• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    2012-12-11 09:26:04關(guān)慶豐李海波李洪吉
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:慶豐鈦酸海波

    林 雪 呂 鵬 關(guān)慶豐,* 李海波 李洪吉 蔡 杰 鄒 陽

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    林 雪1,2呂 鵬1關(guān)慶豐1,*李海波3李洪吉2蔡 杰1鄒 陽1

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    研究了用一步水熱法制備的摻鑭鈦酸鉍(Bi3.25La0.75Ti3O12,BLT)納米線的光學(xué)和可見光催化性能,并對其晶體結(jié)構(gòu)和微觀結(jié)構(gòu)用X射線衍射(XRD)、透射電子顯微鏡(TEM)和高分辨透射電子顯微鏡(HRTEM)等手段進(jìn)行了表征.結(jié)果表明,制備的納米線為純相的Bi3.25La0.75Ti3O12,平均直徑約為25 nm.室溫光致發(fā)(PL)光譜顯示BLT納米線在433和565 nm附近有較強(qiáng)的發(fā)射峰,分別對應(yīng)激子發(fā)射和表面缺陷發(fā)光.紫外-可見漫反射光譜(UV-Vis DRS)表明BLT樣品的帶隙能約為2.07 eV.利用可見光(λ>420 nm)照射下的甲基橙(MO)降解實驗評價了BLT樣品的光催化性能.結(jié)果表明,BLT的光催化活性比商用TiO2催化劑P25、摻氮TiO2和純相鈦酸鉍(Bi4Ti3O12,BIT)高得多.BLT光催化劑具有更高催化活性的原因是La3+離子的摻雜拓展了BIT對可見光的吸收范圍,同時抑制了BIT的光生電子-空穴的復(fù)合.

    鈦酸鉍;摻鑭;納米線;水熱合成;光催化降解;可見光照射

    1 Introduction

    The worldwide quest for clean and renewable energy sources has encouraged a great deal of research activities and development in the field of solar energy in the last twenty years.Solar energy as a clean energy is inexhaustible in supply and always available for use.Therefore,high efficient catalyst,photochemical cell and solar cell have become the hotspot of scientific research.Since the discovery of the photocatalytic splitting of water on the TiO2electrodes by Fujishima and Honda1in 1972,the application of semiconductor photocatalysts on degradation ofpollutantshasreceived greatattention.2-7Among all photocatalysts,TiO2attracts the most attention due to its chemical stability,low cost,nontoxicity,and high photocatalytic activity.8-12However,the band gap energy of the TiO2is 3.2 eV.It absorbs only the ultraviolet light(λ≤386.5 nm) which only accounts for about 4.0%of the sunlight.In order to improve the efficiency of the sunlight utilization,the development of photocatalysts with high activity under a wide range of visible light is highly desirable.13-15

    In recent years,bismuth titanate photocatalysts,such as Bi12TiO20,16Bi2Ti2O7,17and Bi4Ti3O12(BIT),18have been widely studied as a class of promising photocatalysts which can respond under visible light.Among bismuth titanate photocatalysts,Bi4Ti3O12(BIT)has received more attention for its high photocatalytic ability in degrading the organic pollutants.18-20Photocatalytic properties of BIT have been examined before. Kudo et al.18had reported the preparation of BIT by the solidsolid method and examined the photocatalytic activity of BIT for water splitting.Recently,Yao et al.19,20reported the preparation of BIT by using the chemical solution decomposition (CSD)method and examined the photocatalytic activity for oxidizing methyl orange(MO).In our previous work,21we presented the hydrothermal synthesis of BIT microspheres and tested the photocatalytic properties of the as-prepared BIT spheres. Furthermore,Metal element doping is one of the typical approaches to extend the spectral response of BIT photocatalysts by providing defect states in the band gap.22-24

    However,few papers have revealed the photocatalytic activity of Lanthanum doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT) crystals for oxidizing organic contaminants in water.It is known that the activity of photocatalysts is influenced by a wide variety of factors,such as the catalyst preparation conditions,crystal morphology,the adsorption affinity and capacity for organic contaminants,pH,intrinsic solid state defects and so on.The aim of the present paper is to study the influence of La-doping on the microstructure,optical properties,and photocatalytic properties of BIT photocatalysts.

    2 Experimental

    2.1 Preparation of BLT photocatalysts

    All the chemicals were analytically graded(purchased from Shanghai Chemical Industrial Company)and used without further purification.BLT photocatalysts were prepared with a one-step hydrothermal synthesis.24Bismuth nitrate(Bi(NO3)3· 5H2O),lanthanum nitrate(La(NO3)3·6H2O),and titanium tetrachloride(TiCl4)were chosen as starting materials with the bismuth:lanthanum:titanium ions molar ratios of 3.25:0.75:3.00. TiCl4(10 mL)was dissolved in cold water(50 mL)under vigorous stirring,then mixed with Bi(NO3)3·5H2O and La(NO3)3· 6H2O.The concentration of the alkali solution was adjusted using KOH.Before being transferred to a 20 mL stainless steel autoclave,the solution mixture was prepared under an ultrasonic water bath for 30 min and kept at a filling ratio of 70%(volume fraction).The autoclave was kept at 180°C for 24 h,and cooled to room temperature after the reaction.The precipitates were washed with deionized water and ethanol three times,separately.The final products were dried at 100°C for 2 h in a vacuum box.The samples prepared for comparison are(i)BIT and (ii)N doped TiO2(N-TiO2).For more details about the preparation of BIT and N-TiO2,the readers can refer to our previous work.24-26

    2.2 Characterization of photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD,America PE,D/max 2500)with Cu Kαradiation.Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy(HRTEM) were conducted using a JEM-2100F(Japan JEOL)instrument. The surface areas of samples were measured by TriStar 3000-BET/BJH Surface Area.The optical property was obtained by thephotoluminescence(PL)measurementusing HR800 LabRam Infinity Spectro photometer excited by a continuous He-Cd laser with a wavelength of 325 nm at a power of 50 mW.The UV-Vis diffuse reflectance spectra(DRS)were recorded for the dry-pressed disk sample using a scan UV-Vis spectrophotometer(UV-Vis,Japan SHIMADZU,UV-2550) equipped with an integrating sphere assembly.

