• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    2012-12-11 09:26:04關(guān)慶豐李海波李洪吉
    物理化學(xué)學(xué)報 2012年8期
    關(guān)鍵詞:慶豐鈦酸海波

    林 雪 呂 鵬 關(guān)慶豐,* 李海波 李洪吉 蔡 杰 鄒 陽

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    Bi3.25La0.75Ti3O12納米線的可見光催化性能

    林 雪1,2呂 鵬1關(guān)慶豐1,*李海波3李洪吉2蔡 杰1鄒 陽1

    (1江蘇大學(xué)材料科學(xué)與工程學(xué)院,江蘇鎮(zhèn)江212013;2吉林師范大學(xué)化學(xué)學(xué)院,環(huán)境友好材料制備與應(yīng)用教育部重點實驗室,吉林四平136000;3吉林師范大學(xué)物理學(xué)院,吉林四平136000)

    研究了用一步水熱法制備的摻鑭鈦酸鉍(Bi3.25La0.75Ti3O12,BLT)納米線的光學(xué)和可見光催化性能,并對其晶體結(jié)構(gòu)和微觀結(jié)構(gòu)用X射線衍射(XRD)、透射電子顯微鏡(TEM)和高分辨透射電子顯微鏡(HRTEM)等手段進(jìn)行了表征.結(jié)果表明,制備的納米線為純相的Bi3.25La0.75Ti3O12,平均直徑約為25 nm.室溫光致發(fā)(PL)光譜顯示BLT納米線在433和565 nm附近有較強(qiáng)的發(fā)射峰,分別對應(yīng)激子發(fā)射和表面缺陷發(fā)光.紫外-可見漫反射光譜(UV-Vis DRS)表明BLT樣品的帶隙能約為2.07 eV.利用可見光(λ>420 nm)照射下的甲基橙(MO)降解實驗評價了BLT樣品的光催化性能.結(jié)果表明,BLT的光催化活性比商用TiO2催化劑P25、摻氮TiO2和純相鈦酸鉍(Bi4Ti3O12,BIT)高得多.BLT光催化劑具有更高催化活性的原因是La3+離子的摻雜拓展了BIT對可見光的吸收范圍,同時抑制了BIT的光生電子-空穴的復(fù)合.

    鈦酸鉍;摻鑭;納米線;水熱合成;光催化降解;可見光照射

    1 Introduction

    The worldwide quest for clean and renewable energy sources has encouraged a great deal of research activities and development in the field of solar energy in the last twenty years.Solar energy as a clean energy is inexhaustible in supply and always available for use.Therefore,high efficient catalyst,photochemical cell and solar cell have become the hotspot of scientific research.Since the discovery of the photocatalytic splitting of water on the TiO2electrodes by Fujishima and Honda1in 1972,the application of semiconductor photocatalysts on degradation ofpollutantshasreceived greatattention.2-7Among all photocatalysts,TiO2attracts the most attention due to its chemical stability,low cost,nontoxicity,and high photocatalytic activity.8-12However,the band gap energy of the TiO2is 3.2 eV.It absorbs only the ultraviolet light(λ≤386.5 nm) which only accounts for about 4.0%of the sunlight.In order to improve the efficiency of the sunlight utilization,the development of photocatalysts with high activity under a wide range of visible light is highly desirable.13-15

    In recent years,bismuth titanate photocatalysts,such as Bi12TiO20,16Bi2Ti2O7,17and Bi4Ti3O12(BIT),18have been widely studied as a class of promising photocatalysts which can respond under visible light.Among bismuth titanate photocatalysts,Bi4Ti3O12(BIT)has received more attention for its high photocatalytic ability in degrading the organic pollutants.18-20Photocatalytic properties of BIT have been examined before. Kudo et al.18had reported the preparation of BIT by the solidsolid method and examined the photocatalytic activity of BIT for water splitting.Recently,Yao et al.19,20reported the preparation of BIT by using the chemical solution decomposition (CSD)method and examined the photocatalytic activity for oxidizing methyl orange(MO).In our previous work,21we presented the hydrothermal synthesis of BIT microspheres and tested the photocatalytic properties of the as-prepared BIT spheres. Furthermore,Metal element doping is one of the typical approaches to extend the spectral response of BIT photocatalysts by providing defect states in the band gap.22-24

    However,few papers have revealed the photocatalytic activity of Lanthanum doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT) crystals for oxidizing organic contaminants in water.It is known that the activity of photocatalysts is influenced by a wide variety of factors,such as the catalyst preparation conditions,crystal morphology,the adsorption affinity and capacity for organic contaminants,pH,intrinsic solid state defects and so on.The aim of the present paper is to study the influence of La-doping on the microstructure,optical properties,and photocatalytic properties of BIT photocatalysts.

    2 Experimental

    2.1 Preparation of BLT photocatalysts

    All the chemicals were analytically graded(purchased from Shanghai Chemical Industrial Company)and used without further purification.BLT photocatalysts were prepared with a one-step hydrothermal synthesis.24Bismuth nitrate(Bi(NO3)3· 5H2O),lanthanum nitrate(La(NO3)3·6H2O),and titanium tetrachloride(TiCl4)were chosen as starting materials with the bismuth:lanthanum:titanium ions molar ratios of 3.25:0.75:3.00. TiCl4(10 mL)was dissolved in cold water(50 mL)under vigorous stirring,then mixed with Bi(NO3)3·5H2O and La(NO3)3· 6H2O.The concentration of the alkali solution was adjusted using KOH.Before being transferred to a 20 mL stainless steel autoclave,the solution mixture was prepared under an ultrasonic water bath for 30 min and kept at a filling ratio of 70%(volume fraction).The autoclave was kept at 180°C for 24 h,and cooled to room temperature after the reaction.The precipitates were washed with deionized water and ethanol three times,separately.The final products were dried at 100°C for 2 h in a vacuum box.The samples prepared for comparison are(i)BIT and (ii)N doped TiO2(N-TiO2).For more details about the preparation of BIT and N-TiO2,the readers can refer to our previous work.24-26

    2.2 Characterization of photocatalysts

    The crystal structures of the samples were characterized by X-ray diffraction(XRD,America PE,D/max 2500)with Cu Kαradiation.Transmission electron microscopy (TEM)and high-resolution transmission electron microscopy(HRTEM) were conducted using a JEM-2100F(Japan JEOL)instrument. The surface areas of samples were measured by TriStar 3000-BET/BJH Surface Area.The optical property was obtained by thephotoluminescence(PL)measurementusing HR800 LabRam Infinity Spectro photometer excited by a continuous He-Cd laser with a wavelength of 325 nm at a power of 50 mW.The UV-Vis diffuse reflectance spectra(DRS)were recorded for the dry-pressed disk sample using a scan UV-Vis spectrophotometer(UV-Vis,Japan SHIMADZU,UV-2550) equipped with an integrating sphere assembly.

