• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

    2024-02-29 09:19:52XunYan晏詢ZhijunLi李志軍andChunlaiLi李春來
    Chinese Physics B 2024年2期

    Xun Yan(晏詢), Zhijun Li(李志軍),?, and Chunlai Li(李春來)

    1School of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China

    2School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China

    Keywords: heterogeneous neuron network,discrete memristor,coexisting attractors,synchronization,noise

    1.Introduction

    Studying neuromorphic behaviors of neurons is favorable to help us to understand more about the operating mechanism of the brain.Therefore, establishing appropriate neuron models to simulate the dynamic behavior of biological neurons has received widespread attention.[1–3]The Hodgkin–Huxley (HH) model was the first established neuron paradigm,[4]which demonstrates the connection between the membrane voltage of neurons and the membrane currents of squid giant axons.However, the HH model is formulated by seven coupled ordinary differential equations and includes four ionic channels,which lead to its complexity.Some simplified models, thus, have been proposed to simulate the neuromorphic behaviors of the biological neurons, such as FitzHugh–Nagumo(FHN)model,[5–8]Hindmarsh–Rose(HR)model,[9–13]Morris–Lecar(ML),[14–18]etc.These continuous neuron models have played an important role in understanding the generation and transmission of action potential.[19–23]

    Compared with continuous neuron models,discrete neuron models are more computationally efficient, especially in the modeling of large-scale neuron networks.The modeling of discrete neurons and the analysis of their firing patterns have become a hot topic in the field of neurodynamics in recent years.[24–27]Due to the non-volatile, nanoscale,memory properties of memristors,and the similarity between nano-scale moving particles in memristors and mobile neurotransmitters in biological synapses, memristors are often considered as ideal candidates for simulating synapses.[28–32]For example, Baoet al.[33]established a discrete neuron network containing two identical Rulkov neurons, and regarded the current flowing through the memristor as the electromagnetic induction current to analyze the effect of electromagnetic induction on the dynamic behavior of neuron network.Under the influence of the electromagnetic induction current,the model can achieve complete synchronization and lag synchronization.The synchronous firing and chimera state were observed in a ring neuron network constructed with memristorcoupled discrete Chialvo neurons.[34]Mahtab Mehrabbeiket al.[35]studied the memristive Rulkov neuron maps and analyzed the synchronous dynamics under electrical and chemical coupling.Their results shows that two m-Rulkov neurons can achieve synchronization only when electrically coupled,but not when chemically coupled.Liet al.[36]used discrete locally active memristor to construct a logarithmic map, and the coexisting attractors were observed.

    Among many neuron models, the Izhikevich model simplifies the HH model[37–40]with consideration of biological concepts, which is capable of simulating almost all spikes of cortical neurons.[41,42]Furthermore, the Izhikevich model outperforms other models in terms of computational efficiency.[43–46]The Chialvo model is one of the earliest discrete neuron models,[47,48]and it was attempted to study the synchronous rhythmic activity in some areas of mammals at that time,[48]including the cortical spindle rhythms, hyppocampal rhythms, and somatomotor cortices.The Chialvo model can demonstrate key patterns of neuronal activities,such as spiking,excitations,bursting,and so on.

    In fact, the brain is a very complex system, which can be divided into many brain regions,including the motor area,sensory area, visual area, auditory area and association area,just to name a few.[49]The neurons in different brain regions are independent but interact with each other, and jointly control neural activities of the human body.[50,51]Therefore,neuron networks composed of heterogeneous neurons is more in line with biological reality.However, to our knowledge, previous studies on discrete neuron networks mainly focus on homogeneous neurons,while neuron networks composed of heterogeneous neurons coupled by memristors are rarely studied.To further understand the operating mechanism of the brain,it is essential and meaningful to study the dynamic behavior of neuron networks constructed with heterogeneous neurons distributed in different brain regions.[52–54]In addition,in the biological nervous systems, a large number of neurons work together,which inevitably leads to changes in the surrounding physiological environment.Therefore, noise is ubiquitous in the biological nervous systems.[44]However,it is currently unclear how noise affects the information processing mechanism of neurons, so the impact of noise on the firing activities of neurons cannot be ignored.[55–57]

    In the present study,we propose a new discrete locally active memristor and use it to connect the discretized Izhikevich and Chialvo neurons.Thus, a heterogeneous discrete neuron network model coupled by the discrete locally active memristor is constructed.The dynamics of the neuron network are analyzed, and the synchronous behavior between two heterogeneous neurons are revealed.Finally,Gaussian noise is added to the model to analyze the impact of noise on firing activities of neuron network.

    The rest of this paper is organized as follows.Section 2 proposes a new four-stable locally active discrete memristor and studies its properties in detail.In Section 3, a heterogeneous discrete neuron network model is developed by using the discrete memristor to bridge two heterogeneous neurons and the equilibrium points of the model and their corresponding stabilities are theoretically analyzed.The dynamic behavior and coexistence behavior of neuron networks are revealed in Section 4.Section 5 studies the effect of adding noise on the phase synchronization of neuron networks.Finally,the study is concluded in Section 6.