    2.3 Photocatalytic activity test

    The photocatalytic degradation of MO was employed to evaluate the photocatalytic activities of the samples.A 300 W Xe lamp(λ>420 nm)was used to provide visible light irradiation.Photocatalyst(0.10 g)was added to 100 mL of MO solution(0.01 mmol·L-1).Before irradiation,the suspensions were magnetically stirred in the dark for 30 min to ensure the adsorption-desorption equilibrium between the photocatalysts and MO.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of suspension was sampled and centrifuged to remove the photocatalyst particles.Then,the catalyst-free dye solution was analyzed by a UV-2550 spectrometer to record intensity of the maximum band at 462 nm in the UV-Vis absorption spectra.

    3 Results and discussion

    3.1 XRD analysis

    XRD patterns of the as-prepared BLT products synthesized at OH-concentrations of 3 and 8 mol·L-1,respectively,are shown in Fig.1.All the reflection peaks can be indexed according to the JCPDS card No.36-1486,suggesting that the as-prepared products are of layered-perovskite structure(Bi4Ti3O12). No peaks of impurities were detected from the patterns.The strong and sharp peaks indicate high crystallinities of BLT samples.

    3.2 TEM analysis

    TEM was employed to observe the morphologies and structure details of BLT products.Fig.2a shows the TEM images of a typical example of nanoparticles.It can be observed that BLT product prepared at OH-concentration of 3 mol·L-1was composed of nano-sized particles with average size about 20 nm, and each particle is nearly spherical in shape(as shown in Fig.2b).Fig.2c gives BLT sample obtained at OH-concentration of 8 mol·L-1.It can be seen that there are BLT nanowires with width of approximate 25 nm and lengths up to several micrometres.Further structure details of BLT nanowires were obtained by TEM,as illustrated in Fig.2d.It reveals that BLT nanowires are made up of nanoparticles with average size of about 4 nm.These results show that OH-concentration seems to play a key role in controlling the morphologies of BLT crystals.

    Although the crystal growth habit is mainly determined by the intrinsic structure,it is also affected by the external conditions such as pH of the solution,saturation,temperature and so on.23As we all know,OH-concentration in the precursor solution has been found to be very important for the microstructure.It has been reported that the morphologies of Bi2Ti2O7crystals can be controlled by adjusting the OH-concentrations suggesting that OH-ionscan behave as a surfactant,17obtaining a better understandingof the role of OH-ions in the hydrothermal process.On the basis of our previous report about Bi3.25Nd0.75Ti3O12(BNdT)nanostructure and BNdT nanosheets and nanowires,24at lower concentration of OH-,only nanoparticles were obtained.When the OH-concentration was increased,nanowires were obtained.Our experimental results are in accordance with the above mechanism.Thus,the pH value plays an important role in controlling the formation of seeds and the growth rates to shape BLT particles.

    Fig.1 XRD patterns of BLT and BIT samplesT=180°C,t=24 h

    In this work,the condition of the alkaline medium as a factor is considered to play a key part in the formation of BLT nanowires.At lower OH-concentration(3 mol·L-1),BLT nuclei produced in solution can aggregate to form small particles. These particles may serve as crystal seeds to grow the nanowire structure.With the increase of alkalinity(OH-concentration:8 mol·L-1),a large amount of BLT nuclei produced in the solution,leads to form the very high supersaturation solution, which favors the formation of nanowires structure.Hence,the formation of BLT nanowires in the present route is resulted from the highly alkaline medium.27

    In order to investigate the detailed crystal structure of the as-prepared BLT sample,HRTEM images for BLT nanowires were measured,as shown in Fig.3.The lattice distance for BLT sample is calculated to be 0.38 nm,which is in agreement with the(111)lattice plane of the layered-perovskite BIT.Thus,we can conclude that the low concentration doping of La3+ions does not induce the formation of separate purity phases(lanthanum metal).

    Fig.4 shows EDX analytical results of BLT composite,the molar ratios of Bi/Ti and Bi/La are calculated to be 1.09 and 4.74,respectively,which are in accordance with the nominal molar ratio of Bi3.25La0.75Ti3O12.

    3.3 PL spectral analysis

    Fig.2 TEM images of BLT samples obtained at different concentrations of OH-c(OH-)/(mol·L-1):(a,b)3,(c,d)8

    Fig.5 shows PL spectra of BLT and BIT samples measured at room temperature at an excitation wavelength of 325 nm. The as-prepared BLT sample showed the presence of two PL bands.The first band was detected at 400 nm(violet emission), while the second was observed at 596 nm(yellow emission).It could be deduced that there exited surface oxygen vacancy in BLT nanowires and the two emission bands might arise respectively from the excitonic emission and surface-defect.28The fluorescence intensity of BLT was significantly weaker than that of BIT product,which showed the recombination restraint of the e-/h+pairs resulting from doping of La3+ions.The reduction of fluorescence indicates that the surface-defect of BLT is much less than that of BIT.And the decrease of surface-defect enhances the activity of photocatalysis.

    Fig.3 HRTEM image of BLT nanowiresT=180°C,t=24 h

    Fig.4 EDX spectrum of the as-prepared BLT sampleT=180°C,t=24 h

    Fig.5 PLspectra of BLT and BIT samples T=230°C,t=24 h

    3.4 UV-Vis DRS spectral analysis

    Fig.6 UV-Vis DRS of different samples(a)N-TiO2,(b)P25 TiO2,(c)BIT,(d)BLT;A:absorbance.The inset shows the plot of(Ahv)2as a function of photon energy.