    2.3 Photocatalytic activity test

    The photocatalytic degradation of MO was employed to evaluate the photocatalytic activities of the samples.A 300 W Xe lamp(λ>420 nm)was used to provide visible light irradiation.Photocatalyst(0.10 g)was added to 100 mL of MO solution(0.01 mmol·L-1).Before irradiation,the suspensions were magnetically stirred in the dark for 30 min to ensure the adsorption-desorption equilibrium between the photocatalysts and MO.Then the solution was exposed to visible light irradiation under magnetic stirring.At given time intervals,4 mL of suspension was sampled and centrifuged to remove the photocatalyst particles.Then,the catalyst-free dye solution was analyzed by a UV-2550 spectrometer to record intensity of the maximum band at 462 nm in the UV-Vis absorption spectra.

    3 Results and discussion

    3.1 XRD analysis

    XRD patterns of the as-prepared BLT products synthesized at OH-concentrations of 3 and 8 mol·L-1,respectively,are shown in Fig.1.All the reflection peaks can be indexed according to the JCPDS card No.36-1486,suggesting that the as-prepared products are of layered-perovskite structure(Bi4Ti3O12). No peaks of impurities were detected from the patterns.The strong and sharp peaks indicate high crystallinities of BLT samples.

    3.2 TEM analysis

    TEM was employed to observe the morphologies and structure details of BLT products.Fig.2a shows the TEM images of a typical example of nanoparticles.It can be observed that BLT product prepared at OH-concentration of 3 mol·L-1was composed of nano-sized particles with average size about 20 nm, and each particle is nearly spherical in shape(as shown in Fig.2b).Fig.2c gives BLT sample obtained at OH-concentration of 8 mol·L-1.It can be seen that there are BLT nanowires with width of approximate 25 nm and lengths up to several micrometres.Further structure details of BLT nanowires were obtained by TEM,as illustrated in Fig.2d.It reveals that BLT nanowires are made up of nanoparticles with average size of about 4 nm.These results show that OH-concentration seems to play a key role in controlling the morphologies of BLT crystals.

    Although the crystal growth habit is mainly determined by the intrinsic structure,it is also affected by the external conditions such as pH of the solution,saturation,temperature and so on.23As we all know,OH-concentration in the precursor solution has been found to be very important for the microstructure.It has been reported that the morphologies of Bi2Ti2O7crystals can be controlled by adjusting the OH-concentrations suggesting that OH-ionscan behave as a surfactant,17obtaining a better understandingof the role of OH-ions in the hydrothermal process.On the basis of our previous report about Bi3.25Nd0.75Ti3O12(BNdT)nanostructure and BNdT nanosheets and nanowires,24at lower concentration of OH-,only nanoparticles were obtained.When the OH-concentration was increased,nanowires were obtained.Our experimental results are in accordance with the above mechanism.Thus,the pH value plays an important role in controlling the formation of seeds and the growth rates to shape BLT particles.

    Fig.1 XRD patterns of BLT and BIT samplesT=180°C,t=24 h

    In this work,the condition of the alkaline medium as a factor is considered to play a key part in the formation of BLT nanowires.At lower OH-concentration(3 mol·L-1),BLT nuclei produced in solution can aggregate to form small particles. These particles may serve as crystal seeds to grow the nanowire structure.With the increase of alkalinity(OH-concentration:8 mol·L-1),a large amount of BLT nuclei produced in the solution,leads to form the very high supersaturation solution, which favors the formation of nanowires structure.Hence,the formation of BLT nanowires in the present route is resulted from the highly alkaline medium.27

    In order to investigate the detailed crystal structure of the as-prepared BLT sample,HRTEM images for BLT nanowires were measured,as shown in Fig.3.The lattice distance for BLT sample is calculated to be 0.38 nm,which is in agreement with the(111)lattice plane of the layered-perovskite BIT.Thus,we can conclude that the low concentration doping of La3+ions does not induce the formation of separate purity phases(lanthanum metal).

    Fig.4 shows EDX analytical results of BLT composite,the molar ratios of Bi/Ti and Bi/La are calculated to be 1.09 and 4.74,respectively,which are in accordance with the nominal molar ratio of Bi3.25La0.75Ti3O12.

    3.3 PL spectral analysis

    Fig.2 TEM images of BLT samples obtained at different concentrations of OH-c(OH-)/(mol·L-1):(a,b)3,(c,d)8

    Fig.5 shows PL spectra of BLT and BIT samples measured at room temperature at an excitation wavelength of 325 nm. The as-prepared BLT sample showed the presence of two PL bands.The first band was detected at 400 nm(violet emission), while the second was observed at 596 nm(yellow emission).It could be deduced that there exited surface oxygen vacancy in BLT nanowires and the two emission bands might arise respectively from the excitonic emission and surface-defect.28The fluorescence intensity of BLT was significantly weaker than that of BIT product,which showed the recombination restraint of the e-/h+pairs resulting from doping of La3+ions.The reduction of fluorescence indicates that the surface-defect of BLT is much less than that of BIT.And the decrease of surface-defect enhances the activity of photocatalysis.

    Fig.3 HRTEM image of BLT nanowiresT=180°C,t=24 h

    Fig.4 EDX spectrum of the as-prepared BLT sampleT=180°C,t=24 h

    Fig.5 PLspectra of BLT and BIT samples T=230°C,t=24 h

    3.4 UV-Vis DRS spectral analysis

    Fig.6 UV-Vis DRS of different samples(a)N-TiO2,(b)P25 TiO2,(c)BIT,(d)BLT;A:absorbance.The inset shows the plot of(Ahv)2as a function of photon energy.

