• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method

    2022-11-21 09:30:06HongLinZhou周宏霖YuHaoZhang張與豪YangLi李陽
    Chinese Physics B 2022年11期
    關(guān)鍵詞:李陽

    Hong-Lin Zhou(周宏霖) Yu-Hao Zhang(張與豪) Yang Li(李陽)

    Shi-Liang Li(李世亮)1,2,4, Wen-Shan Hong(洪文山)1,2,5,?, and Hui-Qian Luo(羅會(huì)仟)1,4,§

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3School of Advanced Engineering,University of Science and Technology Beijing,Beijing 100083,China

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    5International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    High-quality superconducting Ca1-xNaxFe2As2 single crystals have been successfully grown by the NaAs-flux method, with sodium doping level x=0.4–0.64. The typical sizes of these crystals are more than 10 mm in ab-plane and ~0.1 mm along c-axis in thickness. X-ray diffraction,resistance and magnetization measurements are carried out to characterize the quality of these crystals. While no signature of magnetic phase transitions is detected in the normal state,bulk superconductivity is found for these samples, with a sharp transition at Tc ranging from 19.8 K (x=0.4) to 34.8 K(x=0.64). The doping dependences of the c-axis parameter and Tc are consistent with previous reports, suggesting a possible connection between the lattice parameters and superconductivity.

    Keywords: iron-based superconductors,crystal growth,flux method

    1. Introduction

    Unconventional superconductivity emerges either from stoichiometric or doped cuprates, nickelates, pnictides, and chalcogenides,[1–6]or from pressure tuned heavy fermion compounds, Cr-based and Mn-based compounds.[7–12]It is a great challenge to reveal the microscopic mechanism of superconductivity in these materials due to various phases coexisting or competing with each other.[3,5]To achieve such a goal, high quality crystals are certainly essential for the exploration of those complex interactions among electrons and atoms.[12–22]For iron arsenide superconductors, the crystal growth methods are quite limited due to the highly toxic arsenic vapor.[23]Usually, the iron arsenide crystals are grown by flux methods in sealed quartz tubes, where the flux could be NaCl/KCl mixture, Sn, FeAs, NaF, CaAs, NaAs, KAs,etc.[24–53]At the early stage, the 1111-type iron-based superconductor (FeSC) LaFeAsO1-xFxwere grown by NaCl/KCl flux,[24–26]and the obtained crystals with several micrometer sizes are only suitable for transport measurements.[27,28]Later,the 122-type FeSCs are grown by Sn flux or FeAs self-flux methods,which significantly improve the sample sizes to centimeter scale but probably with some impurity phases.[29–35]Similar grown applications are successful in other systems such as 111-type, 112-type, and 1144-type FeSCs.[36–43]After that,the NaF,CaAs,NaAs,KAs fluxes with lower melting points are demonstrated to be very useful to grow the 1111-type FeSCs as well as other systems.[44–49]In particular, the hole-like 12422-type systems and the hoped-doped 122-type FeSCs grown by NaAs or KAs show very homogeneous quality and bulk superconductivity.[50–55]

    The 122-type FeSCs are the most extensively studied systems due to available crystals with high quality and large sizes.[14–17]The parent compound of the‘122’families is typically in the form of AeFe2As2(Ae=alkaline earth metal,e.g., Ca, Sr, Ba), exhibiting both antiferromagnetic (AF) and structural phase transitions from 138 K to 203 K.[56–59]Superconductivity can be induced by hole (e.g., Na and K),electron (e.g., Ni, Co, Cu, Rh, Ir, Pd, La, Ce, and Pr),or isovalent (e.g., P and Ru) dopings on the alkaline earth metal, iron, and arsenic sites, respectively.[60–77]While the FeAs self-flux method can produce high quality crystals for those electron doped compounds throughout the phase diagram, homogeneous and tunable superconductivity in the hole doped compounds is still a challenge.[33–35,54,55]The 122-type FeSCs generally host a phase diagram with competing AF order and superconductivity similar to cuprates,but the details of the phase diagram strongly depend on the alkaline earth metal and the doped elements.[14,15]For example, in the electron doped systems such as Ba(Fe1-xNix)2As2or Ba(Fe1-xCox)2As2, the long-range stripe-type AF order in the orthorhombic lattice is gradually suppressed and degenerates to a short-range order finally disappearing aboveTcnear the optimal doping level.[78–81]The cases become more complicated in the hole doped systems, such as Ba1-xKxFe2As2,[82]Ba1-xNaxFe2As2,[83,84]Sr1-xNaxFe2As2,[85,86]and Ca1-xNaxFe2As2,[87]a tetragonal magnetic phase (so-calledC4phase) with ordered moments alongc-axis is revealed to competing with the orthorhombic magnetic phase (so-calledC2phase) just before the optimal doping level in the underdoped region, theC2phase may reentry at low temperature in Ba1-xKxFe2As2and Ca1-xNaxFe2As2.[82,87]Moreover,the superconducting dome for the same doped element is significantly distinct among Ba-, Sr-, and Ca-122 systems. Like say, the maximumTc= 30–35 K locates atx= 0.4, 0.55, and 0.75 for Ba1-xNaxFe2As2, Sr1-xNaxFe2As2, Ca1-xNaxFe2As2,respectively.[84–89]The Ca-122 compounds show a unique collapse tetragonal phase where both the AF fluctuations and superconductivity may be absent.[90–93]All these facts suggest that the chemical doping induced changes on the local crystalline structure are crucial to the electronic ground states in FeSCs besides the charge carrier concentration. Thus,further investigations on this issue are highly desired to understand the unconventional superconductivity in FeSCs, counting on high-quality and sizeable single crystals.