    Fig.6 shows the UV-Vis DRS of P25 TiO2,N-TiO2,BIT,and BLT photocatalysts.It shows that the absorption onset wavelength(λg)of BLT sample is around 600 nm,which is shifted 175,150,and 50 nm to visible region compared to P25 TiO2, N-TiO2and BIT,respectively.The absorption coefficient(α)as a function of photon energy can be expressed by the Tauc relation:29

    where hv,C,and Egare the photon energy,a constant,and the energy gap,respectively.And n is an index determined by the nature of the electron transition during the absorption process. It is well known that there are two types of fundamental optical transitions,namely direct(n=1/2)and indirect(n=2).For BLT, it is a direct band gap semiconductor,so here n=1/2.Since absorbance(A)is proportional to absorption coefficient,we use absorbance to substitute absorption coefficient.22The plot of (Ahv)2versus hv is presented in the inset of Fig.6.Thus,the band gap energy of BLT is calculated to be 2.07 eV,which shows a marked red shift in the absorbance compared to P25 TiO2,N-TiO2,due to the contribution of 6s electrons from Bi3+.22It indicates that BLT photocatalyst has a suitable band gap for photocatalytic decomposition of organic contaminants under visible light irradiation.The absorption spectrum of BLT photocatalyst has steep shape which shows that the absorption relevant to the band gap is due to the intrinsic transition of the nanomaterials.30

    3.5 Degradation of MO using BLT photocatalysts

    Photodegradation experiments of MO were employed under visible light irradiation to test the photocatalytic performance of N-TiO2,P25 TiO2,BIT,and BLT.UV-Vis spectral changes of MO solution by BLT are displayed in Fig.7(A)while the temporal courses of the photodegradation of MO in different catalyst aqueous dispersions are shown in Fig.7(B).It can be observed that the peaks at 462 and 271 nm are reduced with the increase of irradiation time(Fig.7(A)).It shows that MO solution is stable under visible light irradiation in the absence of any catalyst(Fig.7(B)).The degradation rates of P25 TiO2, N-TiO2,BIT,and BLT are 95.0%,80.0%,52.0%,and 18.0%, respectively.Thus,the addition of BLT photocatalyst leads to the obvious degradation of MO.

    Fig.7 (a)UV-Vis spectral changes of MO by BLT sample; (b)Temporal courses of the photodegradation of MO in different catalyst aqueous dispersions;(c)First-order plots for the photocatalytic degradation of MO using different catalysts(a)without catalyst,(b)P25 TiO2,(c)N-TiO2,(d)BIT,(e)BLT

    To quantitatively study the photocatalytic reaction kinetics of the MO degradation in the experiments,the degradation data was analyzed with the pseudo-first-order model,as expressed by Eq.(2)as follows:31

    where C0and C represent MO concentrations at time zero and t,respectively,and k is the pseudo first-order rate constant.The first-order linear relationship was revealed by the plots of the ln(C/C0)vs irradiation time(t),as shown in Fig.7(C).The reaction rate constant k for P25 TiO2,N-TiO2,BIT,and BLT are determined to be 5.81×10-4,1.94×10-3,4.13×10-3,and 7.85×10-3min-1,respectively(Table 1),indicating the highest photocata-lytic performance of BLT nanowires.The BET surface areas of samples were also measured(as shown in Table 1).Based on the above analysis,it can be concluded that La doping is one of the typical approaches to improve the performance of BIT photocatalysts.

    Table 1 BET specific surface area(SBET)and reaction rate constants(k)of samples

    3.6 Stability of BLT as the photocatalyst

    Fig.8 shows the XRD patterns of the BLT sample before and after 360 min of visible light irradiation.It can be seen that both the position and the intensity of the peaks in the XRD pattern are almost the same to those of BLT before irradiation. Thus,BLT photocatalyst is considered to be relatively stable to visible light irradiation under the present experimental conditions.This result indicates a possibility for application of BLT photocatalyst in the waste water treatment.

    The stability tests were also conducted by using recycling reactions four times for the photodegradation of MO over BLT photocatalyst under visible light irradiation,and the results are displayed in Fig.9.No significant decrease in catalytic activity was observed in the recycling reactions.Combined with the XRD patterns,all evidences demonstrate that the BLT photocatalyst is a stable photocatalyst for degradation of MO under visible light irradiation.

    3.7 Photocatalytic activity mechanism

    On the basis of our previous work,24a schematic diagram of the band levels of doped BIT and the possible reaction mechanism of the photocatalytic procedure are proposed and illustrated.Thus,La doping would result in the improvement of the corresponding photocatalytic properties,as clarified by following equations:

    Fig.8 XRD patterns of BLT before and after visible light irradiation

    Fig.9 Stability evaluation for BLTfour reaction cycles for photodegradation of MO under visible light irradiation

    Furthermore,the photocatalytic activity of the semiconductor is very closely related to its corresponding band structure. The band gap of oxides is generally defined by the O 2p level and transition metal d level.31,32As calculated by Goto et al.33the conduction band(CB)and valence band(VB)of Nd doped bismuth titanate(BNdT)consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and Nd 5d.These bands meet the potential requirements of organic oxidation.Therefore,in the present hybridized VB composed of O 2p and Bi 6s,the photogenerated carriers may own a high mobility.Then it will reduce the recombination opportunities of the photogenerated electron-hole pairs that could effectively move to the crystal surface to degrade the absorbed MO molecules.Based on the above consideration,we presume that the CB and VB of BLT consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and La 5d.The higher photocatalytic activity of BLT over TiO2and BIT is attributed to be suitable band gap and stable e-/h+pair formation in the VB formed by the hybrid orbitals of Bi 6s,La 5d,and O 2p,and the CB of Ti 3d.