    Fig.6 shows the UV-Vis DRS of P25 TiO2,N-TiO2,BIT,and BLT photocatalysts.It shows that the absorption onset wavelength(λg)of BLT sample is around 600 nm,which is shifted 175,150,and 50 nm to visible region compared to P25 TiO2, N-TiO2and BIT,respectively.The absorption coefficient(α)as a function of photon energy can be expressed by the Tauc relation:29

    where hv,C,and Egare the photon energy,a constant,and the energy gap,respectively.And n is an index determined by the nature of the electron transition during the absorption process. It is well known that there are two types of fundamental optical transitions,namely direct(n=1/2)and indirect(n=2).For BLT, it is a direct band gap semiconductor,so here n=1/2.Since absorbance(A)is proportional to absorption coefficient,we use absorbance to substitute absorption coefficient.22The plot of (Ahv)2versus hv is presented in the inset of Fig.6.Thus,the band gap energy of BLT is calculated to be 2.07 eV,which shows a marked red shift in the absorbance compared to P25 TiO2,N-TiO2,due to the contribution of 6s electrons from Bi3+.22It indicates that BLT photocatalyst has a suitable band gap for photocatalytic decomposition of organic contaminants under visible light irradiation.The absorption spectrum of BLT photocatalyst has steep shape which shows that the absorption relevant to the band gap is due to the intrinsic transition of the nanomaterials.30

    3.5 Degradation of MO using BLT photocatalysts

    Photodegradation experiments of MO were employed under visible light irradiation to test the photocatalytic performance of N-TiO2,P25 TiO2,BIT,and BLT.UV-Vis spectral changes of MO solution by BLT are displayed in Fig.7(A)while the temporal courses of the photodegradation of MO in different catalyst aqueous dispersions are shown in Fig.7(B).It can be observed that the peaks at 462 and 271 nm are reduced with the increase of irradiation time(Fig.7(A)).It shows that MO solution is stable under visible light irradiation in the absence of any catalyst(Fig.7(B)).The degradation rates of P25 TiO2, N-TiO2,BIT,and BLT are 95.0%,80.0%,52.0%,and 18.0%, respectively.Thus,the addition of BLT photocatalyst leads to the obvious degradation of MO.

    Fig.7 (a)UV-Vis spectral changes of MO by BLT sample; (b)Temporal courses of the photodegradation of MO in different catalyst aqueous dispersions;(c)First-order plots for the photocatalytic degradation of MO using different catalysts(a)without catalyst,(b)P25 TiO2,(c)N-TiO2,(d)BIT,(e)BLT

    To quantitatively study the photocatalytic reaction kinetics of the MO degradation in the experiments,the degradation data was analyzed with the pseudo-first-order model,as expressed by Eq.(2)as follows:31

    where C0and C represent MO concentrations at time zero and t,respectively,and k is the pseudo first-order rate constant.The first-order linear relationship was revealed by the plots of the ln(C/C0)vs irradiation time(t),as shown in Fig.7(C).The reaction rate constant k for P25 TiO2,N-TiO2,BIT,and BLT are determined to be 5.81×10-4,1.94×10-3,4.13×10-3,and 7.85×10-3min-1,respectively(Table 1),indicating the highest photocata-lytic performance of BLT nanowires.The BET surface areas of samples were also measured(as shown in Table 1).Based on the above analysis,it can be concluded that La doping is one of the typical approaches to improve the performance of BIT photocatalysts.

    Table 1 BET specific surface area(SBET)and reaction rate constants(k)of samples

    3.6 Stability of BLT as the photocatalyst

    Fig.8 shows the XRD patterns of the BLT sample before and after 360 min of visible light irradiation.It can be seen that both the position and the intensity of the peaks in the XRD pattern are almost the same to those of BLT before irradiation. Thus,BLT photocatalyst is considered to be relatively stable to visible light irradiation under the present experimental conditions.This result indicates a possibility for application of BLT photocatalyst in the waste water treatment.

    The stability tests were also conducted by using recycling reactions four times for the photodegradation of MO over BLT photocatalyst under visible light irradiation,and the results are displayed in Fig.9.No significant decrease in catalytic activity was observed in the recycling reactions.Combined with the XRD patterns,all evidences demonstrate that the BLT photocatalyst is a stable photocatalyst for degradation of MO under visible light irradiation.

    3.7 Photocatalytic activity mechanism

    On the basis of our previous work,24a schematic diagram of the band levels of doped BIT and the possible reaction mechanism of the photocatalytic procedure are proposed and illustrated.Thus,La doping would result in the improvement of the corresponding photocatalytic properties,as clarified by following equations:

    Fig.8 XRD patterns of BLT before and after visible light irradiation

    Fig.9 Stability evaluation for BLTfour reaction cycles for photodegradation of MO under visible light irradiation

    Furthermore,the photocatalytic activity of the semiconductor is very closely related to its corresponding band structure. The band gap of oxides is generally defined by the O 2p level and transition metal d level.31,32As calculated by Goto et al.33the conduction band(CB)and valence band(VB)of Nd doped bismuth titanate(BNdT)consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and Nd 5d.These bands meet the potential requirements of organic oxidation.Therefore,in the present hybridized VB composed of O 2p and Bi 6s,the photogenerated carriers may own a high mobility.Then it will reduce the recombination opportunities of the photogenerated electron-hole pairs that could effectively move to the crystal surface to degrade the absorbed MO molecules.Based on the above consideration,we presume that the CB and VB of BLT consist mostly of empty Ti 3d and occupied O 2p orbitals,respectively,and the latter is hybridized with Bi 6s and La 5d.The higher photocatalytic activity of BLT over TiO2and BIT is attributed to be suitable band gap and stable e-/h+pair formation in the VB formed by the hybrid orbitals of Bi 6s,La 5d,and O 2p,and the CB of Ti 3d.

