摘要:目的" 分析慢性阻塞性肺疾病急性加重期(AECOPD)患者的體成分與疾病惡化風險和肌源性microRNA(myomiRs)表達水平的相關(guān)性。方法" 選取2021年2月-2022年12月在福建醫(yī)科大學附屬第二醫(yī)院就診的77例AECOPD患者的基本資料和血液樣本,采用人體成分分析儀測量體成分,運用逆轉(zhuǎn)錄-聚合酶鏈式反應技術(shù)檢測血漿中myomiRs含量。將每年加重2次或2次以上的患者列入高惡化風險組(55例),少于2次的列入低惡化風險組(22例)。比較兩組體成分差異,探索其與疾病惡化和血漿myomiRs水平的關(guān)系。結(jié)果" 高惡化風險組去脂體重、去脂體重指數(shù)與相位角低于低惡化風險組,細胞外水分比率高于低惡化風險組,差異有統(tǒng)計學意義(P<0.05);高惡化風險組的細胞內(nèi)液與身體總水分低于低惡化風險組(P<0.05);邏輯回歸分析顯示,細胞外水分比率(OR=1.086,95%CI:1.010~1.168,P=0.026)和相位角(OR=0.396,95%CI:0.164~0.957,P=0.040)與疾病惡化風險獨立相關(guān)。依據(jù)受試者工作特征曲線,鑒別惡化風險時,細胞外水分比率與相位角的閾值分別是0.393%和4.85°;AECOPD患者的脂肪參數(shù)(脂肪量、脂肪指數(shù)、體脂百分比和內(nèi)臟脂肪面積)與miR-206表達水平呈負相關(guān)。結(jié)論" 細胞外水分比率和相位角可用于鑒別AECOPD患者惡化風險。此外,miR-206與AECOPD患者的脂肪參數(shù)相關(guān),表明脂肪可能參與患者肌肉衰減癥的調(diào)控過程。
關(guān)鍵詞:慢性阻塞性肺?。惑w成分;惡化風險;myomiRs;營養(yǎng)
中圖分類號:R563" " " " " " " " " " " " " " " " " "文獻標識碼:A" " " " " " " " " " " " " " " " "DOI:10.3969/j.issn.1006-1959.2024.16.008
文章編號:1006-1959(2024)16-0041-06
Clinical Evaluation of Body Composition in Patients with Acute Exacerbation
of Chronic Obstructive Pulmonary Disease
HUANG Wen-jian1,2,KE Zhi-yuan1,2,3
(1.School of Public Health,F(xiàn)ujian Medical University,F(xiàn)uzhou 350100,F(xiàn)ujian,China;
2.Department of Clinical Nutrition,the Second Affiliated Hospital of Fujian Medical University,Quanzhou 362000,F(xiàn)ujian,China;
3.School of Medical Technology and Engineering,F(xiàn)ujian Medical University,F(xiàn)uzhou 350100,F(xiàn)ujian,China)
Abstract:Objective" To analyze the correlation between body composition and the risk of disease progression and the expression level of myogenic microRNAs (myomiRs) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD).Methods" The basic data and blood samples of 77 patients with AECOPD who were treated in the Second Affiliated Hospital of Fujian Medical University from February 2021 to December 2022 were selected. The body composition was measured by the body composition analyzer, and the content of myomiRs in plasma was detected by reverse transcription-polymerase chain reaction. Patients with two or more exacerbations per year were included in the high deterioration risk group (55 patients) and those with less than two exacerbations were included in the low deterioration risk group (22 patients). The differences in body composition between the two groups were compared to explore its relationship with disease progression and plasma myomiRs levels.Results" The fat-free weight, fat-free body mass index and phase angle of the high deterioration risk group were lower than those of the low deterioration risk group, and the extracellular water ratio was higher than that of the low deterioration risk group, the difference were statistically significant (Plt;0.05). The intracellular fluid and total body water in the high deterioration risk group were lower than those in the low deterioration risk group (Plt;0.05). Logistic regression analysis showed that extracellular water ratio (OR=1.086, 95%CI: 1.010-1.168, P=0.026 ) and phase angle (OR=0.396, 95%CI: 0.164-0.957, P=0.040) were independently associated with the risk of disease progression. According to the receiver operating characteristic curve, the thresholds of extracellular water ratio and phase angle were 0.393% and 4.85°, respectively. The fat parameters (fat mass, fat index, body fat percentage and visceral fat area) of AECOPD patients were negatively correlated with the expression level of miR-206.Conclusion" The extracellular water ratio and phase angle can be used to identify the deterioration risk of AECOPD patients. In addition, miR-206 is associated with fat parameters in patients with AECOPD, indicating that fat may be involved in the regulation of sarcopenia in patients.