    4 Conclusions

    Bi3.25La0.75Ti3O12nanowires were synthesized by a one-step hydrothermal process without the use of any surfactant or template.The optical band gap of BLT nanowires was estimated to be about 2.07 eV,which proved that BLT photocatalysts could respond to the visible light.Most importantly,BLT photocatalysts with good stability exhibited higher photocatalytic performance in the degradation of methyl orange under visible light irradiation(λ>420 nm)than traditional N doped TiO2,commercial P25 TiO2,and pure BIT.Over this catalyst,the 95.0%degradation of MO solution(0.01 mmol·L-1)was obtained after visible light irradiation for 360 min.In addition,after 4 recycles,there was no significant decrease in its photocatalytic activity,indicating that BLT is a stable photocatalyst for degradation of MO under visible light irradiation.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/ 238037a0

    (2)Lu,S.Y.;Wu,D.;Wang,Q.L.;Yan,J.H.;Buekens,A.G.;Cen, K.F.Chemosphere 2011,82,1215.doi:10.1016/j. chemosphere.2010.12.034

    (3) Xie,J.;Wang,H.;Duan,M.Acta Phys.-Chim.Sin.2011,27(1), 193. [謝 娟,王 虎,段 明.物理化學(xué)學(xué)報,2011,27(1), 193.]doi:10.3866/PKU.WHXB20110124

    (4) Yang,X.H.;Liu,C.;Liu,J.K.;Zhu,Z.C.Acta Phys.-Chim. Sin.2011,27(12),2939.[楊小紅,劉 暢,劉金庫,朱子春.物理化學(xué)學(xué)報,2011,27(12),2939.]doi:10.3866/PKU. WHXB20112939

    (5) Hu,Y.F.;Li,Y.X.;Peng,S.Q.;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報,2008,24(11),2071.] doi:10.3866/PKU.WHXB20081123

    (6) Zhang,L.S.;Wang,H.L.;Chen,Z.G.;Wong,P.K.;Liu,J.S. Appl.Catal.B:Environ.2011,106,1.

    (7) Zhang,L.;Cao,X.F.;Chen,X.T.;Xue,Z.L.J.Colloid Interface Sci.2011,354,630.doi:10.1016/j.jcis.2010.11.042

    (8) Selishchev,D.S.;Kolinko,P.A.;Kozlov,D.V.J.Photochem. Photobiol.A 2012,229,11.doi:10.1016/j.jphotochem. 2011.12.006

    (9) Zhang,J.W.;Jin,Z.S.;Feng,C.X.;Yu,L.G.;Zhang,J.W.; Zhang,Z.J.J.Solid State Chem.2011,184,3066.doi:10.1016/ j.jssc.2011.09.016

    (10) Su,Y.R.;Yu,J.G.;Lin,J.J.Solid State Chem.2007,180,2080. doi:10.1016/j.jssc.2007.04.028

    (11)Xu,J.;Wang,W.Z.;Shang,M.;Gao,E.P.;Zhang,Z.J.;Ren,J. J.Hazard.Mater.2011,196,426.doi:10.1016/j.jhazmat. 2011.09.010

    (12)Wang,H.Q.;Wu,Z.B.;Liu,Y.;Wang,Y.J.Chemosphere 2008, 74,773.

    (13) Xu,J.J.;Chen,M.D.;Fu,D.G.Appl.Surf.Sci.2011,257, 7381.doi:10.1016/j.apsusc.2011.02.030

    (14) Ghorai,T.K.;Biswas,S.K.;Pramanik,P.Appl.Surf.Sci.2008, 254,7498.doi:10.1016/j.apsusc.2008.06.042

    (15) Zhang,Y.L.;Deng,L.J.;Zhang,G.K.;Gan,H.H.Colloids and Surfaces A:Physicochem.Eng.Aspects.2011,384,137. doi:10.1016/j.colsurfa.2011.03.043

    (16) Zhang,H.P.;Lü,M.K.;Liu,S.W.;Xiu,Z.L.;Zhou,G.J.; Zhou,Y.Y.;Qiu,Z.F.;Zhang,A.Y.;Ma,Q.Surf.Coat.Tech. 2008,202,4930.doi:10.1016/j.surfcoat.2008.04.081

    (17) Hou,J.G.;Jiao,S.Q.;Zhu,H.M.;Kumar,R.V.J.Solid State Chem.2011,184,154.doi:10.1016/j.jssc.2010.11.017

    (18) Kudo,A.;Hijii,S.Chem.Lett.1999,28(10),1103.

    (19)Yao,W.F.;Xu,X.H.;Wang,H.;Zhou,J.T.;Yang,X.N.; Zhang,Y.;Shang,S.X.;Huang,B.B.Appl.Catal.B:Environ. 2004,52,109.doi:10.1016/j.apcatb.2004.04.002

    (20)Yao,W.F.;Wang,H.;Xu,X.H.;Shang,S.X.;Hou,Y.;Zhang, Y.;Wang,M.Mater.Lett.2003,57,1899.doi:10.1016/ S0167-577X(02)01097-2

    (21) Lin,X.;Lv,P.;Guan,Q.F.;Li,H.B.;Zhai,H.J.;Liu,C.B. Appl.Surf.Sci.2012,258,7146.doi:10.1016/j.apsusc. 2012.04.019

    (22)Wang,Z.Z.;Qi,Y.J.;Qi,H.Y.;Lu,C.J.;Wang,S.M.J.Mater. Sci.:Mater.Electron 2010,21,523.doi:10.1007/s10854-009-9950-z

    (23)Yao,W.F.;Wang,H.;Shang,S.X.;Xu,X.H.;Yang,X.N.; Zhang,Y.;Wang,M.J.Mol.Catal.A:Chem.2003,198,343. doi:10.1016/S1381-1169(02)00699-4

    (24) Lin,X.;Guan,Q.F.;Li,H.B.;Li,H.J.;Ba,C.H.;Deng,H.D. Acta Phys.-Chim.Sin.2012,28(6),1481. [林 雪,關(guān)慶豐,李海波,李洪吉,巴春華,鄧海德.物理化學(xué)學(xué)報,2012,28(6), 1481.]doi:10.3866/PKU.WHXB201203313

    (25) Lin,X.;Guan,Q.F.;Li,H.B.;Liu,Y.;Zou,G.T.Sci.China Ser.G 2012,55,33.[林 雪,關(guān)慶豐,李海波,劉 洋,鄒廣田.中國科學(xué)G,2012,55,33.]doi:10.1007/s11433-011-4574-8

    (26) Xu,G.C.;Pan,L.;Guan,Q.F.;Zou,G.T.Acta Phys.Sin.2006, 55,3080.[徐國成,潘 玲,關(guān)慶豐,鄒廣田.物理學(xué)報, 2006,55,3080.]