    2.Four-stable locally-active memristor model and characteristics

    2.1.Memristor model

    The discrete memristor proposed in this paper can be described as follows:

    wherev,i,andw(φ)are the input voltage,output current,and admittance function,respectively.F(φ,v)is the internal state equation of the memristor, which consists of a sign function related to the magnetic flux and voltage, andα,β,λare the three parameters of the memristor.In this paper,α= 0.1,β=0.001,andλ=9.

    2.2.Pinched hysteresis loops

    A periodic voltage signalv(n)=Asin(2πωT(n)) is applied to the memristor, and the initial value of the memristor is selected as 1.By varying the amplitudeAand frequencyω, the memristor shows pinched hysteresis loops on thev–iplane,as shown in Fig.1.

    It can be seen from Fig.1 that all the pinched hysteresis loops pass through the origin.When the frequencyω=0.0001 is fixed,the area of the pinched hysteresis loop lobe increases monotonously as the excitation amplitudeAincreases.Once the amplitudeA=20 is fixed,the pinched hysteresis loop lobe area decreases monotonously with the increase of excitation frequencyω.Thus,the proposed memristor satisfies the three characteristic fingerprints of a generalized memristor.[58]

    Fig.1.Pinched hysteresis loops of locally active discrete memristor.(a) Amplitude-dependent pinched hysteresis loops with A = 10, 15,and 20.(b)Frequency-dependent pinched hysteresis with ω =0.0001,0.0002,and 0.0005.

    2.3.Nonvolatility and local activity

    Non-volatility means that a memristor can maintain its latest memductance value when the power is off, which can be verified by the power off plot (POP).If there are multiple negative slope intersections between the POP and the zero horizontal axis,then the memristor is non-volatile.Letvn=0 in Eq.(1),the resulting POP is shown in Fig.2.

    From Fig.2, it is observed that there are seven intersection points where the POP intersects the?axis, namely,Q1(-1,0),Q2(0,0),Q3(1,0),Q4(2,0),Q5(3,0),Q6(4,0), andQ7(5,0), among which the intersections with a negative slope are the stable equilibrium points, and the other intersections are unstable points.Therefore, the proposed memristor has four stable equilibrium pointsQ1,Q3,Q5, andQ7.When the power is off, the state?will trend to one of the four stable equilibrium points,depending on the attractive domain in which the fnial state?(n) is located.Based on Eq.(1), four possible remembered memductances after power-off are obtained as

    implying that the memristor is non-volatile.

    Fig.2.Power-off plot(POP)of the memristor.

    In circuit theory, the DCV–Idiagram is a visual tool to help us analyze whether the memristor is locally active.The region with a negative slope in the DCV–Idiagram is called the locally active region of the memristor.Let?(n+1)-?(n)=0, we can get the following expressions of voltageVand currentI:

    Imposing a voltage in the range-2 V≤V ≤1 V on the memristor, the corresponding DCV–Icurve can be obtained according to Eq.(3),as shown in Fig.3(a).The negative slope regions can be observed in the DCV–Idiagram,which are locally active regions of the memristor.In addition,the pinched hysteresis loops of this local active memristor under different initial values are shown in Fig.3(b).

    Fig.3.(a)The DC V–I diagram of the four-stable locally active discrete memristor.(b)The coexisting hysteresis loops with different initial values.

    3.Discrete heterogeneous neuron network

    3.1.Memristor coupled discrete heterogeneous neuron network

    For the discretization of the original Izhikevich neuron,the improved discrete Izhikevich neuron model is written as

    wherevanduare the neuron membrane potential and membrane recovery variables respectively,Iis the external excited current and the parametersa,b,c,anddare all dimensionless parameters.This improved Izhikevich model is more computationally efficient, and thus iterative calculations can be performed at a very fast rate.

    The discrete Chialvo model is written as

    wherexis the membrane potential of the neuron,yis the recovery variable,Itsimulates the effect of the ionic current injected into the neuron, the parameterarepresents the recovery time(a<1), the activation dependence of the recovery process is defined byb(b<1),and the constantcrepresents the offset,which can balance the firing states of the model.

    Based on the discrete Izhikevich model and the discrete Chialvo model,a new neuron network model based on locally active discrete memristor is constructed as follows:

    wherekis the coupling strength,and the parameters areI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,c3=0.1.For an intuitive understanding of the proposed discrete heterogeneous neuron network,its topology is shown in Fig.4.

    Fig.4.The topology of the new discrete heterogeneous neuron network.

    and the relationship betweenvandxsatisfies the following expression:

    Therefore, two equations containing onlyxand?can be obtained.Note that the signum function is approximated by a hyperbolic tangent function with a large slope, namely,tan(1010?)is used instead of sign(?).The Jacobian matrix at each equilibrium pointE(v,0.25v,x,-1.8x+2.8,?) is given below:

    where

    3.2.Stability analysis of equilibrium points

    Stability analysis plays an important role in studying the firing behavior of neurons.From Eq.(6),the equilibrium point setEis described as

    Fig.5.Two function curves and their intersection points.

