• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ultrafast carrier dynamics in GeSn thin film based on time-resolved terahertz spectroscopy

    2024-01-25 07:11:12PanpanHuang黃盼盼YouluZhang張有祿KaiHu胡凱JingboQi齊靜波DainanZhang張岱南andLiangCheng程亮
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張岱

    Panpan Huang(黃盼盼), Youlu Zhang(張有祿), Kai Hu(胡凱), Jingbo Qi(齊靜波),3,?,Dainan Zhang(張岱南),,?, and Liang Cheng(程亮),3,§

    1School of Electronic Science and Engineering,Universityof ElectronicScience and Technology of China,Chengdu 611731,China

    2StateKeyLaboratory ofElectronic ThinFilmsand IntegratedDevices,UniversityofElectronicScienceandTechnologyofChina,Chengdu611731,China

    3School of Physics,University ofElectronicScienceandTechnologyof China,Chengdu611731,China

    Keywords: GeSn thin film,time-resolved THz spectroscopy,ultrafast dynamics,carrier recombination

    1.Introduction

    Ge1?xSnx(abbreviated as GeSn)materials have attracted increasing attention in the fields of microelectronics and optoelectronics due to their excellent optoelectronic properties and good compatibility with mature Si-based technology.[1,2]When the Sn concentration of GeSn is in the range ofx~0.06–0.1, a transition from an indirect bandgap to a direct bandgap occurs,and this tunable band structure enables GeSn to have multiple applications.[3–5]Furthermore,due to its high carrier mobility, GeSn can be used to fabricate novel electronic devices.[6–9]It also exhibits excellent optoelectronic properties in the infrared range, and can be used as a luminescent material to fabricate infrared light sources.[4,10–14]Moreover, GeSn can be used for infrared detection, and the bandgap width of GeSn can be adjusted by tuning the Sn content,enabling the tuning of the infrared detection range.[15,16]Therefore, optoelectronic devices based on GeSn have enormous potential for application in various fields, such as freespace and fiber-optic communication, optoelectronic detection, monitoring and identification, artificial intelligence, and medical imaging,among others.

    At higher doping concentrations, GeSn alloy transforms into a direct bandgap semiconductor,[3,4]and exhibits good performance in the infrared range.In order to apply this material,it is necessary to understand the interaction between infrared photons and the material, especially the carrier relaxation behavior after photoexcitation and the electrical properties of the generated carriers.Therefore, we perform timeresolved terahertz spectroscopy (TRTS)[17–19]to measure the epitaxial grown GeSn thin films.

    2.Samples and experimental setup

    In our work, the sample is GeSn thin film grown on Si substrate using the molecular beam epitaxy (MBE) method.Before the growth, the chamber base pressure is kept at approximately 4×10?9Torr.During growth, the temperature of the Ge source is set at 1200°C with a heating rate of 7°C/min, the temperature of the Sn source is set at 1050°C with a heating rate of 5°C/min,and the substrate temperature is set at 150°C with a heating rate of 3°C/min.The growth time is 2 hours, resulting in the film thickness of approximately 120 nm.The Sn concentration in the prepared GeSn film is confirmed by x-ray photoelectron spectroscopy(XPS)as approximately 22.34%, which is heavily doped and makes the GeSn sample as a direct bandgap semiconductor with a bandgap<0.25 eV.[20]Therefore, in the following study, we choose a light source with wavelength of 2500 nm(photon energy~0.5 eV)to excite the sample.

    Fig.1.(a) Schematic of time-resolved THz spectroscopy (TRTS).(b) THz time-domain spectrum of GeSn sample.The red and black curves represent the ESamp(t) and ERef(t), respectively.(c) THz transmittance spectrum.The red balls represent the transmittance of GeSn without optical pump,and the black square represents the calibration of our setup.

