• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水+甲烷系統(tǒng)的氣液相邊界曲線和臨界線

    2012-12-12 02:42:30田玉芹田宜靈朱榮嬌
    物理化學學報 2012年8期
    關鍵詞:天津大學物理化學學報

    田玉芹 田宜靈 趙 林 朱榮嬌,* 馬 超

    (1長江大學石油工程學院,湖北荊州434023; 1§天津大學理學院化學系,天津300072; 2中國石油化工股份有限公司勝利油田采油工藝研究院,山東東營257000)

    1 Introduction

    The modern abiotic-origin theory of methane and numerical modeling show that new resources are most likely to be located at deep subsurface levels and characterized as high temperature and high pressure gas reservoirs.1-4This abiotic theory,if true,could affect estimates of the potential future oil and gas reserves.Determining the thermodynamic properties of systems containing methane at high temperature and pressure is key in understanding carbon-reservoir fluxes within the deep Earth.Deep hydrocarbon gas reservoirs would produce huge amounts of water(liquid or vapor)during their production periods.Hence,many studies have been done on water-methane mixtures.3-16For example,Mohammadi et al.17performed low-pressure(ca 0.1-34 MPa)and low-temperature(273-340 K)measurements.Yarrison et al.18published data at a pressure of 110 MPa.As oil and gas exploration moves to wider depths, both on-and off-shore,reservoir pressures are frequently about 150 MPa,beyond the range of reasonable extrapolation from existing data.To gain a better understanding of the phase behavior of these industrially-important,highly-non-ideal systems at all relevant conditions,the thermodynamic properties at higher pressures over a wide range of temperatures are needed.Knowledge of the location of the critical curve and of the two-phase equilibrium,binodal surface in the p-T-x diagram is also desirable to determine the extent of the homogeneous one-phase region.

    In the present paper,we report on measurements of a series of isothermal gas-liquid boundary lines of water+methane system over a wider range of temperature(from 433.0 to 633.0 K) and pressures up to 300.00 MPa.The critical curve was also determined.The equilibrium gas-liquid ratios,the partial molar solution enthalpy,and partial molar solution entropy of methane in water were calculated.These data will be useful for natural gas recovery in the near future.

    2 Experimental

    2.1 Materials

    Methane(99.99%purity)was supplied by Tianjin Special Gas Company(Tianjin)and used without further purification. Three-time distilled water was repeatedly melted and frozen in vacuum to degas the water.The conductance of the water was found to be 0.1 μS·cm-1.

    2.2 Experimental apparatus

    The setup of the experimental apparatus used has been described in detail elsewhere19-22;a schematic diagram is given in Fig.1.The main part of the apparatus was a high-pressure viewing cell constructed from a high-strength corrosion-resistant nickel-based superalloy;it had a length of 30 cm,an outer diameter of 8 cm,and an inner diameter of 2 cm.A moveable piston was situated inside the cylinder autoclave.The piston separated the contents in the cell from the pressure medium(silicon oil).At one end of the autoclave was a sapphire(Al2O3)window.Both window and piston were sealed by a pair of O-rings (made of Perfluoroelastomer).The front side of the piston had a platinum-plating mirror to aid visual observation.The pressure within the system was generated manually with an operated screw-driven pump and measured with a pressure sensor (CYB-20 S)calibrated against a dead-weight gauge.Pressure uncertainties were within±0.01 MPa at pressures below 100.00 MPa and within±0.05 MPa at pressures from 100.00 MPa to 350.00 MPa.Outside the autoclave,independent heating and cooling jackets controlled the temperature of the system.

    Fig.1 Schematic diagram of the high-pressure apparatus1:screw-driven pump,2:pressure meter,3:hall probe,4:heat jacket,5:cell, 6:position,7:O-ring,8:stirrer,9:sapphire window,10:sampling valve, 11:pressure sensor,12:thermocouple,13:small steel vessel, 14:thermometer,15:vacuum meter,16:steel bulb

    Homogeneity in mixing and temperature was achieved by magnetic stirring and the temperature measured with a calibrated chromel-alumel thermocouple inside the autoclave.The thermocouple was calibrated against precision mercury thermometry or with the melting points of tin(Sn),lead(Pb),and zinc(Zn).Temperature uncertainties were±0.1°C at temperatures below 250.0°C and about±0.3°C at temperatures above 250.0°C.The accuracy of the weighted mass was 0.1 mg.The estimated total uncertainty for the mole fraction of each substance was 0.1%.