    Table 1.The eigenvalues and stability with k=0.001.

    Takingk=0.001, figure 5 shows the curves of Eq.(8)in the interval[-2,2].In order to examine whether the equilibrium pointsE1,E2,E3,E4,E5,E6,E7, andE8are stable,the eigenvalues corresponding to these equilibrium points are obtained as shown in Table 1.Based on the stability theory of discrete systems, a equilibrium point is stable when its all eigenvalues are located inside the unit circle, while it is unstable when one of the eigenvalues is located outside the unit circle.It can be seen from Table 1 that the equilibrium pointsE2, andE8are stable, while the other equilibrium points are unstable.

    4.Dynamics of heterogeneous discrete neuron networks

    In this section, we will study the dynamic behavior of the coupled neuron network under different initial values of the memristor and the coupling strengthk.The other parameters are determined asI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,andc3=0.1.The MATLAB iterative algorithm is used in the following calculation.

    4.1.Coupling strength dependent dynamics

    Bifurcation diagram and Lyapunov exponents are common methods for analyzing system dynamics.In this study,we use the quadrature rectangle (QR) decomposition method to calculate the Lyapunov exponents.Consideringkas the bifurcation parameter with the step size 0.001 and selecting the initial value of the network (-6,-1, 1, 1, 1) as an example, the bifurcation diagram and Lyapunov exponents are shown in Figs.6(a)and 6(b),respectively.It can be seen from Fig.6(a)that the system initially exhibits chaotic firing whenkis located at the interval[-0.54,-0.453], where the corresponding maximum Lyapunov exponentLE1is greater than zero,as observed in Fig.6(b).Then,a reverse period-doubling bifurcation route occurs fork ∈[-0.452,0.0018],resulting in the appearance of periodic spiking.As illustrated in Fig.6(b),all Lyapunov exponents are less than zero in this parameter interval,verifying that the neuron network is in a periodic state.Whenkincreases to the critical valuek=0.0018, a tangent bifurcation occurs,resulting in the occurrence of hyperchaotic firing, which can be validated from the superimposed local magnification plot in Fig.6(b),where the Lyapunov exponentsLE1andLE2are both greater than zero.The sampled phase diagrams and the corresponding time series withk=-0.46,k=-0.4,andk=0.065 are shown in Fig.7,which effectively validate the three parameter regions of chaotic, periodic, and hyperchaotic firing in Fig.6.

    Fig.6.The dynamics of the network(6)with respect to the control parameter k with the initial parameters(-6,-1,1,1,1).(a)Bifurcation diagram.(b)Lyapunov exponents.

    Fig.7.Phase diagrams on the v–u plane and time series of the variable v with different parameters k: (a) and (b) k=-0.46; (c) and (d)k=-0.4;(e)and(f)k=0.065.

    4.2.Coexisting firing patterns

    Two different coupling strengthsk=0.011, and-0.002 are selected as examples to demonstrate the coexisting firing patterns of the neuron network related to the initial value of the memristor.

    Fork=0.011,figure 8(a)illustrates the Lyapunov exponents with respect to the initial value of the memristor.When?<0, all Lyapunov exponents are less than zero, meaning the neuron network is in a resting state.With the increase of?, the Lyapunov exponentsLE1andLE2suddenly jump to positive values when?exceeds the critical value?=0,resulting in the network transitioning from a resting state to a hyperchaotic firing pattern.When?increases to?= 2,the Lyapunov exponentLE1still remains positive value,whileLE2suddenly jump to negative values, resulting in the existence of one positive Lyapunov exponent,which indicates that the network transitions from hyperchaotic firing to chaotic firing.Figure 8(b) shows the phase diagram of the coexistence of resting state,hyperchaotic firing,and two different chaotic firing patterns.Note that in Fig.8(b), the red trajectory originates from the initial value?=5, the blue from?=3, the green from?=1, and the cyan from?=-1.The corresponding time series ofx(n) are illustrated in Fig.8(c).It is worth noting that although the all Lyapunov exponents remain unchanged when?=5 and?=3, the network exhibit two heterogeneous chaotic firing patterns, which can be validated by the red and the blue phase diagrams in Fig.8(b) and the time series diagrams colored with the same colors in Fig.8(c).Similarly,whenk=-0.002,the network can exhibit the coexisting hyperchaotic firing,chaotic firing,and two resting states under different initial values,as depicted in Figs.8(d)–8(f).

    Fig.8.The Lyapunov exponents,phase diagrams,and time series of coexisting attractors under two groups of different k values.(a)Lyapunov exponents for the initial value of the memristor at k=0.011.(b)The phase diagram of coexistence of chaotic attractors and resting state when k=0.011.(c) Time series diagram when k=0.011.(d) Lyapunov exponents for k=-0.002.(e) Phase diagram of coexistence of chaotic attractors and resting states at k=-0.002.(f)Time series diagram when k=-0.002.

