• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth

    2024-02-29 09:18:50QianYang楊茜YangLi李陽HuiZou鄒輝JieMei梅杰EnMingXu徐恩明andZuXingZhang張祖興
    Chinese Physics B 2024年2期
    關(guān)鍵詞:李陽

    Qian Yang(楊茜), Yang Li(李陽), Hui Zou(鄒輝),Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(張祖興)

    Advanced Photonic Technology Laboratory,College of Electronic and Optical Engineering&College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: random laser,fiber laser,stimulated Brillouin scattering(SBS),stimulated Raman scattering(SRS)

    1.Introduction

    Multi-wavelength Brillouin random fiber laser with simple structure,narrow linewidth,independence of the resonant cavity and fixed reflector of conventional fiber lasers, holds great promise for applications in fiber optical communication,optical sensing, spectral measurement, and so on.[1,2]Due to the relatively small Brillouin gain and large random cavity loss, multi-wavelength Brillouin random fiber lasers relying on backward Rayleigh scattering (RS) in the fibers to form a randomly distributed feedback,usually need to combine stimulated Brillouin scattering (SBS) with rare-earth-doped fiber gain or stimulated Raman scattering (SRS) gain together to generate multi-wavelength outputs.[3,4]Unfortunately, Brillouin Er-doped or Yb-doped fiber multi-wavelength lasers are difficult to thoroughly inhibit the homogeneous broadening phenomenon and the Er-doped or Yb-doped fiber has restricted gain bandwidth.The output wavelength number and bandwidth from Brillouin Er-doped or Yb-doped fiber multiwavelength lasers are rather limited.[5–7]Recently,Brillouin–Raman fiber lasers with narrow bandwidth of Brillouin gain and wide bandwidth of Raman amplification have been extensively investigated to address this problem.[8–12]

    Since the random fiber laser based on RS-induced random distribution feedback, was proposed first by Turitsynet al.in 2010,[13]SBS and SRS have been widely used to realize multi-wavelength fiber lasers with a large number of Brillouin Stokes lines (BSLs).In 2013, Wuet al.proposed a semi-open-cavity multi-wavelength Brillouin–Raman random fiber laser with a resonant cavity composed of a fiber ring mirror and randomly distributed Rayleigh backscattering in a 10-km-long dispersion-compensated fiber (DCF), generating 210 uniform BSLs within 16.8-nm bandwidth with a spacing of 0.08 nm.[14]At the same year, Wanget al.added a 50-km-long single-mode fiber (SMF) into Brillouin–Raman fiber laser to enhance RS effect, which reshapes the output spectrum.[15]A multi-wavelength output with a frequency interval of about 10 GHz and a bandwidth of 40 nm is achieved,when the power level and linewidth between Brillouin component of Stokes lines and Rayleigh component of Stokes lines gradually reach balance due to the narrowing effect of RS on the BSLs.In 2019,a multi-wavelength Brillouin–Raman fiber laser with a 51-nm-wide bandwidth was proposed and demonstrated,which is configured in a half-open cavity design with a variable optical attenuator to control and optimize the mirror reflectivity in the cavity.[16]In the following year, the same group replaced the variable optical attenuator with an arcshaped optical fiber attenuator to control the mirror reflectivity,thereby suppressing gain competition among longitudinal cavity modes and obtaining almost the same bandwidth.[17]All above mentioned are half-open cavity structures with unidirectional output,which features a Brillouin comb with interval of a single Brillouin frequency shift.

    A fully open cavity that brings in more complicated nonlinear effects, like bidirectional RS based random distributed feedback, SBS, and SRS, turns the generation of BSL comb into double Brillouin-frequency-shift output in bidirection.In 2013, Mamdoohiet al.used DCF and bismuth-oxide erbium doped fiber as a hybrid gain medium to extend Raman gain,and obtained a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 28 nm based on RS feedback effect.[18]In 2018,Al-Alimiet al.adopted a microair cavity in the Brillouin–Raman fiber laser to control optical feedback and nonlinear competition in the fibers.[19]At high Raman power, the stronger RS enhanced the feedback mechanism of the Stokes lines, allowing a part of energy to transfer between the self-excited mode and the BSLs.As a result,a multi-wavelength output with a frequency interval of about 20 GHz and a bandwidth of 46.6 nm was obtained.[19]Recently, our group proposed the regeneration enhancement effect through incorporating a combination of erbium-doped fiber amplifier and SMF into one side of the Brillouin–Raman random fiber laser (BRRFL) in order to further enhance the performance of the BRRFL.[20]The side-mode suppression ratio(SSR)and the order number of generated Brillouin Stokes lines (BSLs) both show some improvements.But the performance is still limited,and the linewidth of single BSL has not been characterized.