    The experimental setup used in our work is a timeresolved terahertz spectroscopy, which is frequently used to measure the terahertz response of the sample after being photoexcited(as shown in Fig.1(a)).The applied laser has a repetition frequency of 1 kHz,a wavelength of 800 nm,and a pulse width of 80 fs.The laser pulse is split into two parts.One is used to generate and detect a broadband terahertz pulse, and the other is used to drive an optical parametric amplifier(OPA)to generate femtosecond pulses with a wavelength of 2500 nm to excite the sample.The generation of terahertz pulses is based on the optical rectification effect in the nonlinear crystal ZnTe induced by femtosecond laser excitation.In addition,terahertz radiation detection is based on the electro-optic sampling method,and we use a 0.5 mm thick ZnTe crystal as the detection crystal.[21]In our experiment,the time resolution of the terahertz time-domain spectroscopy is 0.03 ps,and the terahertz frequency range is 0.4 THz–2.8 THz.The pump power of the 2500 nm pump light used to excite the sample ranges from 2 mW to 40 mW,and the beam diameter is~5 mm.

    In the experiment,we need to measure the terahertz transmission signalsESamp(t) andERef(t) of the film on the substrate and the reference (usually it is the same substrate as the sample film), respectively.Then we perform the Fourier transform on the two sets of signals to obtain their frequency domain spectrum ?ESamp(ω)and ?ERef(ω),so that we can calculate the transmission of the thin film sample in the frequency domain[22,23]

    Based on the relationship between the transmission and the optical parameters of the sample,the optical parameters of the thin film at different frequencies can be deduced.[18,23–25]Before the measurement, we need to calibrate the experimental setup, and the calibration data are shown in Fig.1(c).The transmittance obtained by the system in the frequency range of 0.4 THz–2.8 THz is 100±0.5%(theoretically it should be 100%) when both the sample and the reference are vacuum,indicating the high reliability of our setup in this frequency range.

    Usually we can perform one-dimensional TRTS (1D TRTS)and two-dimensional TRTS(2D TRTS)to measure the sample.[18,26]From the 1D TRTS measurement, we can obtain the transient change of terahertz peak with respect to the pump-probe time delay, representing the transient change of frequency-averaged terahertz signal.However, in 2D TRTS measurement, we can obtain the transient terahertz timedomain spectrum at different time delays,that is,the transient change of frequency-resolved terahertz signal.The former is similar to the general optical pump–probe technique,[27,28]while the latter can give us more information about the sample in the terahertz frequency range, and it is often used for characterizing different materials such as semiconductors and superconductors.[26,27]

    3.TRTS of GeSn thin film

    3.1.THz spectrum of GeSn thin film in equilibrium

    Firstly,we measure the terahertz signal of the GeSn film without optical excitation, and its time-domain spectrum is shown in Fig.1(b).It can be seen thatESamp(t) andERef(t)are almost identical.This is because GeSn is a semiconductor with low intrinsic carrier density and small thickness, resulting in low terahertz absorption.This is also reflected in Fig.1(c), where the terahertz transmittance of the GeSn film is close to 1.Therefore, we will only focus on the effect of photo-generated carriers of the GeSn film after femtosecond optical excitation in the following work.

    3.2.The 1D TRTS of GeSn thin film

    Next,we measure the transmitted terahertz signal passing through the sample after the pump excitation,that is,the peak intensity of the transmitted terahertz electric field as a function of the pump delay time.In this case,we measure a 1D TRTS.Generally,this change is caused by optically generated quasiparticles such as carriers and phonons induced by the pump excitation.From this signal, we can obtain the ultrafast dynamics information of quasiparticles in the sample.[17,29,30]In the experiment,we apply 2500 nm wavelength light as the optical pump.Since its photon energy is smaller than that of the Si substrate material, there may be a little but observable multiphoton excitation signal in Si (see the dashed curves in Fig.2(a)).The 1D TRTS signal of Si reflects the ultra-long lifetime of the carriers in Si (>1 ns), which has been intensively studied in previous research.[31]According to the data,we can see obvious differences between the GeSn sample and Si.(i)The signal of Si is almost a constant after pump in our measurement range,while the GeSn shows obvious relaxation.(ii)The signal of Si is much smaller than GeSn.Moreover,the GeSn thin film can strongly absorb the pump light which decreases the pump power directly on the substrate in the GeSn sample.Therefore, we can conclude that the ultrafast relaxations of carriers caused by multiphoton excitation in Si substrate cannot contribute obviously to our GeSn data within our measurement range,and the relaxation processes we observed in the GeSn sample should mainly come from the GeSn thin film.

