王亞龍,張喜清,張浩杰
(太原科技大學(xué) 機械工程學(xué)院,太原 030024)
保證裝載機駕駛室內(nèi)適宜的熱環(huán)境可緩解駕駛員疲勞,改善心情,從而提高工作效率。國內(nèi)外學(xué)者利用CFD技術(shù)對駕駛室熱舒適性的研究較多。Fanger[1]教授提出了PMV-PPD整體熱舒適性評價指標,將其細分為-3~0~+3七個階段進行評價;呂鴻斌[2]基于內(nèi)流場對轎車乘員艙進行熱舒適性分析,研究了送風(fēng)溫度對人體熱舒適性的影響;周勝[3]利用 PMV-PPD和PD(吹風(fēng)感)研究乘員艙內(nèi)駕駛員的熱舒適性,并分析第二類和第三類邊界條件對人體表面溫度的影響;張炳力[4]結(jié)合PMV-PPD和空氣齡指標對轎車乘員艙熱舒適性進行分析,通過改進出風(fēng)口位置,提高車室內(nèi)的熱舒適性;目前,國內(nèi)有關(guān)熱舒適性的研究大多針對轎車和小型貨車[5],雖然對裝載機駕駛室有一定的借鑒意義,但裝載機的工作環(huán)境、車室的結(jié)構(gòu)布置、風(fēng)道設(shè)計等方面與轎車、貨車有很大不同。
本文以龍工855型號裝載機駕駛室為研究對象,運用FLUENT軟件對駕駛室溫度場和速度場進行仿真計算,利用UDF編程將熱舒適性指標進行可視化處理,得到人體表面PMV-PPD的分布規(guī)律,來評價駕駛室的熱舒適性。
根據(jù)美國供暖空調(diào)工程師學(xué)會標準規(guī)定[6]:熱舒適性是人體對熱環(huán)境的滿意程度。有關(guān)車室內(nèi)的熱舒適性指標有很多,比如當量均勻溫度、整體熱感覺偏差和標準有效溫度等。本文利用熱舒適性評價指標PMV-PPD,綜合考慮了空氣溫度、空氣濕度、空氣流速、平均輻射溫度、人體活動量及衣服熱阻6個因素。
依據(jù)ISO7730標準,當PMV在(-0.5,0.5)內(nèi)、PPD<10%時,人體感覺比較舒適;當PMV=0,PPD=5%時,人體為最佳舒適狀態(tài)[7]。目前,PMV指標代表了對同一熱環(huán)境絕大多數(shù)人的冷熱感覺,應(yīng)用最為廣泛,PMV計算公式如下:
PMV=(0.303e(-0.036M)+0.028){(M-W)-
3.05×10(-3)[5733-6.99(M-W)-Pa]-
0.42(M-W-58.15)-1.7×10(-5)M·
(5867-Pa)-0.0014M(34-Ta)-3.96×10(-8)·
fcl[(Tcl+273)4-(Tr+273)4]-fclhc(Tcl-Ta)}
(1)
式中,M表示新陳代謝率(W/m2),W表示人體輸出功(W/m2),Pa表示水蒸氣分壓(kPa),Ta表示局部空氣溫度(℃),fcl表示穿衣人體和裸體表面積之比,Tcl表示著衣外表面溫度(℃),Tr表示平均輻射溫度(℃),hc表示對流交換系數(shù)(W/(m2·K).