    In this paper, a multi-wavelength BRRFL with linear full-open cavity for bidirectional narrow-linewidth Brillouin frequency comb (BFC) generation is proposed and demonstrated.The effects of the pump power (erbium-doped fiber and Raman) and Brillouin pump wavelength on the broadband BFC generation are investigated in detail, respectively.A flat-amplitude Brillouin Stokes frequency comb with 40.7-nm bandwidth from 1531 nm to 1571.7 nm and built-in 242 orders BSLs with double Brillouin-frequency-shift spacing is obtained,benefited from the regeneration enhancement effect.The linewidth of single BSL is experimentally measured to be about 2.5 kHz by using delayed self-heterodyne technique.

    2.Experimental setup and principle

    Figure 1 shows the experimental setup of the BRRFL with a regeneration portion that we proposed,which has a full-open linear cavity configuration.A semiconductor tunable laser source (TLS) with an output power range from 7.6 dBm to 12.6 dBm acts as a Brillouin pump(BP)laser source to provide BP light,coupled into the cavity from port 1 of a 3-port circulator designated as Cir.Meanwhile, 1455-nm Raman pump(RP) laser light with maximum output power of 831.8 mW is mixed with the BP light and enters an 8.8-km-long DCF through a 1455-nm/1550-nm wavelength-division multiplexer(WDM).It is explained that this is a reflective WDM, which means that the RP light will be reflected backward after having entered WDM and will transmit to the right together with BP.In order to realize the regeneration enhancement effect of random lasing,a 1.3-m-long erbium-doped fiber(EDF)which is pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM, and a coil of 10-km SMF are added and located at the right of the DCF.The linear cavity configuration takes an isolator (ISO) as the end to avoid the influence of Fresnel reflection, so as to ensure the generation of stable random lasing.At the both terminals (output 1 and output 2) of the linear cavity configuration, the optical spectra from both directions can be detected by optical spectrum analyzers(OSA,AQ-6370D)with a resolution of 0.02 nm.

    Fig.1.Experimental setup of Brillouin–Raman random fiber laser with regeneration portion.

    The mechanism of generating the BFC is to combine the enhanced synergistic nonlinearity with the regeneration portion,which can be described as follows:the 1550-nm BP light,which is injected into port 1 of Cir and output from port 2,integrates with the 1455-nm RP light.Both BP light and RP light transmit into DCF through a 1455-nm/1550-nm WDM.The BP light is amplified through distributed Raman amplification based on the SRS effect in DCF.Once the SBS threshold is reached,the generated first-order BSL will propagation backwards,opposite to the BP light.Similarly the first-order BSL is also amplified through distributed Raman amplification,and serves as a new pump to generate the second-order BSL which is propagated in the backward direction with respect to the first-order BSL.Simultaneously, the residual BP light and even order BSLs enter into 1550-nm/980-nm WDM through the right end of DCF.As they continue to be amplified in the EDF, the forward-propagated even-order BSLs will serve as new BP to stimulate higher order backward-propagated oddorder BSLs in the SMF as long as the next order SBS threshold is satisfied.Thus,all the processes that occur in the DCF with Raman amplification will recur in the SMF with EDF gain,which can be regarded as regeneration and enhancement of the former.Generally speaking, the lower-order BSLs act as the pump of the higher-order BSLs to produce more BSLs with higher order, and such a cascaded process will continue until the amplified BSLs of a certain order is limited by the amplification efficiency and cannot reach the SBS threshold of the next order.That is,when the overall gain is not enough to offset its loss, the cascade stops.As a result, the residual BP light and all the even order BSLs output directly from output 2,while the backward-propagated odd order BSLs output from port 3 of the Cir together with the BP backward scattered through RS,realizing two BFCs output with double Brillouinfrequency-shift spacing from separated ends of the random cavity.

    3.Results and discussion

    During the experiment without the regeneration enhancement effect of random lasing,i.e.,with the portion of EDF and SMF removed, it is observed that there always remains RP light in the output spectrum measured at output 2 after the cascaded BSLs have been magnified.In order to use the remained RP and provide more BSLs with double Brillouin-frequencyshift spacing, the combination of a 1.3-m-long EDF pumped by a 980-nm laser diode (LD) through a 1550-nm/980-nm WDM and a coil of 10-km SMF,is incorporated between the DCF and the isolator as a regeneration portion.Firstly,the effect of the regeneration portion is investigated, as the BP and RP power are set to 7.6 dBm and 831.8 mW respectively with a BP wavelength of 1563.2 nm.Figure 2(a) depicts the output BFCs of the BRRFL measured at output 2 under different 980-nm LD pump power.The leftmost wavelength line whose intensity is higher than other lines’is from the residual pump.It clearly shows that the BSL number of the output even-order BFC has an evident increase from no 980-nm LD pump power to 100-mW 980-nm LD pump power.But with the increase of 980-nm LD pump power from 100 mW to 350 mW,the number of attainable BSLdoes not increase significantly.It contributes to the gain bandwidth limitation and saturation effect,which makes the available number of output BSLs basically remain unchanged with higher 980-nm LD pump power.For clearer observation,an enlarged view of the marked section in Fig.2(a) with all curves superimposed is shown in Fig.2(b).Apparently,the output power of the even-order BFCs at output 2 shows a synchronous upward trend with the increase of 980-nm LD pump power from 0 mW to 350 mW,while the power of odd-order BFCs at output1 almost remains constant.At the same time, the amplitude flatness and the optical signalto-noise ratio (OSNR) deteriorate to a certain degree.Thus,during the following experiment, the pump power of 980-nm LD is fixed at 100 mW.