    2.3 Experimental procedure

    Methane and water were introduced separately into the cell. Initially,a weighed quantity of methane was introduced into a dried,evacuated autoclave.If more gas was required the autoclave was first cooled with refrigerated glycerin.According to the desired mole fraction,the needed quantity of degassed water was injected with a calibrated screw press.The temperature was increased slowly(2-3 K·min-1)to the desired temperature.During this process,each sample was stirred continuously.The filled sample at constant temperature was carefully compressed or decompressed.The transition from two-phase to single-phase or vice versa could be visually observed and found with a light beam mirror.As is well-known,phase equilibria can be affected by temperature and pressure;the system will create many micro-drops when a new phase just appears. At this moment,one can observe through the sapphire window that the system became thick,then gradually darken;i.e.,the dark hole effect.Pressure and temperature were then recorded. Each recording was repeated three times to determine reproducibility of data.

    The mole fraction was determined by the desorption method.Samples were taken from the autoclave into an evacuated and weighted small steel vessel.The cooled sample vessel was connected to a glass bulb of known volume.The temperature of the bulb was measured with a thermometer to a precision of 0.1 K.The pressure inside the bulb was measured with an absolute-pressure meter with a precision of 10 Pa.Because the pressure of the desorbed methane gas was very low(about 10 to 20 kPa),the amount of methane was easily calculated using the ideal-gas state equation from which the mole fraction can be obtained.The procedure has been described in more detail elsewhere.19-22The critical-point data were obtained by successive approximations.Nearly the same fractions of gas and liquid at a fixed temperature were obtained through slight adjustments of pressure.

    3 Results and discussion

    3.1 Phase boundary lines and critical curve

    The measurements were performed at temperatures from 433.0 to 633.0 K and for pressures up to 300.00 MPa.Table 1 gives the p,T,x data on the gas-liquid phase boundary lines for water+methane system.Fig.2 shows the projections of thirteen isopleths(p-T)and the estimated critical curve.These isopleths are the boundary lines between the two-phase and single-phase regions.The two-phase region is always on the left of each isopleth;the critical curve is the envelope of the isopleths in the pT-plane.

    The isothermal p-x curves obtained from experimental data are shown in Fig.3.The form(shape)of the critical curve for this system is demonstrated also in the p-x projection of the phase diagram,where the isotherms between the critical temperature minimum(625.0 K)and the critical temperature of water are divided into two branches.The lines on the left of the critical curve are gas-phase lines;the lines on the right are liquid-phase lines.Between the lines is the two-phase region. This study provides a complete description of the gas-liquid behavior.

    At very high pressure(or high phase density),the repulsive force between water and methane molecules becomes important,as density(or pressure)rises.Methane in water or water in methane is“squeezed out”of the solution.At elevated temperatures and pressures,an important fact has been found:the mutual solubilities of water in the dense methane gas phase and those of methane in water are consistent.The same phenomena has been observed in H2O+N2and H2O+CO2systems examined by Tabasinejad et al.23

    The critical pressures,temperatures,and mole fractions for this system are compiled in Table 2.Fig.4 shows its criticalcurve in the p-T plane as well as the critical data in references.5,24Experimental results and results from the literature show good agreement.The behavior of the critical curve indicates that,in common with other(water+alkane)systems,the water+ methane mixture is a type III system.The critical curve begins at the critical point of pure water(22.05 MPa,647.3 K),then proceeds to lower temperatures with increasing pressure;the curve has a minimum at temperature of 625.0 K after which it proceeds upwards.

    Table 1 Experimental data of the phase equilibrium boundary surface for water+methane system

    Fig.2 Curves of constant composition(isopleths)along the liquidgas two-phase boundary surface for water+methane system■,x=0.100;●,x=0.200;▲,x=0.300;▼,x=0.400;?,x=0.500; ,x=0.600;★,x=0.700;□,x=0.780;○,x=0.800;△,x=0.810;▽,x=0.840;?,x=0.900;☆,x=0.950;?,the critical point of water.The dashed line is the estimated critical curve of the mixture; the dotted line is the saturation pressure curve of water;the solid lines are aids to better visualize the curves.

    Fig.3 Isothermal two-phase boundary curves in the pressure-composition projection for water+methane system□,433.0 K;○,553.0 K;△,573.0 K;▽,603.0 K;◇,623.0 K;?,626.0 K;?,628.0 K;☆,633.0 K.The broken line is the critical curve of the mixture.The solid lines are only for better visibility of the data curves.

    Table 2 Estimated critical pressure(pc)and critical mole fraction(xc(H2O))at critical temperatures(Tc)

    Fig.4 Critical curve in the pressure-temperature projection for water+methane system●,experimental data;○,reference5;▲,reference24;★,the critical point of water

    For a binary mixture,a liquid(L)phase with mole fractions x1and x2(subscript 1 refers to water and 2 refers methane)is in equilibrium with the gas(G)phase with mole fractions y1and y2.The equality of the equilibrium is

    where f and?are the fugacity and fugacity coefficient,respectively.