    (27) Yang,J.H.;Zheng,J.H.;Zhai,H.J.;Yang,L.L.;Lang,J.H.; Gao,M.J.Alloy.Compd.2009,481,628.doi:10.1016/j.jallcom. 2009.03.108

    (28) Li,L.;Yang,H.Q.;Ma,J.H.;Jia,D.Z.Chin.J.Inorg.Chem. 2012,28(1),25.[李 麗,楊合情,馬軍虎,賈殿贈.無機(jī)化學(xué)學(xué)報,2012,28(1),25.]

    (29)Xu,D.;Gao,A.M.;Deng,W.L.Acta Phys.-Chim.Sin.2008, 24(7),1219.[許 迪,高愛梅,鄧文禮.物理化學(xué)學(xué)報,2008, 24(7),1219.]doi:10.3866/PKU.WHXB20080717

    (30) Zhu,X.Q.;Zhang,J.L.;Chen,F.Chemosphere 2010,78,1350. doi:10.1016/j.chemosphere.2010.01.002

    (31) Cheng,H.F.;Huang,B.B.;Dai,Y.;Qin,X.Y.;Zhang,X.Y.; Wang,Z.Y.;Jiang,M.H.J.Solid State Chem.2009,182,2274. doi:10.1016/j.jssc.2009.06.006

    (32) Li,B.X.;Wang,Y.F.;Liu,T.X.Acta Phys.-Chim.Sin.2011, 27(12),2946.[李本俠,王艷芬,劉同宣.物理化學(xué)學(xué)報, 2011,27(12),2946.]doi:10.3866/PKU.WHXB20112946

    (33)Goto,T.;Noguchi,Y.;Soga,M.;Miyayama,M.Mater.Res. Bull.2005,40,1044.doi:10.1016/j.materresbull.2005.02.025

    April 9,2012;Revised:May 17,2012;Published on Web:May 17,2012.

    Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12Nanowires

    LIN Xue1,2LU¨Peng1GUAN Qing-Feng1,*LI Hai-Bo3LI Hong-Ji2CAI Jie1ZOU Yang1(1School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Porvnce,P.R.China;2Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education,College of Chemistry,Jilin Normal University,Siping 136000,Jilin Province,P.R.China;3College of Physics,Jilin Normal University, Siping 136000,Jilin Province,P.R.China)

    Lanthanum-doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT)nanowires were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated.Their crystal structure and microstructures were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).The BLT nanowires obtained are single-phase with an average diameter of 25 nm.The room temperature photoluminescence(PL)spectrum reveals two visible emission peaks at 400 and 596 nm,which are assigned to excitonic and surface-defect emissions,respectively.The UV-visible diffuse reflectance spectrum(UV-Vis DRS)reveals that the band gap of BLT nanowires is 2.07 eV.The prepared BLT nanowires are stable and exhibit higher photocatalytic activities in the degradation of methyl orange(MO) under visible light irradiation(λ>420 nm)compared with commercial P25 TiO2,traditional N-doped TiO2(N-TiO2),and pure bismuth titanate(Bi4Ti3O12,BIT).The high photocatalytic performance of BLT photocatalysts is attributed to the strong visible light absorption and the recombination restraint of the e-/h+pairs resulting from the presence of La3+ions.

    Bismuth titanate;Lanthanum doping;Nanowire;Hydrothermal synthesis; Photocatalytic degradation; Visible light irradiation

    10.3866/PKU.WHXB201205172

    ?Corresponding author.Email:guanqf@ujs.edu.cn;Tel:+86-13852904936;Fax:+86-434-3290363.

    The project was supported by the Key Laboratory of Preparation andApplication Environmentally Friendly Materials of the Ministry of Education of China.