    4 Conclusions

    Bi3.25La0.75Ti3O12nanowires were synthesized by a one-step hydrothermal process without the use of any surfactant or template.The optical band gap of BLT nanowires was estimated to be about 2.07 eV,which proved that BLT photocatalysts could respond to the visible light.Most importantly,BLT photocatalysts with good stability exhibited higher photocatalytic performance in the degradation of methyl orange under visible light irradiation(λ>420 nm)than traditional N doped TiO2,commercial P25 TiO2,and pure BIT.Over this catalyst,the 95.0%degradation of MO solution(0.01 mmol·L-1)was obtained after visible light irradiation for 360 min.In addition,after 4 recycles,there was no significant decrease in its photocatalytic activity,indicating that BLT is a stable photocatalyst for degradation of MO under visible light irradiation.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/ 238037a0

    (2)Lu,S.Y.;Wu,D.;Wang,Q.L.;Yan,J.H.;Buekens,A.G.;Cen, K.F.Chemosphere 2011,82,1215.doi:10.1016/j. chemosphere.2010.12.034

    (3) Xie,J.;Wang,H.;Duan,M.Acta Phys.-Chim.Sin.2011,27(1), 193. [謝 娟,王 虎,段 明.物理化學(xué)學(xué)報,2011,27(1), 193.]doi:10.3866/PKU.WHXB20110124

    (4) Yang,X.H.;Liu,C.;Liu,J.K.;Zhu,Z.C.Acta Phys.-Chim. Sin.2011,27(12),2939.[楊小紅,劉 暢,劉金庫,朱子春.物理化學(xué)學(xué)報,2011,27(12),2939.]doi:10.3866/PKU. WHXB20112939

    (5) Hu,Y.F.;Li,Y.X.;Peng,S.Q.;Lü,G.X.;Li,S.B.Acta Phys.-Chim.Sin.2008,24(11),2071.[胡元方,李越湘,彭紹琴,呂功煊,李樹本.物理化學(xué)學(xué)報,2008,24(11),2071.] doi:10.3866/PKU.WHXB20081123

    (6) Zhang,L.S.;Wang,H.L.;Chen,Z.G.;Wong,P.K.;Liu,J.S. Appl.Catal.B:Environ.2011,106,1.

    (7) Zhang,L.;Cao,X.F.;Chen,X.T.;Xue,Z.L.J.Colloid Interface Sci.2011,354,630.doi:10.1016/j.jcis.2010.11.042

    (8) Selishchev,D.S.;Kolinko,P.A.;Kozlov,D.V.J.Photochem. Photobiol.A 2012,229,11.doi:10.1016/j.jphotochem. 2011.12.006

    (9) Zhang,J.W.;Jin,Z.S.;Feng,C.X.;Yu,L.G.;Zhang,J.W.; Zhang,Z.J.J.Solid State Chem.2011,184,3066.doi:10.1016/ j.jssc.2011.09.016

    (10) Su,Y.R.;Yu,J.G.;Lin,J.J.Solid State Chem.2007,180,2080. doi:10.1016/j.jssc.2007.04.028

    (11)Xu,J.;Wang,W.Z.;Shang,M.;Gao,E.P.;Zhang,Z.J.;Ren,J. J.Hazard.Mater.2011,196,426.doi:10.1016/j.jhazmat. 2011.09.010

    (12)Wang,H.Q.;Wu,Z.B.;Liu,Y.;Wang,Y.J.Chemosphere 2008, 74,773.

    (13) Xu,J.J.;Chen,M.D.;Fu,D.G.Appl.Surf.Sci.2011,257, 7381.doi:10.1016/j.apsusc.2011.02.030

    (14) Ghorai,T.K.;Biswas,S.K.;Pramanik,P.Appl.Surf.Sci.2008, 254,7498.doi:10.1016/j.apsusc.2008.06.042

    (15) Zhang,Y.L.;Deng,L.J.;Zhang,G.K.;Gan,H.H.Colloids and Surfaces A:Physicochem.Eng.Aspects.2011,384,137. doi:10.1016/j.colsurfa.2011.03.043

    (16) Zhang,H.P.;Lü,M.K.;Liu,S.W.;Xiu,Z.L.;Zhou,G.J.; Zhou,Y.Y.;Qiu,Z.F.;Zhang,A.Y.;Ma,Q.Surf.Coat.Tech. 2008,202,4930.doi:10.1016/j.surfcoat.2008.04.081

    (17) Hou,J.G.;Jiao,S.Q.;Zhu,H.M.;Kumar,R.V.J.Solid State Chem.2011,184,154.doi:10.1016/j.jssc.2010.11.017

    (18) Kudo,A.;Hijii,S.Chem.Lett.1999,28(10),1103.

    (19)Yao,W.F.;Xu,X.H.;Wang,H.;Zhou,J.T.;Yang,X.N.; Zhang,Y.;Shang,S.X.;Huang,B.B.Appl.Catal.B:Environ. 2004,52,109.doi:10.1016/j.apcatb.2004.04.002

    (20)Yao,W.F.;Wang,H.;Xu,X.H.;Shang,S.X.;Hou,Y.;Zhang, Y.;Wang,M.Mater.Lett.2003,57,1899.doi:10.1016/ S0167-577X(02)01097-2

    (21) Lin,X.;Lv,P.;Guan,Q.F.;Li,H.B.;Zhai,H.J.;Liu,C.B. Appl.Surf.Sci.2012,258,7146.doi:10.1016/j.apsusc. 2012.04.019

    (22)Wang,Z.Z.;Qi,Y.J.;Qi,H.Y.;Lu,C.J.;Wang,S.M.J.Mater. Sci.:Mater.Electron 2010,21,523.doi:10.1007/s10854-009-9950-z

    (23)Yao,W.F.;Wang,H.;Shang,S.X.;Xu,X.H.;Yang,X.N.; Zhang,Y.;Wang,M.J.Mol.Catal.A:Chem.2003,198,343. doi:10.1016/S1381-1169(02)00699-4

    (24) Lin,X.;Guan,Q.F.;Li,H.B.;Li,H.J.;Ba,C.H.;Deng,H.D. Acta Phys.-Chim.Sin.2012,28(6),1481. [林 雪,關(guān)慶豐,李海波,李洪吉,巴春華,鄧海德.物理化學(xué)學(xué)報,2012,28(6), 1481.]doi:10.3866/PKU.WHXB201203313

    (25) Lin,X.;Guan,Q.F.;Li,H.B.;Liu,Y.;Zou,G.T.Sci.China Ser.G 2012,55,33.[林 雪,關(guān)慶豐,李海波,劉 洋,鄒廣田.中國科學(xué)G,2012,55,33.]doi:10.1007/s11433-011-4574-8

    (26) Xu,G.C.;Pan,L.;Guan,Q.F.;Zou,G.T.Acta Phys.Sin.2006, 55,3080.[徐國成,潘 玲,關(guān)慶豐,鄒廣田.物理學(xué)報, 2006,55,3080.]