Key words:Chronic obstructive pulmonary disease;Body composition;Deterioration risk;myomiRs;Nutrition
慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)是一種與長期反復暴露于有害氣體或有害顆粒相關(guān)的常見慢性呼吸道疾病[1],尤其常見于中老年人[2]。中老年人因年齡增長、消化吸收功能減退、味覺與嗅覺反應遲鈍,導致攝食量減少并引起營養(yǎng)不良[3,4]。據(jù)統(tǒng)計[5,6],25%~40%的COPD患者有營養(yǎng)不良情況。營養(yǎng)不良可導致體成分異常與肌肉衰減癥[7]。肌肉衰減癥是COPD患者營養(yǎng)不良的常見表型。COPD患者的病情反復遷延造成肌肉組織受損,進而影響患者的握力、步態(tài)速度等臨床結(jié)局[8]。肌源性microRNAs(myomiRs)通過不同的靶向通道調(diào)控肌肉功能[9]。COPD的自然病程中會出現(xiàn)呼吸道癥狀急性惡化并需要額外治療的情況,即COPD急性加重(acute exacerbations of COPD, AECOPD)[10]。COPD加重會加速肺功能和身體活動能力下降,加速疾病惡化,并增加患者再入院與死亡風險[11]。因此,在考慮COPD的最佳治療方案時,應當認識到降低加重風險的重要性。營養(yǎng)不良會影響COPD患者的免疫能力,從而導致感染與病情惡化[12]。使用營養(yǎng)評估工具可提供有效的COPD管理策略。本研究擬從人群層面探究AECOPD患者體成分與疾病特征(惡化風險和myomiRs水平)的關(guān)聯(lián)性。
1資料與方法
1.1一般資料" 本研究于2021年2月-2022年12月在福建醫(yī)科大學附屬第二醫(yī)院招募了148例受試者。其中,10例受試者無法完成生物電阻抗分析(bioelectrical impedance analysis, BIA),26例合并腫瘤或腫瘤史,4例合并肝腎功能不全,4例合并哮喘,1例合并阻塞性睡眠呼吸暫停綜合征,18例主診斷非AECOPD,3例依從性低以及5例重復入組。最終77例AECOPD受試者入組。依據(jù)前1年因COPD加重次數(shù)將患者分為高惡化風險組(55例)與低惡化風險組(22例)。本研究遵循《赫爾辛基宣言》,研究方案獲得福建醫(yī)科大學附屬第二醫(yī)院研究倫理委員會批準(倫理審查編號2021-31),研究參與者簽署書面知情同意書。
1.2納入和排除標準" 納入標準:患者為男性,年齡大于45歲,并符合全球慢性阻塞性肺疾病倡議指南推薦的AECOPD臨床診斷標準[1]。排除標準:①合并阻塞性睡眠呼吸暫停綜合征或哮喘的患者;②合并癌癥的患者;③合并腎功能或肝功能不全的患者;④全身炎癥或代謝性疾病的患者;⑤體內(nèi)植入金屬支架或心臟起搏器的患者;⑥肢體殘缺者;⑦不愿意配合的患者。
1.3資料收集" 收集患者的人口學資料、暴露史(包括職業(yè)暴露與煙草暴露)與疾病史資料。將每年加重2次或2次以上的AECOPD患者列為高惡化風險人群,少于2次的為低惡化風險人群[1]。
1.4人體體成分分析" 人體成分包括水分、蛋白質(zhì)、脂肪和礦物質(zhì),它們具有不一致的生物電阻。在受試者接受研究時,采用便攜式人體成分分析儀(InBody S10 BIOSPACE韓國)進行生物電阻抗分析。測試前患者空腹并排空大小便,摘除金屬飾品,著輕薄衣褲。測試時患者脫去鞋襪,取站姿姿勢。測量指標主要有身體質(zhì)量指數(shù)、身體總水分、細胞內(nèi)液、細胞外液、細胞外水分比率、脂肪量、去脂體重與相位角等。