    4.3.Effects of noise on the network

    We add the following noiseεξnto the internal state equation of the memristor in the neuron network.With the coupling and iteration of the discrete neuron network,the noise will act on the entire system.

    Fig.9.Time series diagram of membrane potential of Izhikevich neurons at k=0.1.(a)Periodic state in the absence of noise.(b)Chaotic state in the presence of noise.

    5.Synchronization transition of heterogeneous neural networks considering noise

    In order to study phase synchronization and synchronization transition of two different neurons coupled by the locally active discrete memristor,the definition of a phase is given as

    When the absolute value of the phase difference between two neurons is bounded by the value 2π, phase synchronization can be detected.We choose three differentkvalues to indicate synchronous transition behavior of the network.Whenk=0, the two neurons are uncoupled.In this case, the neuron Izhikevich exhibits a spiking firing pattern,while the Chialvo neuron exhibits a periodic firing pattern,as shown in Fig.10(a).It is observed that the firing patterns of the two neurons are obviously different.As depicted in Fig.10(b), the phase difference between the two neurons increases monotonously, validating that the two neurons are desynchronized.Whenk=0.44, the two neurons exhibit a quasi-synchronous burst firing pattern,as shown in Fig.10(c).In this case, the phase difference between two neurons is bounded by 2π.Whenkincreases tok=0.73 or more,the synchronous periodic spiking firing pattern emerges.Figure 10(e)shows the onsets of the action potential of the two neurons are consistent and figure 10(f) illustrates the phase difference is always 0.Thus, we can infer that the two neurons are completely phase synchronized.In addition,we found that appropriate noise can enable the network to achieve synchronization at a lower coupling strength.This has practical significance,because the large coupling strength does not conform to the biological reality.Whenk=0.4,figure 11 shows the time series and phase difference of two neurons.The red and blue trajectories in the figure represent the Izhikevich neuron, and the Chialvo neuron, respectively.When no noise is considered in the neuron network,The two neurons present an irregular chaotic firing pattern, as shown in Fig.11(a).The two neurons are desynchronized, which can be verified from the monotonously increasing phase difference of the two neurons in Fig.11(b).Then,the noise is added to the neuron network,it can be seen from Figs.11(c)and 11(d)that the two neurons are completely phase synchronized and the phase difference is always 0, which proves that the noise enables the neuron network achieve synchronization at a lower coupling strength.Note that when the noise intensity added to the neuron network is too large, the two neurons will return to the resting state.

    Fig.10.Synchronization transition of heterogeneous neuron networks.(a)The time series of k=0.(b)Phase difference of two neurons when k=0.(c)The time series of k=0.44.(d)Phase difference of two neurons when k=0.44.(e)The time series of k=0.73.(f)Phase difference of two neurons when k=0.73.

    Fig.11.The time series of neuron membrane voltage and the phase difference between two neurons when the system is at k=0.4.(a) Time series in the absence of noise.(b)Phase difference in the absence of noise.(c)Time series in the presence of noise.(d)Phase difference in the presence of noise.

    6.Conclusions

    In this study,a discrete four-stable memristor is proposed and its locally activity and non-volatility are studied in detail.Then, the discrete Izhikevich neuron and Chialvo neuron is coupled by the memristor, a discrete heterogeneous neuron network model, thus, is established.The equilibrium points along with their stabilities are systematically analyzed.The coupling strength dependent dynamics are analyzed and it is found that the network can exhibit resting state,periodic firing,chaotic firing and hyperchaotic firing under different coupling strengths.The coexisting firing patterns, including the coexistence of resting state,two different chaotic firing and hyperchaotic firing, the coexistence of hyperchaotic firing, chaotic firing and two resting states are revealed.Furthermore,phase synchronization between two heterogeneous neurons are explored by varying the coupling strength and our results shows that the two heterogeneous neurons can achieve perfect phase synchronization at large coupled strength.What is more, the effects of noise on the network are also considered.We find that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons at a low coupling strength.

    Acknowledgement

    Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).