    (27) Yang,J.H.;Zheng,J.H.;Zhai,H.J.;Yang,L.L.;Lang,J.H.; Gao,M.J.Alloy.Compd.2009,481,628.doi:10.1016/j.jallcom. 2009.03.108

    (28) Li,L.;Yang,H.Q.;Ma,J.H.;Jia,D.Z.Chin.J.Inorg.Chem. 2012,28(1),25.[李 麗,楊合情,馬軍虎,賈殿贈.無機(jī)化學(xué)學(xué)報,2012,28(1),25.]

    (29)Xu,D.;Gao,A.M.;Deng,W.L.Acta Phys.-Chim.Sin.2008, 24(7),1219.[許 迪,高愛梅,鄧文禮.物理化學(xué)學(xué)報,2008, 24(7),1219.]doi:10.3866/PKU.WHXB20080717

    (30) Zhu,X.Q.;Zhang,J.L.;Chen,F.Chemosphere 2010,78,1350. doi:10.1016/j.chemosphere.2010.01.002

    (31) Cheng,H.F.;Huang,B.B.;Dai,Y.;Qin,X.Y.;Zhang,X.Y.; Wang,Z.Y.;Jiang,M.H.J.Solid State Chem.2009,182,2274. doi:10.1016/j.jssc.2009.06.006

    (32) Li,B.X.;Wang,Y.F.;Liu,T.X.Acta Phys.-Chim.Sin.2011, 27(12),2946.[李本俠,王艷芬,劉同宣.物理化學(xué)學(xué)報, 2011,27(12),2946.]doi:10.3866/PKU.WHXB20112946

    (33)Goto,T.;Noguchi,Y.;Soga,M.;Miyayama,M.Mater.Res. Bull.2005,40,1044.doi:10.1016/j.materresbull.2005.02.025

    April 9,2012;Revised:May 17,2012;Published on Web:May 17,2012.

    Visible Light Photocatalytic Properties of Bi3.25La0.75Ti3O12Nanowires

    LIN Xue1,2LU¨Peng1GUAN Qing-Feng1,*LI Hai-Bo3LI Hong-Ji2CAI Jie1ZOU Yang1(1School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,Jiangsu Porvnce,P.R.China;2Key Laboratory of Preparation and Application Environmentally Friendly Materials of the Ministry of Education,College of Chemistry,Jilin Normal University,Siping 136000,Jilin Province,P.R.China;3College of Physics,Jilin Normal University, Siping 136000,Jilin Province,P.R.China)

    Lanthanum-doped bismuth titanate(Bi3.25La0.75Ti3O12,BLT)nanowires were synthesized by a one-step hydrothermal process and their optical and photocatalytic properties were investigated.Their crystal structure and microstructures were characterized using X-ray diffraction(XRD),transmission electron microscopy(TEM),and high-resolution transmission electron microscopy(HRTEM).The BLT nanowires obtained are single-phase with an average diameter of 25 nm.The room temperature photoluminescence(PL)spectrum reveals two visible emission peaks at 400 and 596 nm,which are assigned to excitonic and surface-defect emissions,respectively.The UV-visible diffuse reflectance spectrum(UV-Vis DRS)reveals that the band gap of BLT nanowires is 2.07 eV.The prepared BLT nanowires are stable and exhibit higher photocatalytic activities in the degradation of methyl orange(MO) under visible light irradiation(λ>420 nm)compared with commercial P25 TiO2,traditional N-doped TiO2(N-TiO2),and pure bismuth titanate(Bi4Ti3O12,BIT).The high photocatalytic performance of BLT photocatalysts is attributed to the strong visible light absorption and the recombination restraint of the e-/h+pairs resulting from the presence of La3+ions.

    Bismuth titanate;Lanthanum doping;Nanowire;Hydrothermal synthesis; Photocatalytic degradation; Visible light irradiation

    10.3866/PKU.WHXB201205172

    ?Corresponding author.Email:guanqf@ujs.edu.cn;Tel:+86-13852904936;Fax:+86-434-3290363.

    The project was supported by the Key Laboratory of Preparation andApplication Environmentally Friendly Materials of the Ministry of Education of China.