    Next, the effect of RP power on the output BFC is investigated.The BP wavelength is set to 1553 nm, and the 980-nm LD power and the BP power are set to 100 mW and 7.6 dBm respectively.The first-order BSL at output 1 is easily observed with the RP power increased to 446.7 mW.When the RP power is further increased to 501.2 mW, the secondorder BSL emerges at output 1 as shown in Fig.3(a).But there is a 19.46-dB power difference between the first order BSL and the second order BSL.Note that the observed second order BSL at output 1 is its RS component, since the propagation direction of the second order BSL is opposite to that of the first-order component(leftward).It also means that the rightward second order BSL is generated at output 2.The output spectra at output 2 under different RP power are measured as shown in Fig.3(b).When the RP power is 602.6 mW in Fig.3(b), the amplified Stokes lines are not enough to overcome the self-oscillation.Thus, the mixing of BSLs and the self-oscillation modes makes the output spectrum disordered slightly.When the RP power is further increased to 660.7 mW,the stable BFC with a bandwidth of 14.5 nm and an OSNR of 26.6 dB begins to appear.The bandwidth and the OSNR are both enhanced with the RP power increasing from 660.7 mW to 831.8 mW.This can be explained by the fact that the optical gain of BP and BSLs increase with the RP power rising.Consequently,BP and BSLs will get more energy from RP pump light, so that BP and BSLs will be amplified, increasing the output BSL orders and flattening the BFC as well.However,the power difference between adjacent BSLs decreases with the RP power continuously going up.This is because the RS component is also amplified.Meanwhile, the fourwave mixing(FWM)effect between BP and BSLs that propagate in the same direction is raised a little, resulting in the generation of some anti-Stokes light.

    Fig.2.(a) Output spectra from output 2 under different 980-nm LD pump powers,(b)enlargement of the parts marked in Fig.2(a).

    Fig.3.(a)Output spectrum at output 1 under RP power of 501.2 mW,(b)output spectra at output 2 under different RP powers.

    Fig.4.Output spectra from output 1 at BP wavelength of(a)1531 nm,(b)1545 nm,(c)1553 nm,and(d)1560 nm,with BP,RP,and 980-nm LD power set to 7.6 dBm,831.8 mW,and 100 mW,respectively.

    In the following, the influence of the BP wavelength on the performance of BFC is investigated.Figure 4 shows the output BFC from output 2 in some selected BP wavelengths under 980-nm LD pump power 100 mW,RP power 831.8 mW,and BP power 7.6 dBm.Initially,the BP wavelength is fixed at the left of the Raman gain peak of 1531 nm(about 1553.3 nm),the output spectrum covers a wavelength range from 1531 nm to 1571.7 nm (40.7 nm), and obtains a maximum of 242 order Stokes lines output with a wavelength spacing of double Brillouin frequency shifts(~0.165 nm)as shown in Fig.4(a).The OSNR is about 25.48 dB.When the BP wavelength is set be slightly close to the Raman gain peak at 1545 nm, a flatter BFC is obtained in a range of 1545 nm–1571.8 nm, and the OSNR rises to 28.13 dB as shown in Fig.4(b).When the BP wavelength is 1553 nm near the Raman gain peak,an output spectrum with 1553 nm–1571.1 nm(18.1 nm)wavelength range and 104 Stokes lines is obtained as shown in Fig.4(c).The OSNR turns to 30.06 dB.Figure 4(d) reveals the output spectrum at output 2 when BP wavelength is 1560 nm near the end of Raman gain.Only 65 order Stokes lines ranging from 1560 nm to 1570.9 nm(10.9 nm)can be observed,while the OSNR rises from 30.06 dB to 32.89 dB.Evidently, with the tuning of BP wavelength, the change of the output BFC is embodied in the bandwidth of cascaded BSLs and the fluctuation of output BSL number and OSNR.And with the increase of BP wavelength, the bandwidth of the output BFC obtained at output 2 is gradually shortened, but the OSNR of the output BFC is improved.When the BP wavelength exceeds the Raman gain range,the BP and BSLs cannot be amplified enough to meet the SBS threshold, so that the output spectrum is mainly self-oscillation mode.Figure 4 reveals the trend of tunable range of BFC and its OSNR changing with BP wavelength.Within the Raman gain range,the shorter the BP wavelength,the wider the bandwidth of the BFC is,but the OSNR becomes poorer as well.On the contrary, increasing the BP wavelength will get less BSLs,but the OSNR of BFC will experience a gradual promotion obviously.