    超碰97精品在线观看| 亚洲精品久久成人aⅴ小说| 亚洲va日本ⅴa欧美va伊人久久| 国产区一区二久久| 亚洲精华国产精华精| 丰满的人妻完整版| 999久久久精品免费观看国产| 国精品久久久久久国模美| 日韩有码中文字幕| 精品久久久久久久毛片微露脸| 久久精品熟女亚洲av麻豆精品| av不卡在线播放| 日韩欧美在线二视频 | 国产激情久久老熟女| 麻豆国产av国片精品| 19禁男女啪啪无遮挡网站| 午夜福利欧美成人| 一级a爱视频在线免费观看| 免费av中文字幕在线| 男人的好看免费观看在线视频 | 欧美人与性动交α欧美精品济南到| 99精品欧美一区二区三区四区| 18禁观看日本| 热99国产精品久久久久久7| 亚洲精品国产色婷婷电影| 日本一区二区免费在线视频| 叶爱在线成人免费视频播放| 丁香欧美五月| 亚洲三区欧美一区| 亚洲精品久久午夜乱码| 最新在线观看一区二区三区| 老鸭窝网址在线观看| 99热只有精品国产| 免费在线观看影片大全网站| 在线观看舔阴道视频| 国产黄色免费在线视频| 免费在线观看黄色视频的| 午夜久久久在线观看| 午夜福利欧美成人| 久久婷婷成人综合色麻豆| 国产激情欧美一区二区| 免费不卡黄色视频| 国产乱人伦免费视频| 国产成人一区二区三区免费视频网站| 国产精品九九99| 91成人精品电影| 国产成+人综合+亚洲专区| 男女高潮啪啪啪动态图| 国产熟女午夜一区二区三区| 99精国产麻豆久久婷婷| 日韩欧美国产一区二区入口| 亚洲精品av麻豆狂野| 两人在一起打扑克的视频| 中文字幕另类日韩欧美亚洲嫩草| 国产淫语在线视频| 亚洲欧美日韩另类电影网站| av国产精品久久久久影院| 中文字幕色久视频| 99国产精品一区二区蜜桃av | 免费在线观看黄色视频的| 日韩熟女老妇一区二区性免费视频| 建设人人有责人人尽责人人享有的| av国产精品久久久久影院| 99热国产这里只有精品6| 亚洲av熟女| 露出奶头的视频| 欧美日本中文国产一区发布| 99re在线观看精品视频| 日日夜夜操网爽| 国产激情久久老熟女| 国产精品亚洲av一区麻豆| 99香蕉大伊视频| 男人的好看免费观看在线视频 | 91大片在线观看| 欧美色视频一区免费| 99国产精品一区二区蜜桃av | 午夜久久久在线观看| 国产成人一区二区三区免费视频网站| 欧美精品人与动牲交sv欧美| 亚洲性夜色夜夜综合| 国产免费现黄频在线看| 精品一品国产午夜福利视频| 啦啦啦免费观看视频1| av线在线观看网站| 国产99白浆流出| 亚洲专区国产一区二区| 又黄又爽又免费观看的视频| 精品国产国语对白av| 看片在线看免费视频| 丰满迷人的少妇在线观看| 777米奇影视久久| 免费观看a级毛片全部| 亚洲一码二码三码区别大吗| 99国产综合亚洲精品| 在线观看免费视频网站a站| 极品少妇高潮喷水抽搐| 亚洲精品国产区一区二| 水蜜桃什么品种好| 免费在线观看视频国产中文字幕亚洲| xxx96com| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久人人做人人爽| 十八禁高潮呻吟视频| 麻豆乱淫一区二区| 超碰成人久久| 免费在线观看视频国产中文字幕亚洲| 精品少妇久久久久久888优播| 夫妻午夜视频| 精品久久蜜臀av无| 日韩有码中文字幕| 美女 人体艺术 gogo| 视频在线观看一区二区三区| 丝袜美腿诱惑在线| 一个人免费在线观看的高清视频| 日本黄色日本黄色录像| 午夜福利一区二区在线看| 成人国产一区最新在线观看| 身体一侧抽搐| a级毛片黄视频| 亚洲av片天天在线观看| 亚洲色图综合在线观看| 亚洲成人手机| 国产亚洲欧美精品永久| 99久久国产精品久久久| 免费黄频网站在线观看国产| 一区在线观看完整版| 欧美日韩成人在线一区二区| 免费人成视频x8x8入口观看| 欧美在线一区亚洲| 亚洲aⅴ乱码一区二区在线播放 | 夜夜躁狠狠躁天天躁| 成人影院久久| 国产aⅴ精品一区二区三区波| 国产aⅴ精品一区二区三区波| 丰满迷人的少妇在线观看| 我的亚洲天堂| 黄色a级毛片大全视频| 99久久99久久久精品蜜桃| 男男h啪啪无遮挡| 久久久久久亚洲精品国产蜜桃av| 黄色片一级片一级黄色片| 午夜精品久久久久久毛片777| 久久精品成人免费网站| 久久久久国内视频| 夜夜爽天天搞| 高清黄色对白视频在线免费看| 久久人妻熟女aⅴ| 欧美日韩亚洲综合一区二区三区_| 人妻一区二区av| 99热只有精品国产| 国产精品二区激情视频| 国产精品久久久人人做人人爽| 日韩欧美一区视频在线观看| 日韩欧美一区视频在线观看| 宅男免费午夜| 久久精品国产清高在天天线| a级片在线免费高清观看视频| 久久久精品免费免费高清| 精品国产美女av久久久久小说| av在线播放免费不卡| 