    環(huán)境友好材料制備與應(yīng)用教育部重點實驗室項目資助

    O643

    猜你喜歡
    慶豐鈦酸海波
    搏浪
    科教新報(2023年25期)2023-07-10 05:59:40
    Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions*
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    山清水秀
    科教新報(2020年2期)2020-02-14 05:57:58
    說海波
    胺/層狀鈦酸鹽復(fù)合材料對CO2的吸附性能研究
    這里有爺爺
    鈦酸鋰電池脹氣問題的研究進(jìn)展
    六鈦酸鉀納米晶須的水熱反應(yīng)相轉(zhuǎn)變行為
    AltBOC navigation signal quality assessment and measurement*
    特级一级黄色大片| 菩萨蛮人人尽说江南好唐韦庄 | 秋霞在线观看毛片| 舔av片在线| 九草在线视频观看| 波多野结衣巨乳人妻| 在线播放无遮挡| 国产伦在线观看视频一区| 一进一出抽搐动态| 禁无遮挡网站| 能在线免费看毛片的网站| 国国产精品蜜臀av免费| 少妇裸体淫交视频免费看高清| 色综合站精品国产| 国产高清有码在线观看视频| 一边摸一边抽搐一进一小说| 老司机影院成人| 欧美一区二区精品小视频在线| 国产亚洲5aaaaa淫片| 欧美bdsm另类| 久久精品夜夜夜夜夜久久蜜豆| 久久99精品国语久久久| 国产一区亚洲一区在线观看| 一边摸一边抽搐一进一小说| 亚洲精品乱码久久久v下载方式| 国产探花极品一区二区| 亚洲精品自拍成人| 激情 狠狠 欧美| 可以在线观看的亚洲视频| 成人美女网站在线观看视频| 国产极品精品免费视频能看的| 日韩欧美一区二区三区在线观看| 亚洲av熟女| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| 国产黄色小视频在线观看| 国产高清有码在线观看视频| 夜夜看夜夜爽夜夜摸| av黄色大香蕉| 天美传媒精品一区二区| 免费人成视频x8x8入口观看| 欧美性感艳星| 一个人观看的视频www高清免费观看| 99久久精品国产国产毛片| 中文字幕精品亚洲无线码一区| 蜜桃亚洲精品一区二区三区| 真实男女啪啪啪动态图| 国产亚洲精品av在线| 变态另类成人亚洲欧美熟女| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久亚洲| 中文精品一卡2卡3卡4更新| 深爱激情五月婷婷| 69av精品久久久久久| 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 波野结衣二区三区在线| 久久综合国产亚洲精品| 国产精品人妻久久久影院| 久久久精品94久久精品| 久久综合国产亚洲精品| 亚洲精品国产成人久久av| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 国产精品乱码一区二三区的特点| 91久久精品电影网| 亚洲电影在线观看av| 精品不卡国产一区二区三区| av在线观看视频网站免费| 国产真实伦视频高清在线观看| 2021天堂中文幕一二区在线观| 午夜福利在线在线| 亚洲乱码一区二区免费版| 国内揄拍国产精品人妻在线| 免费观看人在逋| 麻豆成人午夜福利视频| 国产综合懂色| 国产白丝娇喘喷水9色精品| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片免费观看直播| 深夜精品福利| 日本av手机在线免费观看| 亚洲va在线va天堂va国产| av女优亚洲男人天堂| 亚洲成人久久爱视频| 国产亚洲av嫩草精品影院| 熟女人妻精品中文字幕| 免费黄网站久久成人精品| 亚洲三级黄色毛片| 色综合色国产| 久久欧美精品欧美久久欧美| 九九久久精品国产亚洲av麻豆| 舔av片在线| 国内精品宾馆在线| 午夜福利成人在线免费观看| 成人午夜精彩视频在线观看| 亚洲色图av天堂| av在线观看视频网站免费| 久久精品影院6| 一区二区三区四区激情视频 | 国产毛片a区久久久久| 欧美bdsm另类| 一本一本综合久久| 国产午夜精品一二区理论片| 哪个播放器可以免费观看大片| а√天堂www在线а√下载| 午夜福利成人在线免费观看| 午夜福利在线观看免费完整高清在 | 黄色视频,在线免费观看| 一进一出抽搐动态| 亚洲国产精品合色在线| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 日韩大尺度精品在线看网址| 久久99精品国语久久久| 国产精品久久视频播放| 国产精品电影一区二区三区| 91av网一区二区| 女人十人毛片免费观看3o分钟| 99久久人妻综合| 熟女电影av网| 欧美性猛交黑人性爽| 久久精品久久久久久久性| 国产精品一区二区三区四区免费观看| 深夜精品福利| 干丝袜人妻中文字幕| 久久久久国产网址| 深夜精品福利| 久久久久网色| 成人午夜精彩视频在线观看| www日本黄色视频网| 亚洲精品久久国产高清桃花| 免费一级毛片在线播放高清视频| 人妻夜夜爽99麻豆av| 嫩草影院精品99| 蜜桃亚洲精品一区二区三区| 亚洲第一区二区三区不卡| 亚洲内射少妇av| a级毛色黄片| 岛国毛片在线播放| 少妇的逼好多水| 日本撒尿小便嘘嘘汇集6| 麻豆成人av视频| 99久久精品热视频| 中文字幕精品亚洲无线码一区| 欧美激情国产日韩精品一区| 丰满人妻一区二区三区视频av| 精品一区二区三区视频在线| 国产午夜精品论理片| 久久这里只有精品中国| 欧美xxxx性猛交bbbb| 两性午夜刺激爽爽歪歪视频在线观看| 免费av毛片视频| 国产淫片久久久久久久久| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 亚洲成人久久爱视频| 内射极品少妇av片p| 精品一区二区免费观看| 午夜激情欧美在线| 成人亚洲欧美一区二区av| 欧美精品国产亚洲| 国产一级毛片在线| 日本黄大片高清| 国产精品精品国产色婷婷| 国产91av在线免费观看| 国产爱豆传媒在线观看| 亚洲国产精品成人综合色| 亚洲欧美精品综合久久99| 特级一级黄色大片| h日本视频在线播放| 成年av动漫网址| 亚洲人成网站在线观看播放| 成年女人看的毛片在线观看| 26uuu在线亚洲综合色| 深爱激情五月婷婷| 