1.5 myomiRs檢測" 使用EDTA抗凝管采集患者的外周靜脈血,以16 000 g離心10 min后吸取上清液,使用miRNeasy Serum/Plasma Advanced 試劑盒提取血漿中RNA(德國凱杰公司),采用逆轉(zhuǎn)錄-聚合酶鏈式反應進行血漿中myomiRs測序(北京普洛麥格生物技術(shù)有限公司)。引物序列:hsa-miR-1-3p-RT:5’-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGATACATAC-3’,hsa-miR-1-3p-F:5’-ACACTCCAGCTGGGTGGAATGTA AAGAAGT-3’,hsa-miR-1-3p-R:5’-TGGTGTCGT GGAGTCG-3’,hsa-miR-133a-3p-RT:5’-CTCAAC TGGTGTCGTGGAGTCGGCAATTCAGTTGAGCAGCT GGT-3’,hsa-miR-133a-3p-F:5’-ACACTCCAGCT GGGTTTGGTCCCCTTCAAC-3’,hsa-miR-133a-3p-R:5’-TGGTGTCGTGGAGTCG-3’,hsa-miR-133b-RT:5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTC GCACTGGATACGACTAGCTG-3’,hsa-miR-133b-F:5’-CGCGTTTGGTCCCCTTCAAC-3’,hsa-miR-133b-R:5’-AGTGCAGGGTCCGAGGTATT-3’,has-miR-206-RT:5’-GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACCCACAC-3’,has -miR-206-F:5’-CCGCGCTGGAATGTAAGGAAGT-3’,has-miR-206-R:5’-AGTGCAGGGTCCGAGGT ATT-3’,hsa-miR-23a-3p-RT:5’-GTCGTATCC AGTGCAGGGTCCGAGGTATTCGCACTGGATACGA-
CGGAAAT-3’,hsa-miR-23a-3p-F:5’-CCGCATCACATTGCCAGGG-3’,hsa-miR-23a-3p-R:5’-AGTG CAGGGTCCGAGGTATT-3’,U6-F:5’-CTCGCTTC GGCAGCACA-3’,U6-R:5’-AACGCTTCACGAA TTTGCGT-3’(福州尚亞生物技術(shù)有限公司)。依據(jù)2-ΔΔCT算法,將U6作為內(nèi)參,計算血漿中myomiRs的相對表達量。
1.6統(tǒng)計學方法" 運用SPSS 26.0軟件進行數(shù)據(jù)統(tǒng)計分析,計量資料采用(x±s)或[M(P25,P75)]表示,組間比較采用Student t檢驗或Mann-Whitney U檢驗;計數(shù)資料采用[n(%)]表示,組間比較采用?字2檢驗。通過共線性分析以選定參數(shù)進行邏輯回歸分析。在回歸模型中,優(yōu)勢比(odd ratios, ORs)與95%可信區(qū)間(confidence interval, CI)用于評估COPD惡化的危險因素。受試者工作特征(receiver operating characteristic, ROC)曲線和曲線下面積(area under the curve, AUC)用于評估體成分對惡化風險的預測能力。采用Spearman秩相關(guān)分析myomiRs表達量與體成分的相關(guān)性。以P<0.05為差異有統(tǒng)計學意義。
2結(jié)果
2.1不同惡化風險的AECOPD患者基本資料與體成分比較" 高惡化風險組現(xiàn)吸煙率低于低惡化風險組,差異有統(tǒng)計學意義(P<0.05);高惡化風險組去脂體重、去脂體重指數(shù)和相位角低于低惡化風險組,細胞外水分比率高于低惡化風險組,差異有統(tǒng)計學意義(P<0.05);高惡化風險組細胞內(nèi)液和身體總水分低于低惡化風險組(P<0.05),見表1。
2.2體成分與AECOPD患者惡化風險的相關(guān)性分析" 通過共線性分析篩選參數(shù)并建立回歸模型,校正協(xié)變量后發(fā)現(xiàn),細胞外水分比率(OR=1.086,95%CI:1.010~1.168,P=0.026)和相位角(OR=0.396,95%CI:0.164~0.957,P=0.040)是疾病惡化風險的獨立影響因素,見表2。
2.3體成分預測AECOPD患者的惡化風險" ROC曲線顯示,細胞外水分比率和相位角的AUC分別為0.744(95%CI:0.611~0.876)和0.753(95%CI:0.624~0.882)。在0.393%臨界值時,細胞外水分比率預測AECOPD惡化風險的敏感性為68.20%,特異性為83.30%。在4.85°的臨界值下,相位角識別AECOPD惡化風險的敏感性和特異性分別為68.20%和83.30%,見圖1。