    環(huán)境友好材料制備與應(yīng)用教育部重點實驗室項目資助

    O643

    猜你喜歡
    慶豐鈦酸海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    說海波
    胺/層狀鈦酸鹽復(fù)合材料對CO2的吸附性能研究
    這里有爺爺
    鈦酸鋰電池脹氣問題的研究進(jìn)展
    六鈦酸鉀納米晶須的水熱反應(yīng)相轉(zhuǎn)變行為
    AltBOC navigation signal quality assessment and measurement*
    少妇精品久久久久久久| 免费人成在线观看视频色| 自线自在国产av| 免费人成在线观看视频色| 国产精品久久久久久久电影| 色婷婷av一区二区三区视频| 久久 成人 亚洲| 乱系列少妇在线播放| 老熟女久久久| 国产精品一区二区三区四区免费观看| 亚洲天堂av无毛| 国产亚洲最大av| 美女cb高潮喷水在线观看| 精品99又大又爽又粗少妇毛片| 在线播放无遮挡| 91久久精品电影网| 日韩中文字幕视频在线看片| 99久久精品国产国产毛片| 自线自在国产av| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影小说| av线在线观看网站| 国产黄片美女视频| 亚洲伊人久久精品综合| 成人无遮挡网站| 嘟嘟电影网在线观看| 免费看不卡的av| 欧美精品一区二区大全| 国产精品三级大全| 秋霞在线观看毛片| 日韩欧美一区视频在线观看 | 久久国产亚洲av麻豆专区| 国产精品一二三区在线看| 久久久精品免费免费高清| 制服丝袜香蕉在线| 亚洲av.av天堂| 黄色毛片三级朝国网站 | 国产成人91sexporn| 久久97久久精品| 免费黄色在线免费观看| 色视频www国产| 一本一本综合久久| 丰满人妻一区二区三区视频av| 日韩三级伦理在线观看| 国产精品久久久久久av不卡| 韩国av在线不卡| 日本91视频免费播放| 国产av一区二区精品久久| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 99久久中文字幕三级久久日本| av天堂久久9| 最近手机中文字幕大全| 99热这里只有精品一区| 国产又色又爽无遮挡免| 国产av码专区亚洲av| 欧美亚洲 丝袜 人妻 在线| 爱豆传媒免费全集在线观看| 国精品久久久久久国模美| 国产成人aa在线观看| 日本91视频免费播放| 精品酒店卫生间| 亚洲av中文av极速乱| 久久人人爽人人爽人人片va| 18禁在线播放成人免费| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 国产成人精品一,二区| 免费看不卡的av| 亚洲经典国产精华液单| 国产精品国产三级专区第一集| 亚洲av欧美aⅴ国产| 美女主播在线视频| 国产国拍精品亚洲av在线观看| 视频中文字幕在线观看| 欧美xxxx性猛交bbbb| 热re99久久精品国产66热6| 亚洲国产欧美日韩在线播放 | 成人免费观看视频高清| 熟女电影av网| 日韩av不卡免费在线播放| 欧美亚洲 丝袜 人妻 在线| 婷婷色综合大香蕉| 26uuu在线亚洲综合色| 国产精品秋霞免费鲁丝片| 色婷婷av一区二区三区视频| 日韩中文字幕视频在线看片| 噜噜噜噜噜久久久久久91| 精品少妇久久久久久888优播| 亚洲欧美清纯卡通| 国产av一区二区精品久久| 蜜臀久久99精品久久宅男| 中国国产av一级| 丝袜在线中文字幕| 欧美区成人在线视频| 最近最新中文字幕免费大全7| 亚洲va在线va天堂va国产| 国产亚洲av片在线观看秒播厂| 国产有黄有色有爽视频| 精品久久久久久久久av| 婷婷色av中文字幕| 久热这里只有精品99| 国产色爽女视频免费观看| 久久午夜综合久久蜜桃| 国产精品久久久久久av不卡| 亚洲成人手机| 人妻少妇偷人精品九色| 欧美丝袜亚洲另类| 亚洲不卡免费看| 男女无遮挡免费网站观看| 内射极品少妇av片p| 午夜福利在线观看免费完整高清在| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡动漫免费视频| 成人漫画全彩无遮挡| 国模一区二区三区四区视频| 国产日韩欧美视频二区| 国产色婷婷99| 一区二区三区精品91| 黄色怎么调成土黄色| 中文字幕免费在线视频6| 久久女婷五月综合色啪小说| 精品久久国产蜜桃| 内地一区二区视频在线| 天堂中文最新版在线下载| 黑人猛操日本美女一级片| 国产日韩欧美视频二区| 亚洲性久久影院| 婷婷色综合大香蕉| 亚洲国产精品成人久久小说| 日本黄色日本黄色录像| xxx大片免费视频| 美女cb高潮喷水在线观看| 久久久久久久大尺度免费视频| 午夜福利视频精品| 黄色日韩在线| 日韩 亚洲 欧美在线| 国产熟女午夜一区二区三区 | 秋霞伦理黄片| 中文资源天堂在线| 永久网站在线| 国产一区二区三区综合在线观看 | 在线观看免费高清a一片| 亚洲欧美一区二区三区国产| 新久久久久国产一级毛片| 国产精品人妻久久久久久| av天堂中文字幕网| 黄片无遮挡物在线观看| 久久午夜福利片| 免费少妇av软件| 免费高清在线观看视频在线观看| 亚洲国产最新在线播放| 国产成人一区二区在线| 国产男人的电影天堂91| 热re99久久精品国产66热6| 波野结衣二区三区在线| 丰满乱子伦码专区| 人妻系列 视频| 中文字幕久久专区| 一本一本综合久久| 免费高清在线观看视频在线观看| 免费人妻精品一区二区三区视频| 久久久精品94久久精品| 中国国产av一级| av福利片在线| 校园人妻丝袜中文字幕| 色视频www国产| 午夜视频国产福利| 国产免费一级a男人的天堂| 日韩大片免费观看网站| 亚洲欧美清纯卡通| 观看免费一级毛片| 免费观看av网站的网址| 亚洲怡红院男人天堂| 激情五月婷婷亚洲| 精品一区二区三区视频在线| 亚洲国产精品国产精品| 欧美老熟妇乱子伦牲交| 欧美日韩综合久久久久久| 男的添女的下面高潮视频| 精品久久久久久电影网| 久久ye,这里只有精品| 国产免费一区二区三区四区乱码| 丝袜脚勾引网站| 成年女人在线观看亚洲视频| 老司机影院毛片| 亚洲真实伦在线观看| 大片电影免费在线观看免费| 天堂8中文在线网| 欧美日韩国产mv在线观看视频| 51国产日韩欧美| 精品亚洲成国产av| 尾随美女入室| 男女免费视频国产| 精品久久久久久久久亚洲| 欧美日韩视频高清一区二区三区二| 国产 精品1| 免费看av在线观看网站| 十八禁高潮呻吟视频 | 久久久久久久久久成人| 日本-黄色视频高清免费观看| 国产一区二区三区av在线| 一边亲一边摸免费视频| 我要看黄色一级片免费的| 99久久人妻综合| 久久久久久久久久人人人人人人| 