    To highlight bidirectional operation of the random fiber laser,the obtained BFCs from output 1 and output 2 are shown in Fig.5, when the RP power is 831.8 mW and 980-nm LD power is 100 mW with BP wavelength of 1535 nm.It is seen that the output BFCs exhibit 2.8-dB flat amplitude, comparable to the result reported previously.It is also indicated that under the same pumping condition,odd order BSLs from output 1 in Fig.5(a)have a greater OSNR than even order BSLs output 2 in Fig.5(b).This is because all even order BSLs have to pass through the EDF and SMF,which will introduce amplified spontaneous emission (ASE) noise and worsen the OSNR,while only part of odd order BSLs need to go through this process.Besides, the peak power difference between adjacent BSLs of odd order BFC is also superior to the even one,i.e., the peak power difference between odd orders of BSLs and Rayleigh components of even orders of BSLs for odd order BFC is larger than that for even order BFC.It is also due to the amplification role of the regeneration portion in the right.But it is worth noting that both two combs can realize the output of 225 cascade BSLs in a wide bandwidth, and have a clean-cut feature at the ends of the comb.

    Fig.5.BFC output from(a)output 1,(b)output 2,(c)detailed spectrum of(c)odd BSLs and(d)even BSLs.

    The obtained BFC with a bandwidth of 40.7 nm is subject to the pumping condition of single-wavelength RP of 831.8 mW and 980-nm LD pump of 100 mW.On the contrast,the recorded Brillouin comb bandwidth is 57.2 nm, which is implemented through Raman gain engineering based on multi-wavelength RP scheme.[1]This scheme is cumbersome and costly with just passable results.For the case of single wavelength RP, a 46.6-nm BFC with 20-dB OSNR is produced at Raman power of 950 mW, through controlling the flatness in amplitude of BSLs by employing an air-gap outside of the cavity.[19]Although this is the widest bandwidth attained in multi-wavelength BRRFL incorporated a singlewavelength RP, the introduction of air-gap inevitably brings extra losses.By using a 50/50 coupler to divide 1000-mW RP power into two fiber-entry points,212 flat amplitude channels with an average 27.5-dB OSNR were achieved,[9]which is less than our obtained 225 BSLs with 27.9-dB OSNR under single-wavelength RP of 831.8-mW and 980-nm LD pump of 100 mW.It is indicated the proposed regeneration portion scheme performs well in terms of pump efficiency.

    The narrow linewidth is one of the advantages of Brillouin random fiber laser.[21–23]We use the non-zero delay selfheterodyne method based on acoustooptic modulator (AOM)to measure the linewidth of single BSL.The experimental setup for linewidth measurement is shown in Fig.6(a).Since there is no narrow-band filter to filter out single BSL,an alternative method is adopted, that is, only the first-order BSL is excited.We set the BP power to 12.6 dBm and the RP power to 446.7 mW to just excite the first-order BSL.The first-order BSL to be measured is then divided into upper and lower channels through a 3-dB coupler.The upper branch passes through the 30-km SMF used as an optical fiber delay line.The lower branch passes through the AOM and the frequency is shifted by 80 MHz to avoid the influence of noise near the zero frequency.The upper and lower branches recombine at another 3-dB coupler and the beat radio frequency (RF) signal with a central frequency of 80 MHz is detected and measured by using a 15-GHz photo detector (PD) and an electrical spectrum analyzer (ESA).The obtained beat RF signal is shown in Fig.6(b),with a video bandwidth of 1 Hz,resolution bandwidth of 500 Hz,and the scanning bandwidth from 79.6 MHz to 80.4 MHz.It features a 3-dB linewidth of about 2.507 kHz,which is deduced from 20-dB bandwidth in order to reduce the noise influence.Based on this test system,we believe the linewidth of any order of BSL can be measured so long as a sufficiently narrow filter is added.And the magnitude order of the linewidth should be the same as that of the first order measured.

    Fig.6.(a)Experimental setup for linewidth measurement,(b)measured beat RF spectrum.

    4.Conclusions

    In summary,we obtained a broadband bidirectional Brillouin frequency comb from a multi-wavelength BRRFL in which the regeneration enhancing effect in a full-open linear cavity configuration is used.With the assistance of regeneration portion, the BRRFL we proposed shows advancement in not only the number of output BSLs,but also the excellent flatness of BFC with better OSNR, than those generated by conventional RFLs under the same pumping conditions.In the experiments, by adjusting the BP power to 7.6 dBm at 1531 nm, a wideband BFC of up to 242-order BSL with a wavelength spacing of double Brillouin frequency shift can be obtained.Moreover, the linewidth of single BSL is experimentally measured to be about 2.5 kHz.With the improved wideband BFC with better OSNR and its narrow linewidth,it has broad opportunities for promoting the applications in optical communication,microwave photonics,and optical sensing systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.62175116 and 91950105), the 1311 Talent Plan of Nanjing University of Posts and Telecommunications, China, and the Postgraduate Research & Practice Innovation Program, Jiangsu Province, China (Grant No.SJCX210276).