    The equilibrium gas-liquid ratios(K)for the two components are given by

    The K values for the pressures of 75.00 to 225.00 MPa and temperatures from 603.0 to 628.0 K were calculated and plotted in Fig.5.

    3.2 Henry coefficient of methane in water

    From Table 1 and Fig.3,solubility of methane in water is observed to increase slightly with increasing pressure at constant temperature,and the relationship of the pressure and mole fraction of methane in water is nearly linear;thus,Henry law can be applied.We calculated the Henry coefficients(H)of methane in water at different temperatures.

    From thermodynamics,Henry law is given by

    where p is the total pressure of system,Hiis Henry coefficient of methane in water,a and γare activity and activity coefficient of methane in water,respectively,yiis the mole fraction of methane in gas phase,?iis its fugacity coefficient,and xiis the mole fraction of methane in liquid phase.Since the solubility of methane in dilute solutions is very small{x(CH4)<<1},we can set γ(CH4)≈1;therefore,

    Fig.5 K-p plots for the water+methane system at various temperatures■and□,573.0 K;●and○,603.0 K;▲and△,623.0 K;▼and▽,626.0 K;◆and◇,628.0 K;★and☆,633.0 K.Solid points represent the liquid phase, and unfilled symbols represent the gas phase;solid lines are only to provide a visual guide to the data.

    where methane fugacity coefficients were obtained from the webpage.25The calculated Henry coefficients at different temperatures are listed in Table 3;in the temperature range we studied,coefficient values decrease with increasing temperature.That trend can be observed in similar systems containing water.26

    3.3 Solution properties of methane in water

    The temperature derivation of the solubility,as calculated from the Gibbs-Helmholtz equation,is directly related to either the partial molar enthalpy or partial molar entropy of the gaseous solute in the liquid phase.If there is no specific chemical interaction between solute and solvent,it can be obtained by the thermodynamics equations:

    where xidenotes the mole fraction of methane(solute)in water (solvent)at saturation for the investigated system,and ΔsolHiand ΔsolSiare respectively the partial molar solution enthalpy and partial molar solution entropy of methane during dissolution.The calculated values of ΔsolH and ΔsolS are listed Table 4; slight changes are seen for ΔsolH and ΔsolS at different pressures.

    To understand the significance of the solution enthalpy andsolution entropy,the dissolution process is conveniently divided into two parts:condensation and mixing.Usually,the first term is negative and its absolute value is very small.Since the temperature coefficient of solubility is positive and large in quantity,the enthalpy of mixing dominates the dissolution process.Thus,the difference in the cohesive energy density between methane and water is very large.

    Table 3 Henry coefficient of methane in water at temperatures

    Table 4 Partial molar solution enthalpy(ΔsolH)and entropy (ΔsolS)of methane in water

    4 Conclusions

    To gain a better understanding of the phase behavior of methane reservoirs of fluxes in the deep earth,the critical curve and a series of isothermal gas-liquid boundary lines of water+methane system in a wider range of temperature(from 433.0 to 633.0 K)and pressures up to 300.00 MPa were determined.Measurements were obtained using the static method with a high-pressure volume-variable autoclave.The experimental results showed that at elevated temperatures and pressures the mutual solubilities,namely,those of water in the dense methane gas phase and methane in water,were consistent.Henry coefficients of methane in dilute solutions,partial molar solution enthalpy,and partial molar solution entropy were also calculated.The results showed that mixing dominates the dissolution process compared with condensation and the difference in the cohesive energy density of methane and water is very larger.These data and results will be useful in near-future natural gas recovery.

    (1) Juske,H.;Michael,E.B.Science 1999,285,1055.doi:10.1126/ science.285.5430.1055

    (2)Anton,K.;Vladimir,G.K.;Alexander,F.G.Nature Geoscience 2009,2,566.doi:10.1038/ngeo591

    (3) Committee to Review theActivitiesAuthorized Under the Methane Hydrate Research and DevelopmentAct of 2000. Charting the Further of Methane Hydrate Research in the Untied States;Washington,D.C.:The NationalAcademies Press,2004.

    (4) Sloan,E.D.;Koh,C.A.Clathrate Hydrates of Natural Gas,3rd ed.;CRC Press:Boca Raton,Fla,USA,2008;pp 58-125.