哪个播放器可以免费观看大片| 天堂8中文在线网| 日本黄色片子视频| kizo精华| 这个男人来自地球电影免费观看 | 国产永久视频网站| 爱豆传媒免费全集在线观看| 国产亚洲5aaaaa淫片| 久久久久国产网址| 亚洲美女搞黄在线观看| videos熟女内射| 九九在线视频观看精品| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 国产精品一区二区三区四区免费观看| 最新中文字幕久久久久| 啦啦啦视频在线资源免费观看| 欧美日韩亚洲高清精品| 性高湖久久久久久久久免费观看| 大片电影免费在线观看免费| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 精品一区二区三区视频在线| 国产有黄有色有爽视频| 国产精品久久久久久av不卡| 日本黄色日本黄色录像| 国国产精品蜜臀av免费| tube8黄色片| 精华霜和精华液先用哪个| 色婷婷久久久亚洲欧美| 欧美激情极品国产一区二区三区 | 这个男人来自地球电影免费观看 | 国产成人精品一,二区| 免费观看在线日韩| av有码第一页| 中文在线观看免费www的网站| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 日韩免费高清中文字幕av| 中文欧美无线码| 美女福利国产在线| 秋霞伦理黄片| 亚洲精品日韩av片在线观看| 久久午夜福利片| 亚洲丝袜综合中文字幕| 久久免费观看电影| 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看 | 成人18禁高潮啪啪吃奶动态图 | 精品一区二区三区视频在线| 中文资源天堂在线| 日韩不卡一区二区三区视频在线| 久久韩国三级中文字幕| 国产深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 欧美另类一区| 国产欧美日韩精品一区二区| 日韩大片免费观看网站| av女优亚洲男人天堂| 成年女人在线观看亚洲视频| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲美女视频黄频| 晚上一个人看的免费电影| 久久久久久久久久久久大奶| 亚洲国产精品成人久久小说| 亚洲av日韩在线播放| 久久韩国三级中文字幕| av有码第一页| 亚洲精品久久午夜乱码| 久久亚洲国产成人精品v| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| av播播在线观看一区| 人人妻人人添人人爽欧美一区卜| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频 | 欧美老熟妇乱子伦牲交| av一本久久久久| 免费黄频网站在线观看国产| 一级毛片 在线播放| 狠狠精品人妻久久久久久综合| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 午夜福利在线观看免费完整高清在| 在线观看美女被高潮喷水网站| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 日韩电影二区| 各种免费的搞黄视频| 中文字幕亚洲精品专区| 欧美bdsm另类| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 毛片一级片免费看久久久久| 国产在线免费精品| av在线播放精品| 久久久欧美国产精品| 一边亲一边摸免费视频| 久久婷婷青草| 一边亲一边摸免费视频| 亚洲丝袜综合中文字幕| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线 | 久久久久久久精品精品| 色5月婷婷丁香| 一边亲一边摸免费视频| 国产欧美日韩精品一区二区| 多毛熟女@视频| 中文字幕人妻熟人妻熟丝袜美| 成人国产麻豆网| 香蕉精品网在线| 国产精品国产三级专区第一集| 精品人妻熟女av久视频| 天天躁夜夜躁狠狠久久av| 精品久久久精品久久久| 欧美日韩综合久久久久久| 男男h啪啪无遮挡| 欧美激情极品国产一区二区三区 | 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 久久久精品94久久精品| 免费看不卡的av| 97在线视频观看| 青春草视频在线免费观看| 亚洲精品色激情综合| 色视频www国产| 欧美三级亚洲精品| 各种免费的搞黄视频| 男人舔奶头视频| 2018国产大陆天天弄谢| 下体分泌物呈黄色| 亚洲久久久国产精品| 99热国产这里只有精品6| 嫩草影院新地址| 久久久久久人妻| 欧美三级亚洲精品| 国产亚洲最大av| 亚洲图色成人| 中文天堂在线官网| 天美传媒精品一区二区| 国产精品麻豆人妻色哟哟久久| 最新的欧美精品一区二区| 一区二区三区免费毛片| 人妻 亚洲 视频| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| 国产一级毛片在线| 久久鲁丝午夜福利片| 18+在线观看网站| 亚洲中文av在线| 色吧在线观看| 丝袜在线中文字幕| 亚洲精品aⅴ在线观看| 热re99久久国产66热| 日本91视频免费播放| 这个男人来自地球电影免费观看 | 免费人妻精品一区二区三区视频| 一级毛片我不卡| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 51国产日韩欧美| 老司机影院毛片| 亚洲av电影在线观看一区二区三区| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| 免费看不卡的av| 丰满人妻一区二区三区视频av| 免费黄频网站在线观看国产| 最近最新中文字幕免费大全7| 亚洲国产精品国产精品| 国产欧美另类精品又又久久亚洲欧美| 日韩精品免费视频一区二区三区 | 岛国毛片在线播放| 九色成人免费人妻av| 精品99又大又爽又粗少妇毛片| 日本av免费视频播放| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 校园人妻丝袜中文字幕| 久久这里有精品视频免费| 国产一区亚洲一区在线观看| 亚洲国产精品国产精品| 视频区图区小说| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美日韩另类电影网站| 亚洲欧美精品自产自拍| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 成人特级av手机在线观看| 老女人水多毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲一区二区精品| 