    猜你喜歡
    李陽
    Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    繽紛手繪鞋,陪讀媽媽“繪”出致富路
    家庭百事通(2017年4期)2017-04-12 23:13:19
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    非典型婚外情結(jié)局
    中外文摘(2016年8期)2016-12-22 16:25:13
    開在心頭的花
    上海故事(2016年8期)2016-08-10 16:42:43
    非典型婚外情結(jié)局,車禍中一只帶傷的手在謀殺
    感謝你曾經(jīng)的欺負
    久久久久久久亚洲中文字幕 | 51午夜福利影视在线观看| 五月伊人婷婷丁香| 又粗又爽又猛毛片免费看| 国产一级毛片七仙女欲春2| h日本视频在线播放| 精品不卡国产一区二区三区| 精品一区二区三区av网在线观看| 久久国产精品人妻蜜桃| 久久久久久久亚洲中文字幕 | 久久伊人香网站| 99久久综合精品五月天人人| 老司机午夜十八禁免费视频| 国产精华一区二区三区| 免费观看的影片在线观看| 嫩草影院入口| 天美传媒精品一区二区| 一夜夜www| 女人十人毛片免费观看3o分钟| 亚洲av成人av| 午夜福利在线在线| www日本黄色视频网| 啦啦啦免费观看视频1| 久久久久亚洲av毛片大全| 欧美又色又爽又黄视频| 久久精品人妻少妇| 中文字幕av成人在线电影| 久久人人精品亚洲av| 国产男靠女视频免费网站| 日本与韩国留学比较| 一区二区三区高清视频在线| 国产99白浆流出| 日韩欧美 国产精品| 国产精品影院久久| 国内揄拍国产精品人妻在线| 久久这里只有精品中国| 热99在线观看视频| 免费电影在线观看免费观看| 亚洲av美国av| 精品乱码久久久久久99久播| 波多野结衣高清作品| 久久久久久国产a免费观看| 在线观看美女被高潮喷水网站 | 久久亚洲精品不卡| 亚洲国产欧洲综合997久久,| 久久香蕉国产精品| 最近视频中文字幕2019在线8| 欧美日韩乱码在线| 免费搜索国产男女视频| a在线观看视频网站| 日韩有码中文字幕| 日本黄色片子视频| 成人亚洲精品av一区二区| 国产在视频线在精品| 真人做人爱边吃奶动态| 午夜日韩欧美国产| 两性午夜刺激爽爽歪歪视频在线观看| 精品福利观看| 亚洲国产高清在线一区二区三| 老熟妇仑乱视频hdxx| 最好的美女福利视频网| 亚洲精品成人久久久久久| 久久中文看片网| 国产欧美日韩精品亚洲av| 99国产综合亚洲精品| 国产高清有码在线观看视频| 日韩欧美精品免费久久 | 日韩亚洲欧美综合| 成人性生交大片免费视频hd| 中文字幕精品亚洲无线码一区| 国产精品亚洲av一区麻豆| 成人18禁在线播放| 日日夜夜操网爽| 丁香六月欧美| 国产亚洲精品综合一区在线观看| 内射极品少妇av片p| 亚洲精品一卡2卡三卡4卡5卡| 国产精品国产高清国产av| 在线观看66精品国产| 91久久精品电影网| 国产av在哪里看| 国产高清激情床上av| 天堂动漫精品| 少妇裸体淫交视频免费看高清| 欧美zozozo另类| 午夜免费激情av| 狂野欧美白嫩少妇大欣赏| 三级毛片av免费| 熟女少妇亚洲综合色aaa.| 成人18禁在线播放| 欧美一级a爱片免费观看看| 天堂av国产一区二区熟女人妻| 日韩欧美在线乱码| 欧美日韩国产亚洲二区| 国产伦在线观看视频一区| 国产毛片a区久久久久| 九九在线视频观看精品| 成人特级黄色片久久久久久久| 亚洲成人久久性| av中文乱码字幕在线| 丁香欧美五月| 久久99热这里只有精品18| 国产精品久久久人人做人人爽| 亚洲精品粉嫩美女一区| 午夜福利免费观看在线| 亚洲av第一区精品v没综合| 久久6这里有精品| 久久久久九九精品影院| 精品无人区乱码1区二区| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品综合久久99| 国产又黄又爽又无遮挡在线| 淫妇啪啪啪对白视频| 中文字幕高清在线视频| 亚洲国产日韩欧美精品在线观看 | 哪里可以看免费的av片| 综合色av麻豆| 女人十人毛片免费观看3o分钟| 性色avwww在线观看| 18美女黄网站色大片免费观看| 真人一进一出gif抽搐免费| 亚洲人与动物交配视频| 欧美午夜高清在线| 久久久久久久久大av| 久久久久久久久大av| 精品久久久久久久毛片微露脸| 母亲3免费完整高清在线观看| 国产视频内射| 人人妻人人看人人澡| 999久久久精品免费观看国产| 97碰自拍视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av美国av| 淫秽高清视频在线观看| 女人十人毛片免费观看3o分钟| 欧美成人一区二区免费高清观看| 久久性视频一级片| 热99re8久久精品国产| 