    In this paper,we report a method to grow sizeable and homogenous Ca1-xNaxFe2As2single crystals with doping level fromx= 0.4 tox= 0.64. While AF order is absent in these batches of crystals, bulk superconductivity is found with transition temperatures ranging fromTc=20 K in thex=0.4 sample toTc=34.5 K in the optimally dopedx=0.64 sample. Compared to the FeAs self-flux method, this NaAs self-flux method is quite hard to reach the very underdoped level in Ca1-xNaxFe2As2. We summarize the results of Ca1-xNaxFe2As2in the literature and compare with the Ba1-xKxFe2As2system from underdoped region to optimal doping level. A linear dependence ofc-axis parameter and a parabolic dependence ofTcversus the doping levelxare found, respectively, suggesting a quantitative connection between the local crystalline structure and the unconventional superconductivity in FeSCs.

    2. Experimental details

    We used NaAs as flux to grow the Ca1-xNaxFe2As2single crystals. Firstly, three precursors NaAs, CaAs and Fe2As were prepared with highly pure raw materials Na(>99.5%),Ca(>99.9%), Fe(>99.5%) and As(>99.99%) by the solid state reaction method in evacuated and sealed quartz tubes.NaAs was synthesized by mixing many small pieces of Na and As powders and reacting at 400°C for 20 h. CaAs was prepared by mixing Ca grains and As powders and reacting at 400°C for 20 h then keeping at 630°C for another 20 h.Fe2As was synthesized by reacting the mixture of Fe and As powders at 500°C for 10 h then at 700°C for another 10 h. All heating process should be very carefully and gently under a rate less than 20°C/h,to avoid the danger from vapor of these raw materials. Secondly, these three precursors were mixed together at a molar ratio of CaAs:Fe2As:NaAs=(1-x):1:(x+3)to grow Ca1-xNaxFe2As2single crystals. After grinding for about 30 min, the mixture was loaded in an alumina crucible and then sealed under argon atmosphere in an Nb tube,this tube was further sealed in an evacuated quartz ampoule.Thirdly, the sealed mixture was placed in a box furnace and slowly heated up to 600°C and kept warm for 5 h to fully melt the NaAs flux, it was then heated to 980°C at a rate of 0.76°C/min, and to 1150°C at a rate of 0.425°C/min, hold for 24 h to melt the CaAs (melting point about 650°C) and Fe2As (melting point about 930°C) materials, followed by slowly cooling down to 650°C at a rate of 2°C/h to grow the crystals. Finally, the electricity of the furnace was turned off to cool down the mixture to room temperature naturally,until it is safe to fetch out. Large pieces of Ca1-xNaxFe2As2single crystals were obtained after crashing the tubes and cleaning the NaAs flux. Residual NaAs flux on the crystal surface can be fully dissolved in the deionized water.

    The crystal surface morphology and distribution of elements were examined by a scanning electron microscope(SEM)equipped with energy dispersive x-ray(EDX)analyzer.The chemical compositions of our crystals were determined by the inductively coupled plasma (ICP) analysis. The crystalline quality and doping effects on the lattice parameters were checked by single-crystal x-ray diffraction (XRD) on a 9 kW high-resolution diffraction system (SmartLab) with CuKαradiation(λ=1.5406 ?A)at room temperature in the reflection mode,with 2θranging from 10°to 65°. The Laue pattern was collected by an x-ray Laue camera(Photonic Sciences)in backscattering mode with incident beam alongc-axis. The resistivity was measured by the standard four-probe method in a physical property measurement system (Quantum Design-PPMS). The DC-magnetic susceptibility was measured with the zero-field-cooling (ZFC) method and a small fieldH=3 Oe in parallelc-axis in a magnetic property measurement system(Quantum Design-MPMS).