国产成人系列免费观看| av线在线观看网站| 12—13女人毛片做爰片一| 不卡一级毛片| 黄网站色视频无遮挡免费观看| 成人av一区二区三区在线看| 成人国产一区最新在线观看| 老熟妇仑乱视频hdxx| 日韩制服丝袜自拍偷拍| 国产精品影院久久| 91成人精品电影| av不卡在线播放| 国产精品久久久久成人av| 老熟妇乱子伦视频在线观看| 久久精品亚洲熟妇少妇任你| 亚洲一区中文字幕在线| 久久国产精品影院| 亚洲欧美激情在线| 超碰97精品在线观看| 成人av一区二区三区在线看| 日本五十路高清| 日本欧美视频一区| 亚洲精品久久成人aⅴ小说| 欧美黄色片欧美黄色片| 岛国毛片在线播放| 精品国产一区二区三区久久久樱花| 亚洲精品中文字幕一二三四区| 欧美精品高潮呻吟av久久| 麻豆成人av在线观看| 午夜视频精品福利| 午夜视频精品福利| tube8黄色片| 久久久精品免费免费高清| 1024香蕉在线观看| 91精品三级在线观看| 午夜福利免费观看在线| 午夜亚洲福利在线播放| 亚洲七黄色美女视频| 亚洲精华国产精华精| 久久久久国内视频| 中文欧美无线码| 极品人妻少妇av视频| 热99re8久久精品国产| 久久久久视频综合| 美女扒开内裤让男人捅视频| 91大片在线观看| av国产精品久久久久影院| 日日爽夜夜爽网站| 真人做人爱边吃奶动态| 久久精品国产综合久久久| 久久精品亚洲熟妇少妇任你| 国产精品一区二区精品视频观看| 国产三级黄色录像| 国产欧美亚洲国产| 一个人免费在线观看的高清视频| 大型av网站在线播放| 黄色毛片三级朝国网站| 在线国产一区二区在线| 在线观看免费高清a一片| 高清欧美精品videossex| 下体分泌物呈黄色| 久久久精品区二区三区| 国产一区有黄有色的免费视频| 久久精品aⅴ一区二区三区四区| 国产一区二区三区综合在线观看| 免费人成视频x8x8入口观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久草成人影院| 制服人妻中文乱码| 天天躁日日躁夜夜躁夜夜| 一二三四在线观看免费中文在| 女人高潮潮喷娇喘18禁视频| 久久精品国产清高在天天线| 99精国产麻豆久久婷婷| 欧美日韩成人在线一区二区| 亚洲成国产人片在线观看| 黄片播放在线免费| 国产精品乱码一区二三区的特点 | 国产伦人伦偷精品视频| 麻豆av在线久日| 免费在线观看亚洲国产| 最近最新中文字幕大全电影3 | 久久精品亚洲av国产电影网| 精品一区二区三区四区五区乱码| 丰满迷人的少妇在线观看| 成人永久免费在线观看视频| 成年人午夜在线观看视频| 日韩免费高清中文字幕av| 大片电影免费在线观看免费| 久久国产精品大桥未久av| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 亚洲一码二码三码区别大吗| 国产成人精品久久二区二区91| 亚洲色图 男人天堂 中文字幕| 欧美成人免费av一区二区三区 | 麻豆成人av在线观看| 午夜免费成人在线视频| 午夜福利,免费看| 国产一区二区激情短视频| 最新的欧美精品一区二区| 女警被强在线播放| 国产精品永久免费网站| 夜夜躁狠狠躁天天躁| 美国免费a级毛片| 精品一区二区三区视频在线观看免费 | 狠狠婷婷综合久久久久久88av| 最新的欧美精品一区二区| 可以免费在线观看a视频的电影网站| 欧美最黄视频在线播放免费 | 久久久精品国产亚洲av高清涩受| 欧美中文综合在线视频| 精品卡一卡二卡四卡免费| 一区二区三区激情视频| 国产精品久久久av美女十八| www.999成人在线观看| 免费人成视频x8x8入口观看| 精品一区二区三区四区五区乱码| 国产高清国产精品国产三级| 黄色毛片三级朝国网站| 在线观看免费视频日本深夜| av天堂在线播放| 99国产精品免费福利视频| 久久久久久久精品吃奶| 午夜老司机福利片| 欧美最黄视频在线播放免费 | 久久久国产一区二区| 一级毛片高清免费大全| 亚洲专区国产一区二区| 巨乳人妻的诱惑在线观看| 国产一区二区三区在线臀色熟女 | 视频在线观看一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 91在线观看av| 久久久久久人人人人人| 欧美午夜高清在线| 亚洲一码二码三码区别大吗| 日韩一卡2卡3卡4卡2021年| 免费在线观看日本一区| 精品少妇一区二区三区视频日本电影| 波多野结衣av一区二区av| 久久精品人人爽人人爽视色| 男人操女人黄网站| 久久久久精品国产欧美久久久| 欧美日韩瑟瑟在线播放| 人人妻,人人澡人人爽秒播| 99精品欧美一区二区三区四区| 午夜福利在线观看吧| 亚洲综合色网址| 