精品午夜福利视频在线观看一区| 国产精品久久电影中文字幕| 国产精品一区二区免费欧美| 在线国产一区二区在线| 白带黄色成豆腐渣| 熟女电影av网| 好男人电影高清在线观看| avwww免费| 天堂√8在线中文| 日日干狠狠操夜夜爽| 好男人在线观看高清免费视频| xxxwww97欧美| 女人被狂操c到高潮| 亚洲国产中文字幕在线视频| 一级毛片高清免费大全| 日韩国内少妇激情av| 日韩中文字幕欧美一区二区| 国产三级中文精品| 美女大奶头视频| 国产精品,欧美在线| 变态另类丝袜制服| 午夜亚洲福利在线播放| 久久九九热精品免费| 性欧美人与动物交配| 国产成人av激情在线播放| www日本在线高清视频| 精品人妻偷拍中文字幕| 国产高清激情床上av| 亚洲内射少妇av| 久久久久久久精品吃奶| 成人av在线播放网站| 亚洲欧美精品综合久久99| 天堂网av新在线| 白带黄色成豆腐渣| 男人舔奶头视频| 国产精品一及| 免费大片18禁| 色精品久久人妻99蜜桃| 亚洲人成伊人成综合网2020| 制服人妻中文乱码| 国产熟女xx| 中文亚洲av片在线观看爽| 亚洲真实伦在线观看| 美女高潮喷水抽搐中文字幕| 少妇裸体淫交视频免费看高清| 美女cb高潮喷水在线观看| 欧美3d第一页| 亚洲人成网站高清观看| 久久久久国产精品人妻aⅴ院| 日本免费一区二区三区高清不卡| 在线观看一区二区三区| 国产三级黄色录像| 欧美zozozo另类| 国产日本99.免费观看| 99热这里只有是精品50| 亚洲va日本ⅴa欧美va伊人久久| 精品一区二区三区视频在线观看免费| 啦啦啦免费观看视频1| 色综合站精品国产| 美女cb高潮喷水在线观看| 人妻久久中文字幕网| 成人永久免费在线观看视频| 色哟哟哟哟哟哟| 国产真实伦视频高清在线观看 | 法律面前人人平等表现在哪些方面| 国产欧美日韩精品一区二区| 白带黄色成豆腐渣| 午夜福利在线在线| 国产成人福利小说| a在线观看视频网站| 蜜桃久久精品国产亚洲av| 亚洲一区二区三区不卡视频| 三级国产精品欧美在线观看| www.色视频.com| 国产三级黄色录像| 性色avwww在线观看| 亚洲精品456在线播放app | 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 国产精品亚洲av一区麻豆| 一级毛片高清免费大全| 三级国产精品欧美在线观看| 国产主播在线观看一区二区| 99久久无色码亚洲精品果冻| x7x7x7水蜜桃| 亚洲av不卡在线观看| 人人妻人人看人人澡| 97碰自拍视频| 亚洲内射少妇av| 99精品久久久久人妻精品| 色尼玛亚洲综合影院| 日本熟妇午夜| 91av网一区二区| 性色av乱码一区二区三区2| 国产成人av教育| 亚洲av成人精品一区久久| 在线观看66精品国产| 一本精品99久久精品77| 色av中文字幕| 特级一级黄色大片| 美女大奶头视频| 性色av乱码一区二区三区2| 老司机福利观看| 又黄又爽又免费观看的视频| 日本五十路高清| 琪琪午夜伦伦电影理论片6080| 欧美乱妇无乱码| 日韩大尺度精品在线看网址| 亚洲精品在线美女| 香蕉av资源在线| 母亲3免费完整高清在线观看| 色综合欧美亚洲国产小说| 好看av亚洲va欧美ⅴa在| 女人高潮潮喷娇喘18禁视频| 叶爱在线成人免费视频播放| 午夜激情欧美在线| 精品一区二区三区av网在线观看| 九九在线视频观看精品| 丰满人妻一区二区三区视频av | 97超级碰碰碰精品色视频在线观看| 窝窝影院91人妻| 成人av一区二区三区在线看| www.999成人在线观看| 久9热在线精品视频| 精品一区二区三区av网在线观看| 亚洲国产高清在线一区二区三| 欧美黄色片欧美黄色片| 国产真实乱freesex| 日日夜夜操网爽| 身体一侧抽搐| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 国内精品久久久久精免费| 一区二区三区高清视频在线| 成年女人永久免费观看视频| 国产真实乱freesex| 韩国av一区二区三区四区| 久久精品人妻少妇| 亚洲狠狠婷婷综合久久图片| 国产日本99.免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 午夜影院日韩av| 搡老妇女老女人老熟妇| 午夜福利成人在线免费观看| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 精品久久久久久久末码| 国产在视频线在精品| 中文亚洲av片在线观看爽| 十八禁网站免费在线| 亚洲人成电影免费在线| 日日夜夜操网爽| 国产乱人视频| 亚洲无线在线观看| 两人在一起打扑克的视频| 熟妇人妻久久中文字幕3abv| 国产伦精品一区二区三区视频9 | 国产精品永久免费网站| 在线观看免费视频日本深夜| 欧美黄色片欧美黄色片| 亚洲最大成人手机在线| 国内精品久久久久精免费| ponron亚洲| 