    3. Results and discussion

    We have successfully grown 5 batches of Ca1-xNaxFe2As2single crystals with nominal dopingx=0.3,0.4, 0.5, 0.6, 0.7. The actual doping concentrationx′is determined by the ICP method and listed in Table 1, where the relative errors are about 5% as estimated from the analyses on several pieces of crystals. Due to the excess NaAs precursor as the flux in the mixture, even a small nominalxcould result in significant actual dopings, givingx′=0.2+0.64x.Such effect hampers us to reach low doping level in the underdoped region in comparison to the FeAs-flux method.[33,94,95]For high doping levels, the Na concentration seems to reach a saturation point in this method. So far, overdoped Ca1-xNaxFe2As2crystals are still very hard to obtain, but overdoped Ba1-xKxFe2As2including KFe2As2can be grown by the KAs-flux method.[54,55,96,97]In the following, we use the actual doping level to refer to our samples.The homogeneity of our crystals is examined by SEM and EDX analyses,the results of three typical dopingsx=0.40, 0.44, and 0.64 are shown in Fig. 1. The SEM photos show flat surfaces with some crack edges from different layers. EDX analyses on four elements all exhibit homogenous distributions.

    Fig.1. (a)–(c)SEM photos of the cleaved surfaces and element distribution analyses for Ca1-xNaxFe2As2 (x=0.40,0.44 and 0.64)crystals.(b)A typical EDX spectrum for one single crystal with x=0.64.

    Fig. 2. (a) The x-ray diffraction patterns at room temperature for Ca1-xNaxFe2As2 single crystals. (b) A photo of Ca0.6Na0.4Fe2As2 platy monocrystal. (c)Typical Laue reflection at room temperature for our crystals.

    The crystalline quality is checked by x-ray diffraction and presented in Fig. 2. Figure 2(a) shows the XRD patterns with the incident beam along thec-axis of our crystals. All diffraction peaks indexed as (0,0,l) (l=even) are sharp and no diffraction from impurity phases is observed.With the increase of Na doping, the 2θof the last peak shifts to low angle side, suggesting increasingc-axis lattice parameter. We have calculated thec-axis parameter by fitting the peak positions and listed in Table 1. The photo in Fig.2(b)shows the typical sizes of our Ca1-xNaxFe2As2single crystals. The dimensions of the largest crystal are about 17 mm×16 mm×0.5 mm. The cleaved surface is shiny under the light,and the texture is brittle. The Laue reflection inab-plane for Ca0.36Na0.64Fe2As2is shown in Fig.2(c). Again,the bright and sharp scattering spots indicate the high quality of this sample, clear orientations along [1,0,0] and [1,1,0] of the crystal can be easily identified.

    Table 1. Doping concentrations, c-axis parameter, and Tc of ourCa1-xNaxFe2As2 single crystals.

    Figure 3(a)shows the electrical resistance inab-plane under zero field as a function of temperature.We normalize them by the resistance at 300 K for comparison,all of them show a smooth evolution in the normal state and a sharp superconducting transition atTc. To search for the signature of any magnetic transitions, we plot the first-order derivative of the resistance versus temperature in the inset of Fig. 3(a). Only a narrow peak corresponding to the superconducting transition can be identified,the value ofTcfor each doping is listed in Table 1, too. Therefore, for all samples with actual doingx=0.40–0.64,they are paramagnetic in the normal state,which is consistent with the previous reports on polycrystalline samples.[82,87]We also notice that the residual resistance just aboveTcis less than 10%of the room temperature resistance, giving a large residual resistivity ratio RRR≈10.Such large RRR also confirms the high quality of our crystals. For references,RRR is about 5 for optimally hole-doped Ba1-xKxFe2As2,[33]and about 2 for optimally electron-doped Ba(Fe1-xNix)2As2.[34]For high pure KFe2As2grown by KAs flux, RRR can be over than 2000.[96,97]The superconducting volume of these Ca1-xNaxFe2As2crystals was measured by magnetization under a magnetic field of 3 Oe alongc-axis in ZFC mode. We only checked three typical samples withx=0.40, 0.44, and 0.64 as shown in Fig. 3(b). All of them show sharp superconducting transitions with a strong diamagnetic signal and a narrow width ΔT <2 K.The magnetic susceptibility 4πχ=-1 at low temperatures indicate the full Meissner state, namely bulk superconductivity in these samples. In the parent compound CaFe2As2,a magnetic transition with stripe-type order can be probed at aboutTN=170 K by the magnetization under high field,which shows a deletion belowTNand a linear temperature dependence aboveTN.[14,58]However, the normal state resistance is more sensitive to the magnetic/structural transitions in FeSCs,[33–36]thus we do not have to measure the magnetization up to high temperatures to further search the magnetic order.

    Fig. 3. (a) The temperature dependence of resistance for Ca1-xNaxFe2As2 crystals. All data are normalized by the room temperature resistance. The inset shows the first-order derivative of the resistance.(b)Magnetization measured under ZFC mode for three typical dopings x=0.40,0.44,0.64.