    (5) Neichel,M.;Frank,E.U.J.Supercritical Fluids 1996,9,69. doi:10.1016/S0896-8446(96)90000-5

    (6) Tian,Y.L.;Zhao,X.F.;Chen,L.J.Supercritical Fluids 2004, 30,145.doi:10.1016/j.supflu.2003.09.002

    (7)Geng,C.Y.;Ding,L.Y.;Han,Q.Z.;Wen,H.Acta Phys.-Chim. Sin.2008,24,595.[耿春宇,丁麗穎,韓清珍,溫 浩.物理化學學報,2008,24,595.]doi:10.3866/PKU.WHXB20080409

    (8) Zhu,R.J.;Li,H.L.;Hao,J.S.;Li,H.S.;Tian,Y.L.Trans. Tianjin Univ.2009,15,276.[朱榮嬌,李洪玲,郝紀雙,李賀松,田宜靈.天津大學學報,2009,15,276.]doi:10.1007/ s12209-009-0049-7

    (9)Wan,L.H.;Yan,K.F.;Li,X.S.;Fan,S.S.Acta Phys.-Chim. Sin.2009,25,486.[萬麗華,顏克鳳,李小森,樊栓獅.物理化學學報,2009,25,486.]doi:10.3866/PKU.WHXB20090315

    (10) Olds,R.H.;Sage,B.H.;Lacey,W.N.Ind.Eng.Chem.1942, 34,1223.doi:10.1021/ie50394a018

    (11) He,J.P.Analytical Instrumentation 2011,No.5,52.[何繼平.分析儀器,2011,5,52.]

    (12)Yarrison,M.;Song,K.Y.;Cox,K.R.;Chronister,D.;Chapman, W.Water Content of High Pressure,High Temperature Methane,Ethane and Methane+CO2,Ethane+CO2;GPA RR-200;Gas ProcessorsAssociation:Tulsa,OK,2008.

    (13) Sun,S.C.;Liu,C.L.;Ye,Y.G.;Jiang,Q.Acta Phys.-Chim. Sin.2011,27,2773.[孫始財,劉昌嶺,業(yè)渝光,姜 倩.物理化學學報,2011,27,2773.]doi:10.3866/PKU.WHXB20112773

    (14)Shu,J.F.;Chen,X.J.;Chou,L.M.;Yang,W.G.;Hu,J.Z.; Hemley,R.J.;Mao,H.K.Geoscience Frontiers 2011,2,93. doi:10.1016/j.gsf.2010.12.001

    (15)Lang,X.M.;Fan,S.S.;Wang,Y.L.J.Nat.Gas Chem.2010, 19,203.doi:10.1016/S1003-9953(09)60079-7

    (16)Song,Y.C.;Yang,M.J.;Chen,Y.J.;Li,Q.P.J.Nat.Gas Chem. 2010,19,241.doi:10.1016/S1003-9953(09)60065-7

    (17)Mohammadi,A.H.;Chapoy,A.;Richon,D.;Tohidi,B.Ind. Eng.Chem.Res.2004,43,7148.doi:10.1021/ie049843f

    (18)Yarrison,M.;Cox,K.R.;Chapman,W.G.Ind.Eng.Chem.Res. 2006,45,6770.doi:10.1021/ie0513752

    (19) Zhu,R.J.;Zhou,J.G.;Liu,S.C.;Ji,J.;Tian,Y.L.Fluid Phase Equilibria 2010,291,1.doi:10.1016/j.fluid.2009.12.011

    (20) Li,H.L.;Zhu,R.J.;Xu,W.;Li,Y.F.;Su,Y.J.;Tian,Y.L. J.Chem.Eng.Data 2011,56,1148.doi:10.1021/je101086r

    (21) Zhou,J.G.;Zhu,R.J.;Xu,H.F.;Tian,Y.L.J.Chem. Thermodynamics 2010,42,1429.doi:10.1016/j.jct.2010.06.011

    (22) Zhou,J.G.;Zhu,R.J.;Xu,H.F.;Tian,Y.L.J.Chem.Eng. Data 2010,55,5569.doi:10.1021/je100353j

    (23)Tabasinejad,F.;Moore,R.G.;Mehta,A.S.;Van Fraassen,K. C.;BarzinKees,Y.Ind.Eng.Chem.Res.2011,50,4029.doi: 10.1021/ie101218k

    (24) Brunner,E.J.Chem.Thermodyn.1990,22,335.doi:10.1016/ 0021-9614(90)90120-F

    (25) http://www3.geosc.psu.edu/Courses/Geosc202/MethaneFugacity. htm.

    (26) Prausnitz,J.;Lichtenthaler,R.;Azevedo,E.Molecular Thermodynamics of Fluid-Phase equilibria,3rd ed.;Prentice Hall PTR:Upper Saddle River,N.J.,1999;pp 583-596.