国产免费男女视频| av中文乱码字幕在线| 国产亚洲欧美在线一区二区| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| 韩国精品一区二区三区| 一二三四社区在线视频社区8| 18禁裸乳无遮挡免费网站照片 | 久久人妻熟女aⅴ| 欧美日韩一级在线毛片| 热re99久久国产66热| 热re99久久精品国产66热6| 极品少妇高潮喷水抽搐| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 亚洲成国产人片在线观看| 精品高清国产在线一区| 欧美日韩亚洲高清精品| 欧美老熟妇乱子伦牲交| 中国美女看黄片| 成人三级做爰电影| 女人爽到高潮嗷嗷叫在线视频| 日韩欧美国产一区二区入口| 国产精品九九99| 男人操女人黄网站| 免费在线观看日本一区| 国产亚洲一区二区精品| 国产不卡av网站在线观看| 精品久久久精品久久久| 国产99白浆流出| 宅男免费午夜| 十八禁人妻一区二区| 免费av中文字幕在线| 亚洲午夜精品一区,二区,三区| 啦啦啦免费观看视频1| 亚洲国产精品一区二区三区在线| 中文字幕色久视频| 欧美精品啪啪一区二区三区| 国产一区有黄有色的免费视频| 日韩欧美免费精品| 操美女的视频在线观看| 色婷婷久久久亚洲欧美| 国产成人系列免费观看| 高清黄色对白视频在线免费看| 777米奇影视久久| 久久精品亚洲精品国产色婷小说| tube8黄色片| 亚洲av熟女| 国产精品永久免费网站| 午夜两性在线视频| 18禁国产床啪视频网站| 欧美亚洲 丝袜 人妻 在线| 久久人妻av系列| 国产99白浆流出| av有码第一页| 国产成人免费观看mmmm| 咕卡用的链子| avwww免费| 丝袜人妻中文字幕| 人妻丰满熟妇av一区二区三区 | 欧美老熟妇乱子伦牲交| 亚洲人成电影观看| 精品一区二区三区av网在线观看| 久久婷婷成人综合色麻豆| av有码第一页| 精品久久久久久电影网| 好看av亚洲va欧美ⅴa在| 国产一区有黄有色的免费视频| 久久人妻福利社区极品人妻图片| 亚洲精品乱久久久久久| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 亚洲一区二区三区欧美精品| 国产日韩一区二区三区精品不卡| 热re99久久精品国产66热6| av有码第一页| 成人国语在线视频| 欧美激情久久久久久爽电影 | 多毛熟女@视频| 国产精品亚洲一级av第二区| 亚洲久久久国产精品| 欧美人与性动交α欧美精品济南到| 一级毛片精品| 精品亚洲成国产av| 久久久久久久精品吃奶| 中文字幕最新亚洲高清| 妹子高潮喷水视频| 久久久水蜜桃国产精品网| 精品一区二区三区四区五区乱码| 美国免费a级毛片| 久久狼人影院| 99riav亚洲国产免费| 免费在线观看日本一区| 亚洲伊人色综图| 俄罗斯特黄特色一大片| 大片电影免费在线观看免费| 欧美激情久久久久久爽电影 | 最新在线观看一区二区三区| 91九色精品人成在线观看| 亚洲成人免费av在线播放| 大型av网站在线播放| 成人影院久久| 亚洲精品国产区一区二| 国产精品.久久久| 首页视频小说图片口味搜索| 色老头精品视频在线观看| 欧美激情 高清一区二区三区| 国产欧美日韩一区二区精品| 啦啦啦视频在线资源免费观看| 国产男靠女视频免费网站| 免费人成视频x8x8入口观看| 成人18禁在线播放| 飞空精品影院首页| 国产精品自产拍在线观看55亚洲 | ponron亚洲| 欧美激情高清一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久久国产精品麻豆| 亚洲熟女精品中文字幕| 真人做人爱边吃奶动态| 日本欧美视频一区| 老熟女久久久| 美女高潮到喷水免费观看| 日韩一卡2卡3卡4卡2021年| 男女之事视频高清在线观看| 18禁裸乳无遮挡动漫免费视频| 777久久人妻少妇嫩草av网站| 黄片小视频在线播放| 极品人妻少妇av视频| 老司机在亚洲福利影院| 天堂动漫精品| 久久久久国产一级毛片高清牌| 久久香蕉精品热| 午夜福利在线免费观看网站| 亚洲avbb在线观看| ponron亚洲| 精品福利永久在线观看| 国产激情欧美一区二区| 丁香欧美五月| 制服诱惑二区| 两性午夜刺激爽爽歪歪视频在线观看 | videosex国产| 欧美黄色淫秽网站| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜一区二区| 免费在线观看亚洲国产| 麻豆成人av在线观看| 亚洲av日韩精品久久久久久密| 高清av免费在线| 少妇粗大呻吟视频| 亚洲精品中文字幕一二三四区| 亚洲情色 制服丝袜| 久久国产乱子伦精品免费另类| 