    Finally,we compare the doping dependence of thec-axis parameter and superconducting transitionTcwith the previous reports on Ca1-xNaxFe2As2.[75–77,87,89]As shown in Fig. 4,our results can merge well with previous reports for both parameters. In Fig. 4(a), we also plot the doping dependence of thec-axis parameter in Ba1-xKxFe2As2.[33,95]As we can see, for both hole doped systems, thec-axis lattice is continuously stretched by chemical substitutions, as the radius of alkali metal is larger than alkali earth metal.[98,99]Thecaxis has a linear relationship with doping levelxin the underdoped regime:c=0.78x+11.7 for Ca1-xNaxFe2As2andc= 0.88x+12.98 for Ba1-xKxFe2As2,[95,98,99]with similar slopes. With thoseTcof Ca1-xNaxFe2As2summarized in Fig. 4(b),[75–77,87,89]we can roughly fit by a parabolic function:Tc=-155.2x2+227.18x-48.89. Such a relation probably suggests that the superconducting behavior in the underdoped region is also strongly related to thed-spacing between Fe-As layers. Particularly, for those systems with smallerc-axis parameters thus closer distance of the adjacent Fe–As layers, the inter Fe–As layer coupling is stronger, thus to reach the optimal superconductivity upon doping requires higher concentration. This naturally explains the increasing doping to the optimal level in (Ba,Sr,Ca)1-xNaxFe2As2systems, where their parent compounds (Ba,Sr,Ca)Fe2As2have decreasingc-axis:c=13.04,12.37,11.75 ?A at room temperature, respectively.[84–89]For the overdoped region, although thec-axis continuously increasing upon doping, strong mismatches of the Fermi surface sizes are expected to suppress the superconducting pairing.[5]It was proposed in Ref.[100]thatTcis higher when the pnictogen height and As–Fe–As bond angle more close to form a regular tetrahedron among many systems of FeSCs. This could be a consequence from competing interactions strongly associated with the local crystalline structure.

    Fig. 4. (a) Doping dependence of the c-axis parameters in the Ca1-xNaxFe2As2 system[75–77,87,89] in comparison with the Ba1-xKxFe2As2 system.[33,95,98,99] Here the relative errors for the chemical compositions of our sample are about 5% from the ICP measurements, errors for other samples are obtained from the above-mentioned literature, and the solid lines are linear fittings. (b) Summary of the doping dependence of Tc in Ca1-xNaxFe2As2.[75–77,87,89] The solid line is a parabolic fitting to all data.

    4. Summary

    In summary,we have successfully grown a series of large Ca1-xNaxFe2As2single crystals with actual Na dopingx=0.4–0.64 using the NaAs-flux method. These crystals show bulk superconductivity but no magnetic transitions. The positive doping dependences both forTcandc-axis lattice parameter suggest that they are probably related.These homogeneous and sizable crystals provide us chances to further investigate the unconventional superconductivity in FeSCs,especially for those techniques requiring large crystals,such as inelastic neutron scattering and μSR.

    Acknowledgements

    The authors thank Professor Xing-Ye Lu, Dr. Zhen Tao,Dr. Li-Hong Yang, Dr. Jie Li and Mr. Wei-Wen Huang for assistance in sample characterization.

    Project supported by the National Key Research and Development Program of China(Grant No.2018YFA0704200),the National Natural Science Foundation of China (Grant Nos.11822411 and 11961160699), the Strategic Priority Research Program (B) of the CAS (Grants Nos. XDB25000000 and XDB33000000), the K. C. Wong Education Foundation(Grant No. GJTD-2020-01), the Youth Innovation Promotion Association of CAS (Grant No. Y202001), the Postdoctoral Innovative Talent program (Grant No. BX2021018),and the China Postdoctoral Science Foundation (Grant No.2021M700250).