    猜你喜歡
    天津大學物理化學學報
    《天津大學學報(社會科學版)》簡介
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學報40年
    Chemical Concepts from Density Functional Theory
    學生寫話
    學報簡介
    學報簡介
    天津大學學報(社會科學版)2014年總目次
    《深空探測學報》
    netflix在线观看网站| 久久久久久国产a免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲人成电影免费在线| √禁漫天堂资源中文www| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 亚洲狠狠婷婷综合久久图片| 最新在线观看一区二区三区| 国产精品亚洲美女久久久| 久久婷婷成人综合色麻豆| 丰满的人妻完整版| 免费人成视频x8x8入口观看| 狂野欧美激情性xxxx| 91精品国产国语对白视频| 国产午夜福利久久久久久| 日本欧美视频一区| 亚洲aⅴ乱码一区二区在线播放 | 欧美在线一区亚洲| 欧美日韩亚洲国产一区二区在线观看| www日本在线高清视频| 久久欧美精品欧美久久欧美| 天天添夜夜摸| 久99久视频精品免费| 亚洲在线自拍视频| 悠悠久久av| 免费在线观看完整版高清| 国产精品久久视频播放| 高清在线国产一区| 午夜两性在线视频| 十八禁网站免费在线| 高清毛片免费观看视频网站| 国产在线精品亚洲第一网站| 激情视频va一区二区三区| 精品国产美女av久久久久小说| 亚洲一码二码三码区别大吗| 老司机福利观看| 国产伦一二天堂av在线观看| 亚洲国产精品999在线| 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 一级毛片女人18水好多| 国产精品综合久久久久久久免费 | 婷婷丁香在线五月| 欧美日韩瑟瑟在线播放| 久久精品aⅴ一区二区三区四区| 亚洲一码二码三码区别大吗| 伦理电影免费视频| 在线观看www视频免费| 国产一卡二卡三卡精品| 国产av又大| xxx96com| 99久久久亚洲精品蜜臀av| 91精品三级在线观看| 波多野结衣一区麻豆| 淫妇啪啪啪对白视频| 日韩中文字幕欧美一区二区| 亚洲av成人av| 久久这里只有精品19| 国产精品野战在线观看| 涩涩av久久男人的天堂| 国产精品精品国产色婷婷| 波多野结衣一区麻豆| 亚洲免费av在线视频| 亚洲欧美一区二区三区黑人| 女同久久另类99精品国产91| 中文亚洲av片在线观看爽| 欧美性长视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产高清在线一区二区三 | 最新美女视频免费是黄的| 久久国产亚洲av麻豆专区| 成人国产综合亚洲| 少妇粗大呻吟视频| 国产精品香港三级国产av潘金莲| 免费高清视频大片| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 在线播放国产精品三级| 超碰成人久久| 午夜视频精品福利| 99国产极品粉嫩在线观看| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 在线观看午夜福利视频| 国产av一区在线观看免费| 麻豆成人av在线观看| 91麻豆精品激情在线观看国产| 丝袜人妻中文字幕| 久久 成人 亚洲| 97碰自拍视频| 欧美激情高清一区二区三区| √禁漫天堂资源中文www| 精品少妇一区二区三区视频日本电影| 国产一区二区在线av高清观看| 日韩有码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线黄色| 国产亚洲av嫩草精品影院| 人人澡人人妻人| 欧美日韩黄片免| 19禁男女啪啪无遮挡网站| 女警被强在线播放| 91精品国产国语对白视频| 亚洲少妇的诱惑av| 满18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 一级黄色大片毛片| 亚洲成av片中文字幕在线观看| 久久久国产成人免费| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 日本 欧美在线| 国产人伦9x9x在线观看| 咕卡用的链子| 亚洲国产毛片av蜜桃av| 51午夜福利影视在线观看| 制服诱惑二区| 精品久久久精品久久久| 宅男免费午夜| 禁无遮挡网站| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 中文字幕高清在线视频| 男男h啪啪无遮挡| 啦啦啦韩国在线观看视频| 午夜福利影视在线免费观看| 悠悠久久av| 国产成人精品在线电影| 99在线视频只有这里精品首页| 少妇的丰满在线观看| 国产亚洲欧美精品永久| 校园春色视频在线观看| 精品久久久精品久久久| 