    Fig.2.(a) The 1D TRTS of GeSn thin film and pure Si substrate under different pump power.The solid curves are the fitting results of Eq.(2).The signal of Si under a 10 mW pump is magnified by 10 times.Panels(b)and(c)are the fitting parameters under different pump power.

    The 1D TRTS of GeSn film at different excitation powers is shown in Fig.2(a).It can be seen that after 2500 nm femtosecond laser excitation,the terahertz signal of GeSn film reaches its peak at around 1 ps and then begins the relaxation process.Due to the reflection of the pump light by the backside of substrate, a second excitation process appears at~13 ps.This entire process(including the rising edge of the signal)can be described by a formula containing two exponential relaxation processes(A1,τ1,A2,τ2)

    wheret01(≈?1 ps from fitting) andt02(≈13 ps from fitting)are the pump excitation time and the secondary excitation time, respectively,tr1(≈1 ps from fitting) andtr2(≈4.5 ps from fitting)are the rise times of the signals during the two excitations,respectively.G(≈0.1 from fitting)is the secondary excitation coefficient, andCrepresents the relaxation process with lifetime much longer than our measurement range.Here we assume that the second excitation by the reflected pump can trigger the relaxation processes with similar lifetimes,which is good enough to get the trend of pump-powerdependence of the fitting parameters.We believe that such assumption is reasonable because the second peak is much smaller compared to the main peak, and it cannot change the trend of the fitting parameters.The fitting curve is shown in Fig.2(a),which can fit the secondary reflection excitation process well.

    As shown in Fig.2(a),after 2500 nm femtosecond excitation,the terahertz signal of GeSn thin film reaches its peak at around 1 ps,and then starts the relaxation process.The amplitudes and relaxation time that describe the relaxation process are shown in Figs.2(b)and 2(c).The entire relaxation process is approximately in the order of 100 ps,and can be divided into a fast process(τ1)and a slow process(τ2).BothA1andA2are proportional to the excitation power,indicating that the power used has not yet reached the saturation absorption threshold.In addition,τ1andτ2both show a strong negative correlation to the excitation power, where the relaxation time will shorten at higher photo-generated carrier densities.Considering the semiconductor properties of the material, these two processes may be related to higher-order recombination processes of carriers, such as Auger recombination or radiative recombination.[17,18,32–36]

    3.3.The 2D TRTS of GeSn thin film

    We measure the time evolution of the transmitted terahertz electric field (2D TRTS) of GeSn after excitation with 15 mW pump power, as shown in Fig.3.The relative peak change of the transmitted terahertz electric field is about?2%,and it gradually decays with pump time delay.Using the data processing method of time-resolved terahertz time-domain spectroscopy,[18,24]we obtain the terahertz complex conductivity Δ ?σ(ω)of GeSn film,as shown in Fig.3(c).In Fig.3(c),we list the Δ ?σ(ω) at pump time delays of 0, 5 ps and 20 ps,which clearly shows its relaxation behavior with time delay.At delay time after photoexcitation, the real part of Δ ?σ(ω)slowly increases with frequency, while the absolute value of the imaginary part shows a decreasing trend.This frequencydependent conductivity cannot be explained directly by the common Drude model, but can be well fitted by the Drude–Smith model[18,26]