    猜你喜歡
    李陽
    Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth
    天竺取經(jīng)之二
    金秋(2021年24期)2021-12-01 11:15:21
    特殊的考卷
    李陽 讓品茶成為視覺藝術(shù)
    海峽姐妹(2020年11期)2021-01-18 06:16:06
    繽紛手繪鞋,陪讀媽媽“繪”出致富路
    家庭百事通(2017年4期)2017-04-12 23:13:19
    開在心頭的花
    小小說月刊(2017年1期)2017-01-13 17:53:46
    非典型婚外情結(jié)局
    中外文摘(2016年8期)2016-12-22 16:25:13
    開在心頭的花
    上海故事(2016年8期)2016-08-10 16:42:43
    非典型婚外情結(jié)局,車禍中一只帶傷的手在謀殺
    感謝你曾經(jīng)的欺負(fù)
    12—13女人毛片做爰片一| 亚洲精品在线观看二区| 亚洲国产日韩欧美精品在线观看| 99久国产av精品| 日本 欧美在线| АⅤ资源中文在线天堂| 亚洲国产高清在线一区二区三| 亚洲av中文字字幕乱码综合| 别揉我奶头 嗯啊视频| 午夜老司机福利剧场| 免费电影在线观看免费观看| 亚洲自拍偷在线| 亚洲一区二区三区色噜噜| 人人妻人人看人人澡| 九色国产91popny在线| 亚洲精品456在线播放app | 久久热精品热| 特级一级黄色大片| 黄色配什么色好看| 国产成人a区在线观看| 中出人妻视频一区二区| 免费大片18禁| 久久精品国产清高在天天线| 国内精品美女久久久久久| 成人美女网站在线观看视频| 国产欧美日韩一区二区精品| 亚洲最大成人av| 国产成人福利小说| 亚洲av成人av| 国产高清激情床上av| 18禁黄网站禁片免费观看直播| 一级a爱片免费观看的视频| www日本黄色视频网| 97碰自拍视频| 免费一级毛片在线播放高清视频| 中文字幕人妻熟人妻熟丝袜美| 色尼玛亚洲综合影院| 少妇人妻精品综合一区二区 | 亚洲真实伦在线观看| 久久久久久久久久黄片| 最近视频中文字幕2019在线8| 免费搜索国产男女视频| 成人性生交大片免费视频hd| 中文字幕免费在线视频6| 看免费av毛片| 激情在线观看视频在线高清| 日本免费一区二区三区高清不卡| 久久亚洲精品不卡| or卡值多少钱| 十八禁人妻一区二区| 99久国产av精品| 久久人妻av系列| 两人在一起打扑克的视频| 欧美xxxx性猛交bbbb| av女优亚洲男人天堂| 精品欧美国产一区二区三| 国产精华一区二区三区| 最近最新免费中文字幕在线| 18禁裸乳无遮挡免费网站照片| 久久天躁狠狠躁夜夜2o2o| 久久久久久久精品吃奶| 精品免费久久久久久久清纯| 欧美精品国产亚洲| 人人妻人人澡欧美一区二区| 免费av不卡在线播放| 欧美高清成人免费视频www| 日韩欧美在线二视频| 最近在线观看免费完整版| 偷拍熟女少妇极品色| 在线免费观看的www视频| 免费av不卡在线播放| www.www免费av| 成人毛片a级毛片在线播放| 亚洲精品456在线播放app | 色视频www国产| 婷婷六月久久综合丁香| 啦啦啦观看免费观看视频高清| 国产精品日韩av在线免费观看| 亚洲,欧美,日韩| 一本一本综合久久| 日本五十路高清| 成人亚洲精品av一区二区| 久久久久久久久大av| 中文字幕av在线有码专区| 成人午夜高清在线视频| h日本视频在线播放| 51国产日韩欧美| 国产精品久久久久久亚洲av鲁大| 欧美精品啪啪一区二区三区| 精品国内亚洲2022精品成人| 亚洲精品456在线播放app | 欧美精品国产亚洲| 亚洲精品一区av在线观看| 伦理电影大哥的女人| 精品久久久久久久人妻蜜臀av| 免费黄网站久久成人精品 | 亚洲av五月六月丁香网| 看免费av毛片| 亚洲久久久久久中文字幕| 日韩 亚洲 欧美在线| 色精品久久人妻99蜜桃| 美女xxoo啪啪120秒动态图 | 十八禁国产超污无遮挡网站| 免费看日本二区| 欧美国产日韩亚洲一区| www.熟女人妻精品国产| 日本在线视频免费播放| 老女人水多毛片| 日韩欧美国产在线观看| 国产精品人妻久久久久久| 欧美+日韩+精品| 亚洲午夜理论影院| 丁香六月欧美| 夜夜躁狠狠躁天天躁| 国产探花在线观看一区二区| 国产伦在线观看视频一区| 在线十欧美十亚洲十日本专区| 亚洲人成网站在线播放欧美日韩| 757午夜福利合集在线观看| 看黄色毛片网站| av专区在线播放| 熟妇人妻久久中文字幕3abv| 亚洲国产精品合色在线| 国产精品亚洲美女久久久| 亚洲av成人精品一区久久| 狂野欧美白嫩少妇大欣赏| 99热这里只有是精品在线观看 | 亚洲精品在线美女| 亚洲 国产 在线| 国产精品久久久久久亚洲av鲁大| 午夜影院日韩av| 日本 av在线| 久久人人爽人人爽人人片va | 成人午夜高清在线视频| 欧美成人性av电影在线观看| 