亚洲人成电影观看| 一区二区三区国产精品乱码| 在线观看一区二区三区激情| 欧美乱妇无乱码| 欧美性长视频在线观看| 亚洲男人天堂网一区| 可以免费在线观看a视频的电影网站| 激情视频va一区二区三区| 亚洲九九香蕉| 看免费av毛片| avwww免费| 一进一出抽搐动态| 在线观看免费视频日本深夜| 美女高潮到喷水免费观看| 色尼玛亚洲综合影院| 亚洲美女黄片视频| 黄片大片在线免费观看| 美国免费a级毛片| 亚洲久久久国产精品| 久久精品国产99精品国产亚洲性色 | 女人爽到高潮嗷嗷叫在线视频| 久久精品国产清高在天天线| 美女 人体艺术 gogo| 一级黄色大片毛片| 精品国产一区二区三区久久久樱花| 成人影院久久| 极品少妇高潮喷水抽搐| 亚洲色图 男人天堂 中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 精品国产一区二区三区久久久樱花| 我的亚洲天堂| 亚洲片人在线观看| 女人被狂操c到高潮| 老司机靠b影院| 最新的欧美精品一区二区| 久久久久国产精品人妻aⅴ院 | 高潮久久久久久久久久久不卡| 一区二区日韩欧美中文字幕| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放| a级毛片在线看网站| 女人爽到高潮嗷嗷叫在线视频| 99在线人妻在线中文字幕 | 精品一区二区三卡| 亚洲人成伊人成综合网2020| 动漫黄色视频在线观看| 久久亚洲真实| 99国产精品一区二区三区| 午夜福利在线免费观看网站| 怎么达到女性高潮| 亚洲,欧美精品.| 大码成人一级视频| 99久久人妻综合| 久久久国产成人免费| 在线观看免费视频日本深夜| 最近最新中文字幕大全免费视频| 亚洲av成人一区二区三| 欧美激情极品国产一区二区三区| 黑人欧美特级aaaaaa片| 久久精品国产亚洲av香蕉五月 | 婷婷精品国产亚洲av在线 | 免费在线观看影片大全网站| 18禁裸乳无遮挡免费网站照片 | 久久人妻av系列| 亚洲美女黄片视频| 人人妻人人澡人人看| 国产无遮挡羞羞视频在线观看| 一级片免费观看大全| 欧美性长视频在线观看| 欧美日韩亚洲综合一区二区三区_| 看免费av毛片| 久久天堂一区二区三区四区| 欧美一级毛片孕妇| 精品国产亚洲在线| 露出奶头的视频| 亚洲一区高清亚洲精品| 免费日韩欧美在线观看| 一a级毛片在线观看| 夜夜爽天天搞| 日日爽夜夜爽网站| 免费少妇av软件| 一区二区三区精品91| 色播在线永久视频| 日韩三级视频一区二区三区| 国产人伦9x9x在线观看| 国产主播在线观看一区二区| 老司机福利观看| 亚洲国产精品sss在线观看 | 90打野战视频偷拍视频| 一级毛片女人18水好多| 午夜福利,免费看| 成人影院久久| 久久精品国产清高在天天线| 国产精品永久免费网站| 亚洲国产看品久久| 亚洲综合色网址| 国产又爽黄色视频| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 国产精品美女特级片免费视频播放器 | 怎么达到女性高潮| 人人妻人人爽人人添夜夜欢视频| 伦理电影免费视频| 他把我摸到了高潮在线观看| 老司机福利观看| 美女午夜性视频免费| 成熟少妇高潮喷水视频| av福利片在线| 亚洲专区中文字幕在线| 一级作爱视频免费观看| 久久婷婷成人综合色麻豆| 午夜精品在线福利| 国产精品久久久久久精品古装| 青草久久国产| 国产一区二区三区视频了| 后天国语完整版免费观看| 老汉色∧v一级毛片| 男人操女人黄网站| 中文字幕制服av| 欧美日韩一级在线毛片| 大型黄色视频在线免费观看| x7x7x7水蜜桃| 国产野战对白在线观看| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 久久精品国产99精品国产亚洲性色 | av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院 | 天天躁日日躁夜夜躁夜夜| 叶爱在线成人免费视频播放| 搡老熟女国产l中国老女人| 精品国产乱码久久久久久男人| 无限看片的www在线观看| 少妇裸体淫交视频免费看高清 | 在线观看一区二区三区激情| 亚洲精品乱久久久久久| 美女午夜性视频免费| 午夜久久久在线观看| 久久精品国产清高在天天线| xxx96com| 女人久久www免费人成看片| 男男h啪啪无遮挡| 俄罗斯特黄特色一大片| 欧美国产精品va在线观看不卡| 久久精品国产亚洲av高清一级| 国产精品1区2区在线观看. | 成人三级做爰电影| 在线观看免费视频网站a站| 国产高清videossex| 天堂动漫精品| 成人精品一区二区免费| 日韩欧美免费精品| 欧美日韩瑟瑟在线播放|