成人毛片60女人毛片免费| 日韩免费高清中文字幕av| 成人亚洲精品一区在线观看| 久久97久久精品| a级片在线免费高清观看视频| 在线观看三级黄色| 国产欧美日韩一区二区三区在线 | 日日啪夜夜撸| 男人和女人高潮做爰伦理| 免费av不卡在线播放| 爱豆传媒免费全集在线观看| 亚洲精品456在线播放app| 亚洲精品视频女| 大香蕉97超碰在线| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| a级毛色黄片| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 少妇的逼水好多| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕| 大香蕉97超碰在线| 看十八女毛片水多多多| 天美传媒精品一区二区| 两个人免费观看高清视频 | 久久精品国产鲁丝片午夜精品| 91aial.com中文字幕在线观看| 亚洲婷婷狠狠爱综合网| kizo精华| 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 欧美日韩精品成人综合77777| 国产老妇伦熟女老妇高清| 欧美日本中文国产一区发布| 久久久国产一区二区| 国产乱人偷精品视频| 国产精品成人在线| 热99国产精品久久久久久7| 亚洲久久久国产精品| 91久久精品国产一区二区三区| 成人美女网站在线观看视频| 免费播放大片免费观看视频在线观看| 亚洲欧美日韩另类电影网站| 精品国产露脸久久av麻豆| 久久久久久久精品精品| 国产高清三级在线| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 成人美女网站在线观看视频| 丰满饥渴人妻一区二区三| 国产精品免费大片| 亚洲成人一二三区av| 久久久久久久久久久免费av| 精品国产乱码久久久久久小说| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 午夜视频国产福利| 99热网站在线观看| 免费看av在线观看网站| 国产黄色免费在线视频| a 毛片基地| 精品熟女少妇av免费看| 午夜91福利影院| 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 少妇被粗大的猛进出69影院 | 麻豆成人午夜福利视频| 欧美三级亚洲精品| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 国产爽快片一区二区三区| 日韩大片免费观看网站| 蜜桃在线观看..| av国产精品久久久久影院| 久久久久久久久久人人人人人人| 女性被躁到高潮视频| 婷婷色麻豆天堂久久| 国产91av在线免费观看| 国产国拍精品亚洲av在线观看| 人人妻人人爽人人添夜夜欢视频 | 伊人久久精品亚洲午夜| 春色校园在线视频观看| 久久99精品国语久久久| 又爽又黄a免费视频| 国国产精品蜜臀av免费| 国产精品.久久久| 亚洲av免费高清在线观看| 亚洲真实伦在线观看| 国产精品蜜桃在线观看| 精品久久久久久久久亚洲| 亚洲精品国产av蜜桃| 91久久精品电影网| 国产熟女午夜一区二区三区 | 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 亚洲色图综合在线观看| 国产成人精品无人区| 妹子高潮喷水视频| 免费不卡的大黄色大毛片视频在线观看| 久久久欧美国产精品| 日日爽夜夜爽网站| 成人毛片a级毛片在线播放| 免费看av在线观看网站| 黑人高潮一二区| 亚洲性久久影院| 插阴视频在线观看视频| 免费人妻精品一区二区三区视频| 精品亚洲成a人片在线观看| 狂野欧美激情性xxxx在线观看| h日本视频在线播放| 亚洲精品日本国产第一区| 亚洲精品日韩av片在线观看| av在线老鸭窝| 少妇裸体淫交视频免费看高清| 99视频精品全部免费 在线| 韩国av在线不卡| 亚洲国产精品专区欧美| 欧美老熟妇乱子伦牲交| 亚洲va在线va天堂va国产| 国产精品国产三级专区第一集| 久久久久久久久久久丰满| 激情五月婷婷亚洲| 国产高清不卡午夜福利| 国产精品国产三级国产专区5o| 亚洲综合色惰| 亚洲国产精品999| 午夜福利影视在线免费观看| 国产精品成人在线| 午夜影院在线不卡| 久久精品久久精品一区二区三区| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频 | 亚洲av在线观看美女高潮| 亚洲精品国产成人久久av| 免费av不卡在线播放| 99热6这里只有精品| 色婷婷av一区二区三区视频| 日韩成人伦理影院| 久久国内精品自在自线图片| 在线观看免费日韩欧美大片 | 国产精品一区二区性色av| 欧美成人精品欧美一级黄| 高清av免费在线| 伦理电影大哥的女人| 亚洲国产精品成人久久小说| 亚洲欧洲国产日韩| 蜜桃在线观看..| 亚洲综合精品二区| 久久国产乱子免费精品| 日本欧美视频一区| 久久精品久久精品一区二区三区| 国产精品一区二区性色av| 国产欧美日韩一区二区三区在线 | 国产中年淑女户外野战色| 亚洲怡红院男人天堂| 狂野欧美激情性xxxx在线观看| 亚洲经典国产精华液单| 国产日韩欧美视频二区| 色吧在线观看| 一个人看视频在线观看www免费| 一区二区三区免费毛片| 日本与韩国留学比较| 国产日韩欧美在线精品| 高清不卡的av网站| 亚洲精品日韩在线中文字幕| 高清在线视频一区二区三区| 国产精品欧美亚洲77777| av天堂中文字幕网| 另类精品久久| 亚洲内射少妇av| 波野结衣二区三区在线| 久久精品久久久久久久性| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 国产欧美另类精品又又久久亚洲欧美| 久久久久国产网址| 狂野欧美白嫩少妇大欣赏| 桃花免费在线播放| 亚洲久久久国产精品| 丝袜脚勾引网站| 99热网站在线观看| 精品人妻熟女毛片av久久网站| 国产老妇伦熟女老妇高清| 精品国产一区二区久久| 午夜福利,免费看| av女优亚洲男人天堂| www.色视频.com| 99国产精品免费福利视频| 一级毛片我不卡| 免费观看a级毛片全部| 成人午夜精彩视频在线观看| 国产在视频线精品| av福利片在线| 日韩在线高清观看一区二区三区| 春色校园在线视频观看| 少妇被粗大猛烈的视频| kizo精华| 中文乱码字字幕精品一区二区三区| 日本wwww免费看| 99国产精品免费福利视频| 国产精品99久久99久久久不卡 | 色婷婷久久久亚洲欧美| 哪个播放器可以免费观看大片| 乱码一卡2卡4卡精品| 大片电影免费在线观看免费| 久久久久久久久久成人| 好男人视频免费观看在线|