色在线成人网| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品久久久久5区| 亚洲av日韩精品久久久久久密| 最近最新中文字幕大全免费视频| 两个人视频免费观看高清| 如日韩欧美国产精品一区二区三区| 亚洲色图综合在线观看| 亚洲成人精品中文字幕电影| 香蕉国产在线看| 成人精品一区二区免费| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 午夜福利影视在线免费观看| 国产精品二区激情视频| 亚洲第一欧美日韩一区二区三区| 欧美亚洲日本最大视频资源| а√天堂www在线а√下载| 丰满人妻熟妇乱又伦精品不卡| 亚洲一区二区三区色噜噜| 亚洲av日韩精品久久久久久密| 欧美一级毛片孕妇| 夜夜看夜夜爽夜夜摸| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产精品久久久不卡| 日本一区二区免费在线视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品久久久久久精品电影 | 一级毛片女人18水好多| 久久狼人影院| 非洲黑人性xxxx精品又粗又长| 亚洲自偷自拍图片 自拍| 丰满的人妻完整版| 女警被强在线播放| 欧美日韩精品网址| 国产精品日韩av在线免费观看 | 宅男免费午夜| 国产区一区二久久| 在线观看www视频免费| 91成年电影在线观看| 大码成人一级视频| 亚洲 欧美 日韩 在线 免费| 亚洲狠狠婷婷综合久久图片| 国产人伦9x9x在线观看| www.自偷自拍.com| 亚洲人成电影观看| 成人永久免费在线观看视频| 久久精品影院6| 欧美中文日本在线观看视频| 女同久久另类99精品国产91| 国产av精品麻豆| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 久久人妻熟女aⅴ| 欧美久久黑人一区二区| 亚洲欧美日韩无卡精品| 大型av网站在线播放| 精品国产一区二区久久| 国产成人系列免费观看| 日本精品一区二区三区蜜桃| 一级,二级,三级黄色视频| 欧美色欧美亚洲另类二区 | 精品国产超薄肉色丝袜足j| 日本 av在线| 久久人妻福利社区极品人妻图片| 禁无遮挡网站| av天堂久久9| 又紧又爽又黄一区二区| 国产一区在线观看成人免费| 精品国产乱码久久久久久男人| aaaaa片日本免费| 国产精品野战在线观看| ponron亚洲| 亚洲精品粉嫩美女一区| 国产欧美日韩一区二区精品| 黑人欧美特级aaaaaa片| 亚洲国产高清在线一区二区三 | 国产av在哪里看| 淫秽高清视频在线观看| 操出白浆在线播放| 免费久久久久久久精品成人欧美视频| 夜夜看夜夜爽夜夜摸| 成在线人永久免费视频| 免费在线观看日本一区| 国产精品久久久久久精品电影 | 一本综合久久免费| 国产午夜精品久久久久久| 99久久综合精品五月天人人| 亚洲伊人色综图| 这个男人来自地球电影免费观看| 日韩国内少妇激情av| 亚洲精品美女久久久久99蜜臀| 久久精品国产99精品国产亚洲性色 | 亚洲国产精品sss在线观看| 亚洲人成电影观看| 天天一区二区日本电影三级 | 搞女人的毛片| 成人亚洲精品一区在线观看| 看免费av毛片| 久久婷婷人人爽人人干人人爱 | 一区福利在线观看| 欧美丝袜亚洲另类 | 波多野结衣一区麻豆| 久久久久国产精品人妻aⅴ院| 19禁男女啪啪无遮挡网站| 午夜成年电影在线免费观看| 一级a爱片免费观看的视频| 一级作爱视频免费观看| 一级a爱视频在线免费观看| 嫩草影院精品99| 亚洲天堂国产精品一区在线| 亚洲国产毛片av蜜桃av| 无人区码免费观看不卡| 麻豆久久精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放 | 一级毛片高清免费大全| 亚洲成av片中文字幕在线观看| 精品日产1卡2卡| 大型黄色视频在线免费观看| 欧美成人一区二区免费高清观看 | 久久亚洲真实| 两性午夜刺激爽爽歪歪视频在线观看 | 侵犯人妻中文字幕一二三四区| 露出奶头的视频| 中文字幕最新亚洲高清| 欧美黑人精品巨大| 精品欧美一区二区三区在线| 国产精品久久久久久亚洲av鲁大| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 国产一区二区三区在线臀色熟女| 日日夜夜操网爽| 午夜福利一区二区在线看| 欧美丝袜亚洲另类 | 操美女的视频在线观看| 国产精品综合久久久久久久免费 | 日韩国内少妇激情av| 女性生殖器流出的白浆| 日日夜夜操网爽| 午夜免费观看网址| 婷婷丁香在线五月| 午夜影院日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产高清在线一区二区三 | 久久九九热精品免费| 老熟妇乱子伦视频在线观看| 久久精品国产亚洲av高清一级| 久久国产亚洲av麻豆专区| 欧美激情 高清一区二区三区| www国产在线视频色| 一进一出抽搐gif免费好疼| 