久久久精品欧美日韩精品| 成年女人毛片免费观看观看9| 久久久久国产精品人妻aⅴ院| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 黑人欧美特级aaaaaa片| 国产一区二区三区视频了| 琪琪午夜伦伦电影理论片6080| 一级黄片播放器| 又黄又粗又硬又大视频| 最新中文字幕久久久久| 中国美女看黄片| 啦啦啦观看免费观看视频高清| 欧美一区二区精品小视频在线| 久久精品综合一区二区三区| 色视频www国产| 日本熟妇午夜| 香蕉av资源在线| 久9热在线精品视频| 免费av观看视频| 成人三级黄色视频| 日韩av在线大香蕉| 欧美中文综合在线视频| 国产精品久久久久久久电影 | 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 母亲3免费完整高清在线观看| 日本在线视频免费播放| 亚洲 欧美 日韩 在线 免费| 变态另类丝袜制服| 亚洲欧美激情综合另类| 亚洲va日本ⅴa欧美va伊人久久| 久久这里只有精品中国| 桃红色精品国产亚洲av| 窝窝影院91人妻| 亚洲国产精品sss在线观看| 亚洲精华国产精华精| 国产成人a区在线观看| 国内少妇人妻偷人精品xxx网站| 变态另类丝袜制服| 97超级碰碰碰精品色视频在线观看| 成人国产综合亚洲| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 一a级毛片在线观看| 日韩欧美精品免费久久 | 成人一区二区视频在线观看| 日本五十路高清| 99久久无色码亚洲精品果冻| 真实男女啪啪啪动态图| 1000部很黄的大片| 香蕉丝袜av| 国内久久婷婷六月综合欲色啪| 国产毛片a区久久久久| 91麻豆精品激情在线观看国产| 操出白浆在线播放| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 真人一进一出gif抽搐免费| 亚洲国产日韩欧美精品在线观看 | 日本黄色片子视频| 国产毛片a区久久久久| 岛国视频午夜一区免费看| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 女生性感内裤真人,穿戴方法视频| 一个人免费在线观看电影| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产在线观看| 日韩免费av在线播放| 我要搜黄色片| 午夜久久久久精精品| 男人舔奶头视频| 日韩av在线大香蕉| 国内精品久久久久精免费| 精品久久久久久,| 国产亚洲av嫩草精品影院| 一本综合久久免费| 久久人人精品亚洲av| 啪啪无遮挡十八禁网站| 怎么达到女性高潮| 亚洲精品一区av在线观看| 国产精品 国内视频| 国产av麻豆久久久久久久| 久久这里只有精品中国| 在线免费观看不下载黄p国产 | 91久久精品国产一区二区成人 | 欧美乱妇无乱码| 国产一区二区三区在线臀色熟女| 国产爱豆传媒在线观看| 国产在视频线在精品| 中亚洲国语对白在线视频| 久久久久久久午夜电影| 欧美性猛交黑人性爽| 三级毛片av免费| 亚洲av二区三区四区| 麻豆国产97在线/欧美| 校园春色视频在线观看| 老熟妇仑乱视频hdxx| 成人午夜高清在线视频| 久久人妻av系列| 国产三级中文精品| 男女视频在线观看网站免费| 国产探花在线观看一区二区| eeuss影院久久| 午夜激情欧美在线| 欧美最新免费一区二区三区 | 成人国产一区最新在线观看| 免费搜索国产男女视频| 啦啦啦观看免费观看视频高清| 丁香欧美五月| 别揉我奶头~嗯~啊~动态视频| 99久久九九国产精品国产免费| 一二三四社区在线视频社区8| 亚洲av不卡在线观看| ponron亚洲| 日韩高清综合在线| 欧美+日韩+精品| www.999成人在线观看| 久久草成人影院| 好男人电影高清在线观看| 欧美成人一区二区免费高清观看| 人人妻人人看人人澡| 丰满的人妻完整版| 非洲黑人性xxxx精品又粗又长| 小说图片视频综合网站| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 国产真人三级小视频在线观看| 男人和女人高潮做爰伦理| 国产精品国产高清国产av| a级毛片a级免费在线| 制服人妻中文乱码| 18禁黄网站禁片免费观看直播| 精品一区二区三区视频在线 | 日韩欧美免费精品| 99热精品在线国产| 少妇丰满av| 国产麻豆成人av免费视频| 老熟妇乱子伦视频在线观看| 国产亚洲欧美在线一区二区| 欧美另类亚洲清纯唯美| 神马国产精品三级电影在线观看| 最后的刺客免费高清国语| 国产熟女xx| 国产精品日韩av在线免费观看| 色尼玛亚洲综合影院| 麻豆成人av在线观看| 天美传媒精品一区二区| 免费一级毛片在线播放高清视频| avwww免费| 国产视频内射| 我的老师免费观看完整版| 久久6这里有精品| 国产亚洲精品综合一区在线观看| 日本 