2.4 AECOPD患者體成分與myomiRs的相關(guān)性分析" miR-206的表達量與脂肪量(r=-0.405,P=0.024)、脂肪指數(shù)(r=-0.403,P=0.024)、體脂百分比(r=-0.391,P=0.03)和內(nèi)臟脂肪面積(r=-0.414,P=0.02)呈負相關(guān),見圖2。
3討論
近年來,關(guān)于COPD惡化風險與體成分關(guān)系的研究逐漸增多[13,14],但較少有研究分析相位角和細胞外水分比率與COPD惡化風險之間的關(guān)系。因此,本研究調(diào)查不同惡化風險的AECOPD患者間體成分的差異,并分析體成分與疾病惡化風險和血漿中myomiRs表達量的相關(guān)性。
本研究發(fā)現(xiàn),在AECOPD患者中,高惡化風險組當前吸煙者的比例較低。健康狀況的惡化可能會增加患者戒煙的動機,這與先前研究結(jié)果一致,即輕型COPD患者戒煙的可能性較低[15]。頻繁的惡化加速了COPD的進展,加重患者呼吸困難,導致營養(yǎng)狀況不佳,其戒煙動機更強,因而此類患者吸煙率較低。
BIA是一種快速和無創(chuàng)的身體組成分析技術(shù),常用于檢測營養(yǎng)不良和營養(yǎng)干預的有效性。本研究結(jié)果表明,不同惡化風險的AECOPD患者瘦體重相關(guān)參數(shù)(去脂體重與去脂體重指數(shù))存在差異,這與先前研究的結(jié)果一致,即COPD惡化風險與瘦體重相關(guān)參數(shù)的下降有關(guān)[16]。然而,二元邏輯回歸分析的結(jié)果未能證明去脂體重指數(shù)對COPD惡化的影響,可能是去脂體重指數(shù)依賴于BIA預測方程和需要在人體液體分布均衡的假定情況下測量[17]。
COPD患者的體成分會發(fā)生不同程度的變化。COPD患者肺泡缺氧的進展導致慢性缺氧性肺血管收縮,肺血管結(jié)構(gòu)重塑,以及隨后的肺動脈高壓。為應對肺血管阻力而增加右心室負荷,引起右心肥大。心臟的適應性肥大導致心臟功能障礙和外周水腫[18,19]。在這種情況下,盡管患者經(jīng)過足夠的治療后,外周液體量仍高于正常值,患者仍處于過度水合狀態(tài)。體成分指標細胞外水分比率可用于反映水合狀態(tài)[20]。細胞外水分比率較高的COPD患者臨床結(jié)果較差,細胞內(nèi)液值低也與死亡風險增加有關(guān),然而,尚未證實COPD患者如何受到體液分布和水合狀態(tài)的影響[21]。本研究發(fā)現(xiàn),0.393%是細胞外水分比率的臨界值,通過BIA測量的細胞外水分比率可作為辨別COPD惡化風險的一個有效參數(shù)。
本項研究還發(fā)現(xiàn),相位角以4.85°為臨界值,可用于鑒別COPD惡化風險,這可為臨床干預提供參考依據(jù)。相位角是細胞膜儲存電流和延遲其流動的能力。低相位角表明細胞死亡或膜的選擇性滲透性被破壞,這可能對臨床結(jié)果產(chǎn)生負面影響[22]。因此,相位角在某種程度上反映了細胞健康和營養(yǎng)狀況。肌肉衰減癥和營養(yǎng)不良與相位角的降低有關(guān),低相位角表明肌肉衰減癥或營養(yǎng)不良的患病率增高[23]。
肌肉衰減癥是COPD的系統(tǒng)性表現(xiàn)。myomiRs可通過表觀遺傳信號通路誘導mRNA降解或抑制翻譯,調(diào)控骨骼肌發(fā)育、蛋白質(zhì)合成和分解以及機體炎性反應,從而影響肌肉功能[24]。myomiRs在COPD患者中表達異常并與COPD骨骼肌功能障礙有關(guān)[25]。外循環(huán)miR-206水平升高可能是COPD患者肌肉轉(zhuǎn)換率增加與肌肉消耗量增大的結(jié)果[26]。但本研究發(fā)現(xiàn),COPD患者血漿miR-206的表達水平與脂肪參數(shù)顯著相關(guān)。盡管miR-206被認為是一種肌源性microRNA,但miR-206在調(diào)節(jié)脂質(zhì)穩(wěn)態(tài)中發(fā)揮作用,是一種有效的脂質(zhì)生成抑制劑[27]。