这个男人来自地球电影免费观看| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻福利社区极品人妻图片| 黑人操中国人逼视频| 天堂动漫精品| 国产在线精品亚洲第一网站| 欧美激情 高清一区二区三区| 亚洲avbb在线观看| 国产精品久久久av美女十八| 久久久久久亚洲精品国产蜜桃av| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看 | 成熟少妇高潮喷水视频| 免费少妇av软件| 热99re8久久精品国产| 国产午夜福利久久久久久| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 亚洲熟妇熟女久久| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产| 成熟少妇高潮喷水视频| 丁香欧美五月| 亚洲欧美精品综合久久99| 日本五十路高清| 久久香蕉激情| 亚洲国产欧美日韩在线播放| 一区在线观看完整版| 麻豆成人av在线观看| av视频在线观看入口| 欧美乱码精品一区二区三区| 亚洲中文av在线| 淫妇啪啪啪对白视频| 久久天堂一区二区三区四区| 国内久久婷婷六月综合欲色啪| 美女午夜性视频免费| 亚洲成a人片在线一区二区| 久久人人97超碰香蕉20202| 亚洲成av人片免费观看| 亚洲成人免费电影在线观看| 亚洲精华国产精华精| 国产精品国产高清国产av| 久久中文字幕一级| 一本综合久久免费| 国产亚洲欧美在线一区二区| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 在线av久久热| 天天一区二区日本电影三级 | 夜夜夜夜夜久久久久| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看| 男人操女人黄网站| 一区二区三区国产精品乱码| 日本欧美视频一区| 久久九九热精品免费| 香蕉久久夜色| 一区福利在线观看| 51午夜福利影视在线观看| 国产aⅴ精品一区二区三区波| 国产精品综合久久久久久久免费 | 老司机午夜福利在线观看视频| 亚洲欧美精品综合一区二区三区| 久久精品影院6| 成人国语在线视频| 亚洲人成网站在线播放欧美日韩| 91成年电影在线观看| 熟女少妇亚洲综合色aaa.| 国产av在哪里看| 很黄的视频免费| 男人舔女人的私密视频| 国产国语露脸激情在线看| 欧美一区二区精品小视频在线| 国产av又大| 亚洲精品国产区一区二| av天堂久久9| 91麻豆精品激情在线观看国产| 亚洲第一电影网av| 国产一卡二卡三卡精品| 淫妇啪啪啪对白视频| 99精品欧美一区二区三区四区| 国产aⅴ精品一区二区三区波| 亚洲激情在线av| 高清在线国产一区| 亚洲av美国av| 国产99久久九九免费精品| 老汉色av国产亚洲站长工具| 国产精品野战在线观看| 国产一区二区三区在线臀色熟女| 国产精品亚洲美女久久久| 久久中文字幕一级| 亚洲国产精品合色在线| 中亚洲国语对白在线视频| 国产乱人伦免费视频| 日本 欧美在线| 久热爱精品视频在线9| 视频在线观看一区二区三区| 在线观看www视频免费| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 一区在线观看完整版| 成人av一区二区三区在线看| 午夜老司机福利片| 亚洲美女黄片视频| 熟女少妇亚洲综合色aaa.| 久久久国产欧美日韩av| 熟女少妇亚洲综合色aaa.| 一区二区日韩欧美中文字幕| 国产aⅴ精品一区二区三区波| 在线免费观看的www视频| 国产成人av激情在线播放| 免费高清视频大片| 亚洲av片天天在线观看| 一夜夜www| 成人国产综合亚洲| 亚洲精品久久国产高清桃花| 999精品在线视频| av福利片在线| 久久久久亚洲av毛片大全| 亚洲免费av在线视频| 国产在线观看jvid| 成人18禁在线播放| 欧美黄色片欧美黄色片| 91精品国产国语对白视频| 亚洲狠狠婷婷综合久久图片| 色婷婷久久久亚洲欧美| 在线观看午夜福利视频| 黄色 视频免费看| 久99久视频精品免费| 久久久久亚洲av毛片大全| 十分钟在线观看高清视频www| 亚洲成人精品中文字幕电影| www.精华液| 在线永久观看黄色视频| 一级毛片女人18水好多| 国产av精品麻豆| 不卡av一区二区三区| 久久亚洲真实| 不卡一级毛片| aaaaa片日本免费| 国产在线观看jvid| 黄色丝袜av网址大全| 国产成年人精品一区二区| 日日夜夜操网爽| 露出奶头的视频| 又黄又粗又硬又大视频| 日韩av在线大香蕉| 精品国产亚洲在线| 国产麻豆成人av免费视频| 国产av在哪里看| 老司机福利观看| 精品国产美女av久久久久小说| 精品久久久久久久久久免费视频| 亚洲精品美女久久av网站| 久久国产亚洲av麻豆专区| 叶爱在线成人免费视频播放| 免费看美女性在线毛片视频| 女性被躁到高潮视频| 一个人观看的视频www高清免费观看 | 啦啦啦免费观看视频1| 精品久久久久久成人av| 在线免费观看的www视频| 中文字幕av电影在线播放| or卡值多少钱| 日韩精品中文字幕看吧| 黄片大片在线免费观看| 伊人久久大香线蕉亚洲五| 女人被狂操c到高潮| 在线观看一区二区三区| 久久久久久久久免费视频了| or卡值多少钱| 欧美日韩精品网址| 麻豆国产av国片精品| 亚洲av成人不卡在线观看播放网| 精品午夜福利视频在线观看一区| 亚洲,欧美精品.