av在线| 两人在一起打扑克的视频| 国产精品综合久久久久久久免费| 久久天躁狠狠躁夜夜2o2o| 日韩国内少妇激情av| 成人特级av手机在线观看| 尤物成人国产欧美一区二区三区| 在线视频色国产色| 给我免费播放毛片高清在线观看| 成年版毛片免费区| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添小说| 99精品欧美一区二区三区四区| 91麻豆av在线| 村上凉子中文字幕在线| 无人区码免费观看不卡| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 亚洲一区二区三区不卡视频| 欧美日韩中文字幕国产精品一区二区三区| 99热这里只有精品一区| 日本与韩国留学比较| 三级毛片av免费| 91久久精品电影网| 男插女下体视频免费在线播放| 成人高潮视频无遮挡免费网站| 国产一区二区三区在线臀色熟女| 成人一区二区视频在线观看| 99久久精品热视频| 国产精品久久久久久久久免 | 男人的好看免费观看在线视频| 免费无遮挡裸体视频| 天美传媒精品一区二区| 波多野结衣巨乳人妻| 十八禁网站免费在线| 制服人妻中文乱码| 久久精品夜夜夜夜夜久久蜜豆| 夜夜夜夜夜久久久久| 国产三级中文精品| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 桃红色精品国产亚洲av| 波野结衣二区三区在线 | 色视频www国产| 在线观看av片永久免费下载| 俺也久久电影网| 黄色成人免费大全| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 国产黄a三级三级三级人| 淫妇啪啪啪对白视频| 99久久精品热视频| 国产精品久久电影中文字幕| 五月伊人婷婷丁香| 91麻豆av在线| 欧美av亚洲av综合av国产av| 国内精品久久久久久久电影| 中文字幕av成人在线电影| 精品一区二区三区视频在线 | 久久久久九九精品影院| 国产老妇女一区| 欧美黑人巨大hd| 国产黄片美女视频| 两个人视频免费观看高清| 久久精品国产亚洲av涩爱 | 国产午夜福利久久久久久| 嫁个100分男人电影在线观看| 日本黄色视频三级网站网址| 最近最新免费中文字幕在线| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 一本综合久久免费| 叶爱在线成人免费视频播放| 好看av亚洲va欧美ⅴa在| 色综合站精品国产| 免费在线观看日本一区| 波多野结衣高清作品| 可以在线观看毛片的网站| 亚洲内射少妇av| 国产激情欧美一区二区| 国产av不卡久久| 国产欧美日韩精品一区二区| 女生性感内裤真人,穿戴方法视频| 日日夜夜操网爽| 久久久国产精品麻豆| 午夜日韩欧美国产| 中文字幕熟女人妻在线| 亚洲无线观看免费| 18禁在线播放成人免费| 色综合婷婷激情| 俄罗斯特黄特色一大片| 欧美乱码精品一区二区三区| 欧美一区二区亚洲| 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| www日本在线高清视频| 亚洲黑人精品在线| 亚洲色图av天堂| 久久久久国内视频| 亚洲精品在线美女| 好男人在线观看高清免费视频| 免费在线观看影片大全网站| 禁无遮挡网站| 身体一侧抽搐| 日韩有码中文字幕| 国产精品久久久久久亚洲av鲁大| 99热6这里只有精品| 男人舔奶头视频| 精品熟女少妇八av免费久了| 神马国产精品三级电影在线观看| 桃色一区二区三区在线观看| 亚洲成人精品中文字幕电影| 欧美中文日本在线观看视频| 一级a爱片免费观看的视频| 欧美成人免费av一区二区三区| 97人妻精品一区二区三区麻豆| 成年免费大片在线观看| av中文乱码字幕在线| 最新在线观看一区二区三区| 成人三级黄色视频| 熟女少妇亚洲综合色aaa.| 久久精品国产清高在天天线| 国产又黄又爽又无遮挡在线| 男女床上黄色一级片免费看| 男女那种视频在线观看| 亚洲精品国产精品久久久不卡| 免费av观看视频| 男女之事视频高清在线观看| 手机成人av网站| 欧美xxxx黑人xx丫x性爽| 午夜两性在线视频| 国产欧美日韩一区二区精品| 91久久精品电影网| 国内精品久久久久久久电影| 精品久久久久久,| 99热这里只有精品一区| 国产精品一及| 啦啦啦韩国在线观看视频| 成年女人永久免费观看视频| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| 成年版毛片免费区| 日韩欧美精品免费久久 | 在线天堂最新版资源| 午夜老司机福利剧场| 亚洲成人久久性| 99热6这里只有精品| 亚洲精品日韩av片在线观看 | 成人高潮视频无遮挡免费网站| 最近最新免费中文字幕在线| 午夜福利在线观看免费完整高清在 | 欧美成人一区二区免费高清观看| 亚洲 欧美 日韩 在线 免费| 18禁黄网站禁片午夜丰满|