根據(jù)人體對冷熱的感知程度,可將PMV值從-3(冷感)~0(中性感受)~+3(熱感)劃分為7個階段。評價等級如表1所示。
表1 PMV評價等級
即便大多數(shù)人對當前的熱環(huán)境滿意,但由于人與人之間生理等方面的不同,仍會有人感到不滿意,由此提出熱環(huán)境下的預(yù)測不滿意率PPD,PPD代表對一特定熱環(huán)境感到不適人員的比例。PMV與 PPD的數(shù)學(xué)關(guān)系式如下:
PPD=100-95e[-0.033 53PMV4-0.217 9PMV2]
(2)
在研究中,采用數(shù)值計算來模擬駕駛室內(nèi)流場的分布,由于車室內(nèi)空氣流速較低,可假設(shè)室內(nèi)空氣為不可壓縮氣體,計算流體力學(xué)的基本控制方程如下:
(1)連續(xù)性方程
(3)
式中,ρ為密度,t為時間,ux為速度矢量,ux,uy,uz分別為X,Y,Z三個方向的分量。
(2)動量方程
(4)
(5)
(6)
式中,p為微元體上的壓力,τxx,τxy和τxz是因分子粘性作用而產(chǎn)生在微元體表面上的粘性應(yīng)力τ的分量,微元體表面X,Y,Z三個方向的應(yīng)力張量fx,fy,fz是微元體受到的體積力。
(3)能量方程
(7)
式中,E為流體團的總能(J/kg),包括內(nèi)能、動能和勢能之和,E=h+p/p+u2/2,h為焓(J/kg),hj為組分j的焓(J/kg),其中,Tref=298.15 K,keff為有效傳導(dǎo)系數(shù)(W/m·K),keff=k+kt.kt為湍流熱傳導(dǎo)系數(shù),Jj為組分j的擴散量,Sh包括化學(xué)反應(yīng)熱及其他用戶定義的體積熱源項。
(4)Realiablek-ε模型
(8)
(9)
式中,Gb是浮力產(chǎn)生的湍動能,ut為湍流粘度,σk和σε表示湍動能和湍動能耗散率的普朗特數(shù)。
車室內(nèi)復(fù)雜的零部件對流場流動有較大影響,建模中要體現(xiàn)駕駛室總體結(jié)構(gòu)特征,對空氣流動和熱舒適性影響小的部分作如下簡化:
(1)簡化送風(fēng)口和出風(fēng)口為平面,保留各自的有效面積,以保證駕駛室進排氣循環(huán);
(2)將駕駛室內(nèi)飾和外部結(jié)構(gòu)簡化為平面,保留玻璃、車門等主體特征;
(3) 保留方向盤、座椅和儀表盤等結(jié)構(gòu),去除車室內(nèi)細小的零部件;
(4) 考慮除霜口很少使用,在建模中給予簡化;
經(jīng)實車測量,利用三維軟件建立駕駛室?guī)缀文P?保留座椅、方向盤、送風(fēng)口、出風(fēng)口、玻璃和車門等結(jié)構(gòu)。幾何模型如圖1所示。
圖1 幾何模型
劃分流體域網(wǎng)格是數(shù)值計算的關(guān)鍵一步,網(wǎng)格數(shù)量和質(zhì)量直接決定了數(shù)值求解的時間和精度。根據(jù)簡化的幾何模型進行劃分,盡可能保證網(wǎng)格方向和流動方向一致,提高數(shù)值求解收斂的同時,還能減少偽擴散。采用四面體非結(jié)構(gòu)網(wǎng)格進行劃分,對送風(fēng)口、人體模型部位進行加密處理,生成的體網(wǎng)格單元數(shù)量為5.02×106,網(wǎng)格節(jié)點數(shù)為9.28×105.有限元網(wǎng)格模型,如圖2所示。
圖2 有限元模型
根據(jù)實車試驗數(shù)據(jù)和駕駛室有限元模型,對邊界和數(shù)值求解進行設(shè)定,邊界條件如表2所示。
表2 邊界條件設(shè)定
為研究駕駛室熱舒適性,根據(jù)GB/T 19933.4-2014規(guī)定測量1~6點的溫度和1~7點的空氣流速,通過測量駕駛員周圍各點溫度和空氣流速,總體反映駕駛室車室內(nèi)的熱舒適性[8]。各測點位置分布,如圖3所示。
圖3 測點位置(單位:mm)
根據(jù)現(xiàn)場測試,空調(diào)送風(fēng)口包括吹臉模式(1和2)和吹腳模式(3和4).經(jīng)送風(fēng)口1和2的暖風(fēng)氣流進入駕駛室,徑直吹向駕駛員兩側(cè),遇到后壁面大部分氣流沿垂直方向,經(jīng)室內(nèi)頂棚折返到前擋風(fēng)玻璃。由送風(fēng)口3和4送入的氣流,直接吹向室內(nèi)地板,使駕駛員腳部的溫度得到提高。室內(nèi)氣流組織分布,如圖4所示。
圖4 氣流組織分布