| 中文字幕av电影在线播放| 久久人妻福利社区极品人妻图片| 少妇 在线观看| 久久久国产成人免费| 国产男靠女视频免费网站| 熟女少妇亚洲综合色aaa.| 久久中文看片网| 日日夜夜操网爽| 日韩欧美免费精品| 国产精品免费视频内射| 在线观看免费午夜福利视频| 亚洲国产精品999在线| 国产片内射在线| 在线天堂中文资源库| 无限看片的www在线观看| 午夜福利在线观看吧| 老汉色∧v一级毛片| 亚洲成a人片在线一区二区| avwww免费| 久久热在线av| 黄色视频,在线免费观看| 欧美不卡视频在线免费观看 | 男女下面插进去视频免费观看| 亚洲成人免费电影在线观看| x7x7x7水蜜桃| 久久精品国产亚洲av香蕉五月| 免费在线观看日本一区| 18禁美女被吸乳视频| 亚洲欧美日韩另类电影网站| 国产精品美女特级片免费视频播放器 | 一区二区三区精品91| 好男人电影高清在线观看| 中文字幕色久视频| 欧美黑人欧美精品刺激| av电影中文网址| 18美女黄网站色大片免费观看| 纯流量卡能插随身wifi吗| 欧美一级毛片孕妇| 91精品三级在线观看| 亚洲一区二区三区不卡视频| 1024视频免费在线观看| 好男人电影高清在线观看| 国产亚洲欧美精品永久| АⅤ资源中文在线天堂| 亚洲va日本ⅴa欧美va伊人久久| 18禁裸乳无遮挡免费网站照片 | av在线播放免费不卡| 精品一区二区三区av网在线观看| 欧美激情高清一区二区三区| 亚洲电影在线观看av| 免费在线观看亚洲国产| 中文字幕人成人乱码亚洲影| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 国产成人av教育| 自线自在国产av| 精品熟女少妇八av免费久了| 国产99白浆流出| 国产亚洲av嫩草精品影院| 亚洲 欧美 日韩 在线 免费| 国产成人影院久久av| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片 | 一级毛片高清免费大全| 成人免费观看视频高清| 色播在线永久视频| 国产av精品麻豆| 国产精品亚洲美女久久久| 免费观看人在逋| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 久久久久国产精品人妻aⅴ院| 69av精品久久久久久| 97人妻天天添夜夜摸| 久久久久国内视频| 精品一区二区三区视频在线观看免费| 亚洲五月婷婷丁香| 国产99白浆流出| 日本撒尿小便嘘嘘汇集6| 一进一出好大好爽视频| 色播在线永久视频| 十八禁人妻一区二区| 涩涩av久久男人的天堂| 欧美久久黑人一区二区| 午夜亚洲福利在线播放| 久久久久久免费高清国产稀缺| 久久精品国产99精品国产亚洲性色 | 又大又爽又粗| 国产亚洲精品第一综合不卡| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 亚洲欧美精品综合久久99| 亚洲熟妇熟女久久| 国产乱人伦免费视频| 青草久久国产| 久久国产乱子伦精品免费另类| 国产精品一区二区在线不卡| 亚洲九九香蕉| 午夜两性在线视频| www国产在线视频色| 国产一区二区三区综合在线观看| 亚洲av五月六月丁香网| 免费在线观看黄色视频的| 黄色女人牲交| 在线观看舔阴道视频| www.www免费av| 无遮挡黄片免费观看| 在线播放国产精品三级| 香蕉丝袜av| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频| 99在线人妻在线中文字幕| 欧美日韩精品网址| 性少妇av在线| 亚洲久久久国产精品| 日韩精品中文字幕看吧| bbb黄色大片| 久久精品国产清高在天天线| 一本大道久久a久久精品| 久9热在线精品视频| 国产主播在线观看一区二区| 日日爽夜夜爽网站| 久久亚洲真实| 欧美日本亚洲视频在线播放| 精品国产乱子伦一区二区三区| 亚洲一码二码三码区别大吗| 欧美+亚洲+日韩+国产| 制服人妻中文乱码| 黄频高清免费视频| 999久久久国产精品视频| 天堂影院成人在线观看| 午夜亚洲福利在线播放| 日韩免费av在线播放| 国产精品永久免费网站| 精品国产乱码久久久久久男人| 老汉色∧v一级毛片| 多毛熟女@视频| 免费看美女性在线毛片视频| 国产高清视频在线播放一区| 黄色丝袜av网址大全| 欧美日韩乱码在线| 每晚都被弄得嗷嗷叫到高潮| 高清在线国产一区| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 亚洲欧洲精品一区二区精品久久久| 免费观看人在逋| 天天躁夜夜躁狠狠躁躁| 成人18禁高潮啪啪吃奶动态图| 亚洲av熟女| 国产av在哪里看| 脱女人内裤的视频|