綜上所述,體成分可用于識別具有特定營養(yǎng)表型的AECOPD患者,以便實施營養(yǎng)干預,改善患者的體成分,緩解癥狀并降低惡化風險。此外,myomiRs與體成分分析可能為COPD患者肌肉功能障礙的myomiRs分子研究提供未來的探究途徑。
參考文獻:
[1]Asia Pacific COPD Roundtable Group.Global Initiative for Chronic Obstructive Lung Disease strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease:an Asia-Pacific perspective[J].Respirology,2005,10(1):9-17.
[2]侯珊珊,施勁東,尹欣,等.1990-2019年中國慢性阻塞性肺疾病的疾病負擔情況分析[J].中華流行病學雜志,2022,43(10):1554-1561.
[3]Collins PF,Yang IA,Chang YC,et al.Nutritional support in chronic obstructive pulmonary disease (COPD): an evidence update[J].J Thorac Dis,2019,11(Suppl17):S2230-S2237.
[4]張學云,鄭松柏.老年消化系統(tǒng)疾病與衰弱[J].中國臨床保健雜志,2023,26(1):13-16.
[5]Deng M,Lu Y,Zhang Q,et al.Global prevalence of malnutrition in patients with chronic obstructive pulmonary disease: Systemic review and meta-analysis[J].Clinical Nutrition,2023,42(6):848-858.
[6]Ting HYT,Chan S,Luk E,et al.Prevalence of malnutrition in COPD inpatients and its relationship with nutritional intakes and clinical outcomes[J].Journal of Aging Science,2020,8:1000219.
[7]趙云靜,楊曉蕾,尹粉英,等.慢性阻塞性肺疾病合并肌少癥的發(fā)病機制[J].中國老年保健醫(yī)學,2023,21(1):110-113.
[8]李宏月,溫有鋒,廉潔,等.慢性阻塞性肺疾病嚴重程度與骨骼肌營養(yǎng)不良的相關(guān)性研究[J].中國全科醫(yī)學,2020,23(16):2044-2050.
[9]Shen Y,Wang L,Wu Y,et al.A novel diagnostic signature based on three circulating exosomal mircoRNAs for chronic obstructive pulmonary disease[J].Exp Ther Med,2021,22(1):717.
[10]Rothnie KJ,Mullerova H,Smeeth L,et al.Natural History of Chronic Obstructive Pulmonary Disease Exacerbations in a General Practice-based Population with Chronic Obstructive Pulmonary Disease[J].American Journal of Respiratory and Critical Care Medicine,2018,198(4):464-471.
[11]Haughney J,Lee AJ,Nath M,et al.The long-term clinical impact of COPD exacerbations: a 3-year observational study (SHERLOCK)[J].Therapeutic Advances in Respiratory Disease,2022,16:17534666211070139.