久久久久性生活片| av专区在线播放| 国内精品美女久久久久久| 日日撸夜夜添| 99久久无色码亚洲精品果冻| 欧美成人精品欧美一级黄| 国产亚洲精品av在线| 中文字幕av成人在线电影| 哪里可以看免费的av片| 春色校园在线视频观看| 99久久成人亚洲精品观看| 亚洲色图av天堂| 少妇丰满av| 岛国在线免费视频观看| 久久精品国产亚洲网站| 国产日韩欧美在线精品| 日韩,欧美,国产一区二区三区 | 人人妻人人澡人人爽人人夜夜 | 在线免费观看不下载黄p国产| 可以在线观看毛片的网站| 亚洲精品自拍成人| 国产一区二区三区在线臀色熟女| 久久精品久久久久久久性| 人妻制服诱惑在线中文字幕| 亚洲精品乱码久久久久久按摩| 亚洲无线在线观看| 最近的中文字幕免费完整| 成人欧美大片| 国产高潮美女av| 最新中文字幕久久久久| 国产精品国产高清国产av| 久久精品国产自在天天线| 久久久精品欧美日韩精品| 最近的中文字幕免费完整| 亚洲精品乱码久久久v下载方式| 国产极品精品免费视频能看的| 12—13女人毛片做爰片一| 我要看日韩黄色一级片| 国产视频内射| 少妇高潮的动态图| 亚洲欧美成人综合另类久久久 | 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 国产成人精品一,二区 | 中国美女看黄片| 久久久a久久爽久久v久久| 91久久精品电影网| 舔av片在线| 久久精品久久久久久久性| 伦精品一区二区三区| 欧美日韩精品成人综合77777| av免费在线看不卡| 高清毛片免费观看视频网站| 天堂网av新在线| 寂寞人妻少妇视频99o| 高清日韩中文字幕在线| 日韩欧美精品免费久久| 又黄又爽又刺激的免费视频.| 高清午夜精品一区二区三区 | 国产精品永久免费网站| 在线观看66精品国产| 色吧在线观看| 久久午夜亚洲精品久久| 亚洲三级黄色毛片| 22中文网久久字幕| 久久精品综合一区二区三区| 午夜激情欧美在线| 国产亚洲精品av在线| 欧美日韩精品成人综合77777| 天天躁日日操中文字幕| 日韩欧美国产在线观看| 精品熟女少妇av免费看| 91麻豆精品激情在线观看国产| 久久久久九九精品影院| 级片在线观看| 麻豆久久精品国产亚洲av| 国产成人福利小说| a级毛色黄片| 人人妻人人澡人人爽人人夜夜 | 国产午夜精品一二区理论片| 中文资源天堂在线| 亚洲成人av在线免费| 久久99蜜桃精品久久| 欧美日韩乱码在线| 韩国av在线不卡| 岛国毛片在线播放| 亚州av有码| 久久久国产成人免费| 国产精品电影一区二区三区| 不卡一级毛片| www.色视频.com| 欧美成人一区二区免费高清观看| 十八禁国产超污无遮挡网站| 22中文网久久字幕| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 在线天堂最新版资源| 久久人人爽人人爽人人片va| 一级黄片播放器| 成人高潮视频无遮挡免费网站| 成人国产麻豆网| 国产成人影院久久av| 99热精品在线国产| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 国产色爽女视频免费观看| 久久热精品热| 亚洲av成人av| 五月伊人婷婷丁香| a级毛片a级免费在线| 99在线视频只有这里精品首页| 尾随美女入室| 国产真实伦视频高清在线观看| 精品久久久久久久末码| av在线观看视频网站免费| 精品国产三级普通话版| 在线观看美女被高潮喷水网站| 精品久久久久久成人av| 你懂的网址亚洲精品在线观看 | 日韩欧美 国产精品| or卡值多少钱| 欧美高清性xxxxhd video| av在线蜜桃| 久久久久久大精品| 在线免费观看不下载黄p国产| 九草在线视频观看| 久久99热这里只有精品18| 最近中文字幕高清免费大全6| 国产伦精品一区二区三区四那| 久久久久久久久大av| 欧美成人精品欧美一级黄| 国产三级中文精品| 午夜福利视频1000在线观看| 欧美人与善性xxx| 免费av毛片视频| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 最近2019中文字幕mv第一页| 在线播放无遮挡| av国产免费在线观看| 最近2019中文字幕mv第一页| 欧美+日韩+精品| 久久99热这里只有精品18| 欧美色视频一区免费| av天堂中文字幕网| a级毛片免费高清观看在线播放| 99热这里只有精品一区| 波多野结衣高清无吗| 深爱激情五月婷婷| 级片在线观看| 深夜a级毛片| 能在线免费观看的黄片| 国产精品国产高清国产av| 成年女人永久免费观看视频| 欧美性猛交╳xxx乱大交人| a级毛片a级免费在线| 性欧美人与动物交配| 日韩成人伦理影院| 26uuu在线亚洲综合色| 国产亚洲精品久久久com| 尾随美女入室| 久久精品国产清高在天天线| 亚洲国产色片| 国产精品99久久久久久久久| 国产精品免费一区二区三区在线| 亚洲成人久久爱视频| 欧美不卡视频在线免费观看| 爱豆传媒免费全集在线观看| 成人鲁丝片一二三区免费| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 国产精品一区二区在线观看99 | 国产av麻豆久久久久久久| 搡女人真爽免费视频火全软件| 人妻系列 视频| 欧美日韩一区二区视频在线观看视频在线 | 久久久午夜欧美精品| 啦啦啦韩国在线观看视频| 亚洲精品亚洲一区二区| 成人午夜高清在线视频| 亚洲成a人片在线一区二区| 在线观看66精品国产| 日韩强制内射视频| 男女那种视频在线观看| 成人特级黄色片久久久久久久| 欧美激情国产日韩精品一区| 神马国产精品三级电影在线观看| 一区二区三区四区激情视频 | 亚洲色图av天堂| 国产成人91sexporn| 午夜爱爱视频在线播放| 伦理电影大哥的女人| 国产精品日韩av在线免费观看| 国产91av在线免费观看| 22中文网久久字幕| 欧美xxxx黑人xx丫x性爽| 日韩在线高清观看一区二区三区| 欧美日韩精品成人综合77777| 热99re8久久精品国产| 在线观看免费视频日本深夜| 亚洲av男天堂| or卡值多少钱| 99热精品在线国产| 国内揄拍国产精品人妻在线| 久久草成人影院| 我的老师免费观看完整版| 久久久久久九九精品二区国产| 国产精品久久久久久精品电影| 久久国产乱子免费精品| 天天躁日日操中文字幕| 精品久久久久久久人妻蜜臀av| 成人国产麻豆网| 一级黄片播放器| 国产亚洲精品久久久久久毛片| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品50| 