一区二区三区四区激情视频 | 99在线人妻在线中文字幕| 亚洲av.av天堂| 长腿黑丝高跟| 天堂√8在线中文| 亚洲av美国av| 一二三四社区在线视频社区8| 久久久久久国产a免费观看| 国产成人福利小说| 日韩免费av在线播放| 九色国产91popny在线| 色播亚洲综合网| 久久精品国产自在天天线| 亚洲一区二区三区不卡视频| 精品无人区乱码1区二区| 九色成人免费人妻av| 久久精品91蜜桃| 怎么达到女性高潮| 日本一二三区视频观看| 精品久久久久久久久av| 波多野结衣高清作品| 国产主播在线观看一区二区| 在线观看午夜福利视频| 中文在线观看免费www的网站| 国产亚洲精品av在线| 757午夜福利合集在线观看| 一区二区三区激情视频| 午夜免费成人在线视频| 美女黄网站色视频| 久久精品综合一区二区三区| 国产三级黄色录像| 亚洲av熟女| 欧美xxxx黑人xx丫x性爽| 久久性视频一级片| 成人av在线播放网站| 很黄的视频免费| 免费在线观看成人毛片| 一级av片app| 中文字幕免费在线视频6| 久久久久精品国产欧美久久久| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点| 亚洲人成网站在线播放欧美日韩| 亚洲精品在线观看二区| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av香蕉五月| 久久精品国产清高在天天线| 亚洲精品粉嫩美女一区| 91在线精品国自产拍蜜月| 一进一出抽搐动态| 久久人妻av系列| 精品福利观看| 中文字幕人成人乱码亚洲影| 最近视频中文字幕2019在线8| www.www免费av| 亚洲国产色片| 欧美极品一区二区三区四区| 国产精品野战在线观看| 欧美日韩综合久久久久久 | 男人狂女人下面高潮的视频| 久久国产精品人妻蜜桃| 国产成+人综合+亚洲专区| 日韩人妻高清精品专区| 天堂√8在线中文| 久久久久九九精品影院| 亚洲美女搞黄在线观看 | 日本精品一区二区三区蜜桃| 最近中文字幕高清免费大全6 | 欧美国产日韩亚洲一区| 午夜视频国产福利| 两个人的视频大全免费| 美女黄网站色视频| 男女视频在线观看网站免费| 国产日本99.免费观看| 丰满人妻熟妇乱又伦精品不卡| 一本综合久久免费| 久久久久亚洲av毛片大全| 欧美精品国产亚洲| 国产精品久久视频播放| 真人一进一出gif抽搐免费| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 精品一区二区三区视频在线观看免费| 久久国产乱子伦精品免费另类| 国产91精品成人一区二区三区| 综合色av麻豆| 午夜亚洲福利在线播放| 男人和女人高潮做爰伦理| 亚洲国产精品久久男人天堂| 国产亚洲精品综合一区在线观看| 欧美不卡视频在线免费观看| 亚洲中文字幕一区二区三区有码在线看| 日本五十路高清| 日韩中字成人| 男女床上黄色一级片免费看| 免费看美女性在线毛片视频| 久久6这里有精品| 1024手机看黄色片| 国产 一区 欧美 日韩| 99国产精品一区二区三区| 久久精品人妻少妇| 国产精品,欧美在线| 国产高清有码在线观看视频| 久久久色成人| 一卡2卡三卡四卡精品乱码亚洲| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 91午夜精品亚洲一区二区三区 | 特级一级黄色大片| 亚洲中文字幕一区二区三区有码在线看| 亚洲乱码一区二区免费版| 国产91精品成人一区二区三区| 久久久久久大精品| 啪啪无遮挡十八禁网站| 日本三级黄在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产爱豆传媒在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲熟妇熟女久久| 日韩av在线大香蕉| 亚洲成人久久爱视频| 婷婷丁香在线五月| 午夜视频国产福利| 国产精品一区二区性色av| 九色成人免费人妻av| 午夜免费激情av| 欧美国产日韩亚洲一区| 老熟妇乱子伦视频在线观看| 久久这里只有精品中国| 一夜夜www| 亚洲内射少妇av| 露出奶头的视频| 亚洲国产色片| 久久国产精品人妻蜜桃| 99久久九九国产精品国产免费| 国产三级中文精品| 国产av不卡久久| 亚洲精华国产精华精| 男人狂女人下面高潮的视频| 欧美激情国产日韩精品一区| 午夜影院日韩av| www.999成人在线观看| 别揉我奶头~嗯~啊~动态视频| 日本三级黄在线观看| 少妇的逼水好多| 欧美一区二区精品小视频在线| 88av欧美| 精品熟女少妇八av免费久了| 别揉我奶头 嗯啊视频| 18+在线观看网站| 亚洲成人久久性| 国产不卡一卡二| 国产国拍精品亚洲av在线观看| 欧美成人性av电影在线观看| 久9热在线精品视频| 中文字幕免费在线视频6| 国产伦精品一区二区三区四那| 免费无遮挡裸体视频| 91久久精品电影网| 最新中文字幕久久久久| 九色成人免费人妻av| 嫩草影院入口| 精品99又大又爽又粗少妇毛片 | 99久久精品国产亚洲精品| 99久久精品一区二区三区| 动漫黄色视频在线观看| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 午夜精品在线福利| 欧美潮喷喷水| 色在线成人网| 美女xxoo啪啪120秒动态图 | 亚洲中文字幕一区二区三区有码在线看| 婷婷色综合大香蕉| 免费观看的影片在线观看| 成人欧美大片| 日本免费一区二区三区高清不卡| 黄片小视频在线播放| 一本久久中文字幕| 九色国产91popny在线| av在线蜜桃| 亚洲av电影不卡..