起免费观看全集完整版| 久久精品亚洲精品国产色婷小说| 19禁男女啪啪无遮挡网站| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 两人在一起打扑克的视频| 韩国精品一区二区三区| 最新的欧美精品一区二区| 欧美人与性动交α欧美软件| 亚洲精品国产精品久久久不卡| 高清在线国产一区| 在线观看一区二区三区激情| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址 | 波多野结衣一区麻豆| 在线观看免费视频日本深夜| 欧美精品人与动牲交sv欧美| 女性被躁到高潮视频| 日本a在线网址| 久久精品亚洲精品国产色婷小说| 老司机影院毛片| 免费一级毛片在线播放高清视频 | 电影成人av| 热99国产精品久久久久久7| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 制服诱惑二区| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 午夜日韩欧美国产| 大香蕉久久网| 国产片内射在线| 日韩精品免费视频一区二区三区| 久久精品国产99精品国产亚洲性色 | 国产精品一区二区在线不卡| 一区二区日韩欧美中文字幕| 亚洲精品国产一区二区精华液| 日本欧美视频一区| 夜夜夜夜夜久久久久| av天堂在线播放| 性少妇av在线| 国产男靠女视频免费网站| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 国产国语露脸激情在线看| 久久久久久久国产电影| 操出白浆在线播放| 老司机靠b影院| 免费观看a级毛片全部| 国产精品98久久久久久宅男小说| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 精品福利永久在线观看| 久久久久久久大尺度免费视频| 最新在线观看一区二区三区| 热99久久久久精品小说推荐| 精品卡一卡二卡四卡免费| 电影成人av| 久久久久久久国产电影| 亚洲国产中文字幕在线视频| 国产一区二区三区综合在线观看| 亚洲自偷自拍图片 自拍| 一区二区三区精品91| 97在线人人人人妻| 成人影院久久| 久久国产精品大桥未久av| 久热爱精品视频在线9| 日本一区二区免费在线视频| 欧美黑人精品巨大| 一区二区三区国产精品乱码| 中亚洲国语对白在线视频| 91字幕亚洲| 多毛熟女@视频| 国产精品九九99| 色婷婷久久久亚洲欧美| 久久香蕉激情| 国产不卡一卡二| 日日爽夜夜爽网站| 老鸭窝网址在线观看| 老熟妇仑乱视频hdxx| 欧美另类亚洲清纯唯美| 亚洲熟妇熟女久久| 成年人午夜在线观看视频| 午夜精品久久久久久毛片777| 国产野战对白在线观看| 夫妻午夜视频| 午夜福利在线免费观看网站| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 免费在线观看完整版高清| 日日夜夜操网爽| 亚洲av日韩在线播放| 精品国产超薄肉色丝袜足j| 国产成人欧美在线观看 | 国产熟女午夜一区二区三区| av在线播放免费不卡| 久久 成人 亚洲| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| 91大片在线观看| 国产亚洲精品久久久久5区| 婷婷成人精品国产| 欧美日韩亚洲国产一区二区在线观看 | 国产av一区二区精品久久| 国产精品电影一区二区三区 | 欧美精品av麻豆av| 国产有黄有色有爽视频| 欧美亚洲日本最大视频资源| 亚洲avbb在线观看| 黑人猛操日本美女一级片| 90打野战视频偷拍视频| 麻豆乱淫一区二区| 亚洲成国产人片在线观看| 十八禁网站网址无遮挡| 成年版毛片免费区| 国产一区二区在线观看av| 黄片小视频在线播放| 不卡av一区二区三区| 亚洲人成电影免费在线| 另类亚洲欧美激情| 国产成+人综合+亚洲专区| 波多野结衣一区麻豆| 丝袜喷水一区| 久久久久精品国产欧美久久久| 中文字幕人妻丝袜一区二区| 99精品在免费线老司机午夜| 国产免费现黄频在线看| 成人永久免费在线观看视频 | 岛国在线观看网站| 高清毛片免费观看视频网站 | 一级片免费观看大全| 在线观看66精品国产| 两性夫妻黄色片| 亚洲 国产 在线| 一本色道久久久久久精品综合| 另类亚洲欧美激情| 一级毛片女人18水好多| 久久国产精品大桥未久av| 色老头精品视频在线观看| 国产成人影院久久av| 三上悠亚av全集在线观看| 桃花免费在线播放| 人妻 亚洲 视频| 窝窝影院91人妻| 黄频高清免费视频| 精品少妇一区二区三区视频日本电影| 男人操女人黄网站| 99国产极品粉嫩在线观看| 国产精品久久电影中文字幕 | 国产在线一区二区三区精| 精品午夜福利视频在线观看一区 | 日韩有码中文字幕| 亚洲第一av免费看| 精品第一国产精品| 露出奶头的视频| 亚洲午夜精品一区,二区,三区| 久久精品亚洲av国产电影网| 人人妻,人人澡人人爽秒播| 老司机福利观看|