[12]Gattermann Pereira T,Lima J,Silva FM.Undernutrition is associated with mortality, exacerbation, and poorer quality of life in patients with chronic obstructive pulmonary disease: A systematic review with meta-analysis of observational studies[J].Journal of Parenteral and Enteral Nutrition,2022,46(5):977-996.
[13]Karanikas I,Karayiannis D,Karachaliou A,et al.Body composition parameters and functional status test in predicting future acute exacerbation risk among hospitalized patients with chronic obstructive pulmonary disease[J].Clinical Nutrition,2021,40(11):5605-5614.
[14]Yang L,Zhu Y,Huang JA,et al.A Low Lean-to-Fat Ratio Reduces the Risk of Acute Exacerbation of Chronic Obstructive Pulmonary Disease in Patients with a Normal or Low Body Mass Index[J].Medical Science Monitor,2019,25:5229-5236.
[15]T?覬ttenborg SS,Thomsen RW,Johnsen SP,et al.Determinants of Smoking Cessation in Patients With COPD Treated in the Outpatient Setting[J].Chest,2016,150:554-562.
[16]孫璐瑤.慢性阻塞性肺疾病脂質(zhì)代謝異常的臨床探討[D].長春:吉林大學,2013.
[17]Player EL,Morris P,Thomas T,et al.Bioelectrical impedance analysis (BIA)-derived phase angle (PA) is a practical aid to nutritional assessment in hospital in-patients[J].Clinical Nutrition,2019,38:1700-1706.
[18]Gredic M,Blanco I,Kovacs G,et al.Pulmonary hypertension in chronic obstructive pulmonary disease[J].British Journal of Pharmacology,2021,178(1):132-151.
[19]魏漢林.肺源性心臟病[M].北京:中國醫(yī)藥科技出版社,2010.
[20]Pérez-Morales R,Donate-Correa J,Martín-Nú?觡ez E,et al.Extracellular water/total body water ratio as predictor of mortality in hemodialysis patients[J].Renal Failure,2021,43(1):821-829.
[21]Wang X,Liang Q,Li Z,et al.Body Composition and COPD: A New Perspective[J].International Journal of Chronic Obstructive Pulmonary Disease,2023,18:79-97.
[22]Uemura K,Doi T,Tsutsumimoto K,et al.Predictivity of bioimpedance phase angle for incident disability in older adults[J].Journal of Cachexia,Sarcopenia and Muscle,2020,11(1):46-54.
[23]Di Vincenzo O,Marra M,Di Gregorio A,et al.Bioelectrical impedance analysis (BIA) -derived phase angle in sarcopenia: A systematic review[J].Clinical Nutrion,2021,40(5):3052-3061.
[24]Zhao H,Li P,Wang J.The role of muscle-specific MicroRNAs in patients with chronic obstructive pulmonary disease and skeletal muscle dysfunction[J].Frontiers in Physiology,2022,13:954364.
[25]Barreiro E,Sancho-Mu?觡oz A,Puig-Vilanova E,et al.Differences in micro-RNA expression profile between vastus lateralis samples and myotubes in COPD cachexia[J].J Appl Physiol (1985),2019,126(2):403-412.
[26]Yin X,Cui S,Li X,et al.Regulation of Circulatory Muscle-specific MicroRNA during 8 km Run [J].International Journal of Sports Medicine,2020,41(9):582-588.
[27]Wang A,Chen B,Jian S,et al.miR-206-G6PD axis regulates lipogenesis and cell growth in hepatocellular carcinoma cell[J].Anticancer Drugs,2021,32(5):508-516.
收稿日期:2023-07-27;修回日期:2023-08-29
編輯/成森
基金項目:福建省自然科學基金資助項目(編號:2021J01267)
作者簡介:黃文堅(1995.9-),女,廣東惠州人,碩士研究生,主要從事營養(yǎng)與代謝研究
通訊作者:柯智元(1987.8-),男,臺灣高雄人,博士,副研究員,碩士生導師,主要從事營養(yǎng)與代謝、腸道菌群、神經(jīng)行為學研究