在线观看| 色综合婷婷激情| av欧美777| 亚洲欧美日韩卡通动漫| 国产69精品久久久久777片| 最近最新中文字幕大全电影3| 两性午夜刺激爽爽歪歪视频在线观看| 两个人的视频大全免费| 国产精品免费一区二区三区在线| 51午夜福利影视在线观看| 精品人妻熟女av久视频| 老女人水多毛片| 亚洲国产高清在线一区二区三| 少妇的逼好多水| 首页视频小说图片口味搜索| 国产伦在线观看视频一区| 亚洲成人中文字幕在线播放| 一个人免费在线观看电影| 久久久国产成人精品二区| 特级一级黄色大片| 少妇被粗大猛烈的视频| 99riav亚洲国产免费| 国产 一区 欧美 日韩| 老熟妇乱子伦视频在线观看| 日韩中字成人| 日本a在线网址| 女人被狂操c到高潮| 国产亚洲精品av在线| 久久久成人免费电影| 国产美女午夜福利| 亚洲av中文字字幕乱码综合| 99久久久亚洲精品蜜臀av| 天堂动漫精品| 久久九九热精品免费| 国产成人a区在线观看| 久久精品人妻少妇| 国产三级黄色录像| 欧美日韩福利视频一区二区| 99热这里只有是精品50| 精品一区二区三区视频在线观看免费| 欧美性猛交黑人性爽| 欧美另类亚洲清纯唯美| 亚洲av二区三区四区| 在线免费观看的www视频| 国产人妻一区二区三区在| 在线国产一区二区在线| 91av网一区二区| 性插视频无遮挡在线免费观看| 亚洲美女搞黄在线观看 | 免费大片18禁| 亚洲第一电影网av| 日本免费一区二区三区高清不卡| 少妇裸体淫交视频免费看高清| 特大巨黑吊av在线直播| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 日韩欧美精品免费久久 | 久久中文看片网| 最近在线观看免费完整版| 9191精品国产免费久久| 18禁黄网站禁片免费观看直播| 久久亚洲真实| 精品久久久久久久人妻蜜臀av| 精品乱码久久久久久99久播| 97超级碰碰碰精品色视频在线观看| 日本黄色视频三级网站网址| 成人午夜高清在线视频| 国产在线男女| 国产精品,欧美在线| 99精品久久久久人妻精品| 好看av亚洲va欧美ⅴa在| 久久久成人免费电影| 毛片女人毛片| 中文资源天堂在线| 久久亚洲精品不卡| 亚洲欧美清纯卡通| 免费人成在线观看视频色| 在线观看av片永久免费下载| 哪里可以看免费的av片| 好男人在线观看高清免费视频| 国产综合懂色| av天堂中文字幕网| 最近视频中文字幕2019在线8| 国内精品久久久久久久电影| .国产精品久久| 一二三四社区在线视频社区8| 国产亚洲欧美98| 一个人看的www免费观看视频| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 久久久久国产精品人妻aⅴ院| 精品午夜福利在线看| 99热6这里只有精品| 欧美精品啪啪一区二区三区| 色吧在线观看| 热99re8久久精品国产| 国产精品乱码一区二三区的特点| 久久婷婷人人爽人人干人人爱| 国产成人影院久久av| 国产精品野战在线观看| 亚洲精品日韩av片在线观看| 18禁裸乳无遮挡免费网站照片| 色尼玛亚洲综合影院| 悠悠久久av| 琪琪午夜伦伦电影理论片6080| 少妇人妻精品综合一区二区 | 一夜夜www| 高清在线国产一区| 永久网站在线| 搡老妇女老女人老熟妇| 啦啦啦韩国在线观看视频| 五月伊人婷婷丁香| 桃红色精品国产亚洲av| 日日摸夜夜添夜夜添av毛片 | 精品人妻视频免费看| 日韩欧美精品免费久久 | 国产av不卡久久| 国产精品美女特级片免费视频播放器| 好看av亚洲va欧美ⅴa在| av欧美777| 精品熟女少妇八av免费久了| 在线观看66精品国产| 90打野战视频偷拍视频| 久久久久久久亚洲中文字幕 | 精品无人区乱码1区二区| 看十八女毛片水多多多| www.