婷婷色综合大香蕉| 午夜爱爱视频在线播放| h日本视频在线播放| 欧美性感艳星| 青春草视频在线免费观看| 久久精品国产清高在天天线| 国产黄色视频一区二区在线观看 | 精品熟女少妇av免费看| 免费观看人在逋| 中文资源天堂在线| 国产精品,欧美在线| 欧美另类亚洲清纯唯美| 欧美+亚洲+日韩+国产| 亚洲va在线va天堂va国产| 熟妇人妻久久中文字幕3abv| av国产免费在线观看| 国产精品综合久久久久久久免费| 日日干狠狠操夜夜爽| 成人欧美大片| 亚洲精品日韩av片在线观看| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 99在线人妻在线中文字幕| 直男gayav资源| av天堂中文字幕网| kizo精华| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 在线a可以看的网站| 国产一区二区激情短视频| 亚洲欧美日韩高清在线视频| 内射极品少妇av片p| 国产免费一级a男人的天堂| 久久午夜福利片| 91精品一卡2卡3卡4卡| 久久久久久久久久黄片| 九九爱精品视频在线观看| 久久精品91蜜桃| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 精品人妻熟女av久视频| 亚洲激情五月婷婷啪啪| 国产精品蜜桃在线观看 | 99riav亚洲国产免费| 人妻夜夜爽99麻豆av| 在线免费观看不下载黄p国产| 国产精品无大码| 亚洲久久久久久中文字幕| 久久精品国产清高在天天线| 日韩一区二区视频免费看| 黄色视频,在线免费观看| 黄色一级大片看看| 高清毛片免费观看视频网站| 欧美+亚洲+日韩+国产| 久久久国产成人精品二区| 亚洲欧美成人综合另类久久久 | 国产精品一区二区性色av| 在线免费观看不下载黄p国产| 美女大奶头视频| 久久久久久久久久久丰满| av又黄又爽大尺度在线免费看 | 色综合色国产| 亚洲av免费高清在线观看| 亚洲精品乱码久久久久久按摩| 免费看日本二区| www.色视频.com| 99精品在免费线老司机午夜| 超碰av人人做人人爽久久| 网址你懂的国产日韩在线| 99久国产av精品国产电影| 久久欧美精品欧美久久欧美| 蜜桃久久精品国产亚洲av| 国产成年人精品一区二区| 国产成人午夜福利电影在线观看| 丝袜美腿在线中文| 国产精品一区二区性色av| 国产视频内射| 热99在线观看视频| 亚洲三级黄色毛片| 日韩成人av中文字幕在线观看| 三级男女做爰猛烈吃奶摸视频| 日韩亚洲欧美综合| 亚洲成人精品中文字幕电影| 精品人妻一区二区三区麻豆| 久久久久久大精品| h日本视频在线播放| 欧美色视频一区免费| 村上凉子中文字幕在线| 日本在线视频免费播放| 男女边吃奶边做爰视频| 少妇高潮的动态图| 精品一区二区三区视频在线| 97人妻精品一区二区三区麻豆| 老师上课跳d突然被开到最大视频| 国国产精品蜜臀av免费| 婷婷亚洲欧美| av女优亚洲男人天堂| 亚洲国产精品sss在线观看| 亚洲第一电影网av| 亚洲国产欧美人成| 老熟妇乱子伦视频在线观看| 国产人妻一区二区三区在| 哪个播放器可以免费观看大片| 久久久a久久爽久久v久久| 激情 狠狠 欧美| 亚洲经典国产精华液单| 国产黄色视频一区二区在线观看 | 99久久无色码亚洲精品果冻| 日韩欧美 国产精品| 嘟嘟电影网在线观看| 久久久久久久久久黄片| 成人永久免费在线观看视频| 男插女下体视频免费在线播放| 亚洲av中文av极速乱| 亚洲人成网站在线播| 又粗又硬又长又爽又黄的视频 | 国产精品爽爽va在线观看网站| 白带黄色成豆腐渣| 99久久精品国产国产毛片| 国产精品福利在线免费观看| 国产大屁股一区二区在线视频| 亚洲最大成人av| 一级黄色大片毛片| 少妇熟女欧美另类| 国产精品久久久久久精品电影| 赤兔流量卡办理| 国产精品久久久久久av不卡| 日韩av不卡免费在线播放| 欧美高清性xxxxhd video| 有码 亚洲区| 婷婷亚洲欧美| 亚洲成人久久爱视频| 一区福利在线观看| 成人午夜精彩视频在线观看| 嫩草影院入口| 欧美又色又爽又黄视频| 级片在线观看| 偷拍熟女少妇极品色| 成人特级黄色片久久久久久久| 成年免费大片在线观看| 我的女老师完整版在线观看| 国产伦在线观看视频一区| 禁无遮挡网站| 亚洲成人中文字幕在线播放| 天堂网av新在线| 69人妻影院| av在线蜜桃| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 免费av不卡在线播放| 韩国av在线不卡| 国产私拍福利视频在线观看| 尾随美女入室| 午夜精品在线福利| 国产一区二区在线观看日韩| 国产精品野战在线观看| 嫩草影院入口| 蜜臀久久99精品久久宅男| 国产综合懂色| 国产黄色小视频在线观看| 麻豆久久精品国产亚洲av| 午夜福利成人在线免费观看| 久久久精品94久久精品| 欧美区成人在线视频| 啦啦啦啦在线视频资源| 12—13女人毛片做爰片一| 91精品国产九色| 哪里可以看免费的av片| 看十八女毛片水多多多| 少妇人妻精品综合一区二区 | 特大巨黑吊av在线直播| 国产高清视频在线观看网站| 国产精品乱码一区二三区的特点| 麻豆国产av国片精品| 国产不卡一卡二| 久久这里有精品视频免费| 夜夜爽天天搞| 精品人妻偷拍中文字幕| 九九爱精品视频在线观看| 综合色av麻豆| 美女脱内裤让男人舔精品视频 | 中文字幕av成人在线电影| 老司机福利观看| 久久精品国产清高在天天线| 欧美最黄视频在线播放免费| 成人特级av手机在线观看| 欧美变态另类bdsm刘玥| 青青草视频在线视频观看| 亚洲经典国产精华液单| 日本一二三区视频观看| 欧美一区二区精品小视频在线| 夜夜夜夜夜久久久久| 成人国产麻豆网| 国产成人精品一,二区 | 欧美一级a爱片免费观看看| 99在线人妻在线中文字幕| 日韩一区二区视频免费看| 嫩草影院精品99| 国内精品一区二区在线观看| 18禁在线无遮挡免费观看视频| 你懂的网址亚洲精品在线观看 | 国产精品一二三区在线看| 一区福利在线观看| 精品久久久久久久久久免费视频| a级毛片a级免费在线| 看免费成人av毛片| 日韩高清综合在线| 国产精品综合久久久久久久免费| 国产69精品久久久久777片| 搡女人真爽免费视频火全软件| 国内精品久久久久精免费| 99九九线精品视频在线观看视频| 一个人看的www免费观看视频| 1024手机看黄色片| 亚洲乱码一区二区免费版| 精品久久久久久久久久久久久|