合理的空氣流速能快速提升車室內(nèi)的溫度,冬季室內(nèi)的空氣流速推薦值一般為0.5 m/s,流速過小影響空氣品質(zhì),流速太大會影響到人體保溫[9]。根據(jù)頭部對冷敏感、腳部對熱敏感的原則,在分析車室內(nèi)熱舒適性時,應(yīng)考慮駕駛員的頭涼腳暖所帶來的影響。
從圖可見,車室內(nèi)的空氣流速分布比較合理,其中,人體上身空氣流速小于0.5 m/s,面部空氣流速保持在0.1 m/s~0.3 m/s的范圍,小于國標規(guī)定的0.3 m/s.由送風(fēng)口3、4產(chǎn)生的氣流遇到座椅后形成局部渦流,導(dǎo)致小腿處空氣流速偏大,此時,可以通過改變空調(diào)送風(fēng)口的角度來調(diào)節(jié)室內(nèi)的氣流組織。人體中心截面速度場分布,如圖5所示。
圖5 速度場分布
研究表明,室內(nèi)溫度對駕駛員熱感覺有很大影響。冬季舒適溫度推薦值為17 ℃~21 ℃,低于14 ℃,高于25 ℃都會影響駕駛員的操作,增加事故的風(fēng)險性[10]。此外,駕駛員周圍的溫差應(yīng)小于5 ℃,溫差過大會讓人感到寒冷。
當駕駛室氣流達到穩(wěn)定時,大部分區(qū)域的溫度約為22 ℃~23 ℃,分布相對均勻,人體熱感覺適宜。但由于氣流遇到阻礙的影響,使得座椅后側(cè)和儀表盤附近溫度低于14 ℃.人體中心截面溫度場分布,如圖6所示。
圖6 溫度場分布
運用熱敏風(fēng)速儀和數(shù)字溫度表,對駕駛員附近各點進行測試,為減小實驗帶來的誤差,多次測量求其平均值作為最后的實驗結(jié)果。
經(jīng)對比分析,仿真溫度比實驗溫度高1 ℃~2 ℃,實驗各點平均溫度為21 ℃,與冬季室內(nèi)溫度推薦值比較相符。由于室內(nèi)暖風(fēng)氣流上升的緣故,點5處溫度最大,約為22.4 ℃,駕駛員頭部溫度高于其它部位1 ℃~2 ℃.通過分析各點溫度值,測點5的溫差最大,約為8.4%.溫度對比結(jié)果如圖7所示。
圖7 溫度對比
經(jīng)分析各點空氣流速大小,受送風(fēng)口3和4暖風(fēng)氣流的影響,點1和2的流速較大,分別為0.56 m/s和0.53 m/s.點3、4、6和7處的流速相差不大,約為0.3 m/s,均小于空氣流速推薦值0.5 m/s,人體不會有強烈的吹風(fēng)感,其中,測點2處的速度誤差最大為7%.速度結(jié)果如圖8所示。
圖8 速度對比
通過試驗與仿真進行對比,溫度最大誤差為8.4%,速度誤差最大為7%,二者均小于10%,仿真與實驗基本吻合,證明所建有限元模型具有一定的準確性和可靠性。
采用VC++語言[11]對PMV-PPD的數(shù)學(xué)分析式進行編程,實現(xiàn)熱舒適性評價指標在駕駛室內(nèi)的可視化處理。
當氣流組織達到穩(wěn)態(tài)后,車室內(nèi)流場溫度和速度都發(fā)生了很大變化。人體表面的PMV值在(-0.5,0.35)區(qū)間內(nèi),PPD值最大為13.5%.駕駛員頭部的PMV值為0.2,PPD值約為6%,說明該部位熱舒適性良好。駕駛員左腳處PMV值為-0.55,PPD值在10%~12.5%的范圍內(nèi),此環(huán)境下左腳處微涼,預(yù)測不滿意度偏大。
但整體看來,人體表面PMV-PPD值基本分布于合理的范圍內(nèi),基本滿足標準ISO7730規(guī)定-0.5 圖9 人體表面PMV分布 圖10 人體表面PPD分布 圖11,圖12分別表示駕駛員中心截面的PMV和PPD的分布。從圖11,圖12可以看出,駕駛員周圍PMV值在-0.2~+0.2之間,預(yù)測不滿意率PPD值約為10%左右,說明此環(huán)境下,駕駛員熱舒適性相對較好,人體不會感到寒冷。 圖11 駕駛員中心截面PMV分布 圖12 駕駛員中心截面PPD分布 以龍工855型號裝載機駕駛室暖風(fēng)工況為研究對象,對駕駛室整體熱舒適性進行分析,并得到如下結(jié)論。 (1) 通過建立有限元模型,設(shè)置不同送風(fēng)口的溫度和速度,經(jīng)仿真與實驗對比,各測點溫度誤差最大為8.4%,速度最大誤差為7%,誤差均小于10%,說明所建模型的合理性和可靠性。 (2) 分析駕駛室熱舒適性時,利用FLUENT自定義函數(shù)法對PMV-PPD進行UDF編譯。經(jīng)編譯后能直接觀察PMV-PPD值在人體表面的分布,并對駕駛室熱環(huán)境進行可視化處理。 (3) 合理的氣流組織可提高駕駛室的熱舒適性,通過對該模型進行研究,得出此環(huán)境下人體熱感覺良好,對于造成局部熱不舒適的原因,可利用空調(diào)檔位,來調(diào)節(jié)空調(diào)送風(fēng)溫度和速度,以期達到人體最佳熱舒適性。4.2 駕駛室熱舒適性分析
5 結(jié)論