色视频.com| 99国产精品一区二区蜜桃av| 麻豆av噜噜一区二区三区| 国内精品一区二区在线观看| 深夜精品福利| 免费在线观看亚洲国产| 午夜久久久久精精品| 毛片一级片免费看久久久久 | 国产真实乱freesex| 在线天堂最新版资源| 99国产精品一区二区蜜桃av| 国产精品三级大全| 精品久久久久久久末码| 看片在线看免费视频| 午夜a级毛片| 麻豆国产av国片精品| 黄色一级大片看看| 国产私拍福利视频在线观看| 日本黄色片子视频| 欧美三级亚洲精品| 色精品久久人妻99蜜桃| 欧美日本视频| 国产成人福利小说| 啦啦啦观看免费观看视频高清| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| 国产高清三级在线| 国产精品久久久久久精品电影| 欧美另类亚洲清纯唯美| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 精品国产亚洲在线| 观看美女的网站| 在线观看舔阴道视频| 精品久久国产蜜桃| 真实男女啪啪啪动态图| 精品久久久久久久久亚洲 | 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 国产乱人视频| 欧美成人a在线观看| 中文字幕高清在线视频| 香蕉av资源在线| 热99re8久久精品国产| 在线播放无遮挡| 亚洲自偷自拍三级| 老司机福利观看| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 人人妻人人看人人澡| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观| 桃红色精品国产亚洲av| 老司机深夜福利视频在线观看| 亚洲18禁久久av| 人妻久久中文字幕网| 又粗又爽又猛毛片免费看| 国模一区二区三区四区视频| 国产午夜精品论理片| 欧美黑人欧美精品刺激| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 在线播放国产精品三级| 精华霜和精华液先用哪个| bbb黄色大片| 女同久久另类99精品国产91| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 精品一区二区三区人妻视频| 超碰av人人做人人爽久久| 欧美一级a爱片免费观看看| 美女免费视频网站| 亚洲国产色片| 变态另类成人亚洲欧美熟女| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 大型黄色视频在线免费观看| 最近最新免费中文字幕在线| 日韩欧美在线乱码| 嫩草影视91久久| 在线观看美女被高潮喷水网站 | 亚洲一区二区三区不卡视频| 久久亚洲精品不卡| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 国产成人福利小说| 国产视频内射| 熟女电影av网| 天美传媒精品一区二区| 精品国内亚洲2022精品成人| 色噜噜av男人的天堂激情| 热99re8久久精品国产| 99视频精品全部免费 在线| 我要搜黄色片| 国产伦精品一区二区三区四那| 色综合亚洲欧美另类图片| 国产日本99.免费观看| ponron亚洲| 中国美女看黄片| 国产老妇女一区| 免费搜索国产男女视频| 国产精品99久久久久久久久| 久久久久久国产a免费观看| 国产又黄又爽又无遮挡在线| eeuss影院久久| 国产人妻一区二区三区在| 亚洲电影在线观看av| 日本一二三区视频观看| 99视频精品全部免费 在线| 99久久无色码亚洲精品果冻| 少妇熟女aⅴ在线视频| 在线观看美女被高潮喷水网站 | 伦理电影大哥的女人| 我要搜黄色片| 欧美高清成人免费视频www| 久久人人爽人人爽人人片va | 国产精品98久久久久久宅男小说| 日本a在线网址| 久久精品国产亚洲av涩爱 | 色播亚洲综合网| 少妇高潮的动态图| 亚洲狠狠婷婷综合久久图片| 欧美一级a爱片免费观看看| www.色视频.com| 直男gayav资源| 国产精品av视频在线免费观看| 国产v大片淫在线免费观看| 国产av在哪里看| 欧美色欧美亚洲另类二区| 91午夜精品亚洲一区二区三区 | 欧美成人性av电影在线观看| 熟妇人妻久久中文字幕3abv| 欧美性感艳星| 久久久久免费精品人妻一区二区| 舔av片在线| 欧美日韩国产亚洲二区| 我要搜黄色片| 一级黄色大片毛片| 99在线视频只有这里精品首页| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 亚洲美女黄片视频| 中出人妻视频一区二区| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 色吧在线观看| 看黄色毛片网站| а√天堂www在线а√下载| 亚洲av二区三区四区| 男人和女人高潮做爰伦理| 午夜久久久久精精品| 亚洲av.av天堂| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 日本熟妇午夜| 亚洲五月天丁香| 成年女人看的毛片在线观看| 日韩 亚洲 欧美在线| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 99久久精品热视频| 夜夜躁狠狠躁天天躁| 国产一区二区三区在线臀色熟女| 亚洲,欧美,日韩| 制服丝袜大香蕉在线| 国产午夜精品论理片| 我要搜黄色片| 国产精品99久久久久久久久| 欧美性猛交╳xxx乱大交人| 欧美日韩国产亚洲二区|