    Here,ε0is the vacuum permittivity,ε∞is the high-frequency dielectric constant of the sample,ωpis the plasma frequency,γis the scattering frequency, andcis a fitting parameter in the Drude–Smith model to describe backscattering.The fitting curve for the GeSn photoconductivity data is shown as the solid line in Fig.3(c).It can be seen that the fits are excellent,indicating that the carriers in the film after photoexcitation are different from the free carriers described in the Drude model,and exhibit some degree of localization(c/=0).This is generally caused by some defects in the crystal and can be observed in various semiconductor films.[26]

    Fig.3.The 2D TRTS of GeSn.(a) Red curve is the THz electric field in the time-domain after passing through the sample.Blue curve is the transient change of THz electric field after pumping at τ =0 ps.(b)Transient change of THz electric field after pumping at selected pump time.(c)Extracted THz optical conductivity at selected pump time.

    Fig.4.Parameters from Drude–Smith model fitting and some deduced parameters.(a)Plasma frequency ωp.(b)Photogenerated carrier density n.(c)Scattering rate γ.(d)MobilityμDS.

    The parametersωpandγobtained by fitting with the Drude–Smith model as functions of pump-probe delay time are shown in Figs.4(a)and 4(c), respectively.We can calculate the photogenerated carrier densitynand mobilityμDSin the GeSn film using the following formula:[26]

    wherem?represents the effective mass of the carriers,eis the unit charge,andμDis the intrinsic mobility(without considering the contribution of backscattering due to defects).According to the previous studies, the effective mass of carriers in GeSn ism?=0.02me,[33]thus the variations ofnandμDSwith pump-probe time delay can be obtained,as shown in Figs.4(b)and 4(d).

    According to Fig.4,the mobility of photo-generated carriers is about 800 cm2·V?1·s?1, and reaches a minimum value at~15 ps after photoexcitation.However, the change of the scattering rate is not so significant,but the backscattering contribution caused by defects(measured by the parameterc)is more significant.Therefore,the main contribution to the change in the mobility of photo-generated carriers with pumpprobe delay time should come from the change of backscattering caused by the defects in the thin film.

    Combining with the results of 1D TRTS on pump power dependence (dependence ofτ1andτ2on pump power), we speculate that Auger recombination may dominate the relaxation of terahertz signals.Therefore,we can use the rate equation to fit the carrier density[18]

    wherek1andk2are the recombination rates of the first and second order processes.Here we only consider the first and second-order recombination processes,because the rate coefficient of higher-order recombination terms is 0 when included.The fitted curve is shown as the red solid line in Fig.4(b).We can see that the fitted curve agrees the experimental data very well, with the fitted parametersk1=(2.6±1.1)×10?2ps?1andk2=(6.6±1.8)×10?19cm3·ps?1.Generally speaking,in direct gap semiconductor materials, the first-order process comes from the capture of photo-generated carriers by defects,and the second-order process may come from defect-assisted Auger recombination[18]or radiative recombination.[35–37]However, in heavily-doped GeSn(direct bandgap), the radiative recombination mechanism can be excluded,since its lifetime at room temperature is much longer than our measurement range.[35–37]According to the recombination rate in the inset of Fig.4(b),we can see that the second-order recombination dominates before 20 ps,and the first-order recombination becomes the main recombination channel after 20 ps.

    4.Discussion

    According to the results of 1D and 2D TRTS of GeSn thin film under 2500 nm optical excitation, we can see that the excitation can generate photo-generated carriers in GeSn,which undergo a relaxation process with a timescale of about~100 ps.After the concentration of photo-generated carriers reaches its maximum, there are two relaxation channels: one is the Auger recombination process involving defect levels,which dominates before 20 ps;the other is the carrier capture process by defect levels,which dominates after 20 ps.During the entire recombination process, the carrier mobility is affected by defect scattering, causing a decrease of about 40%,reaching a minimum value of around~15 ps, and gradually relaxing to an equilibrium value.

    In addition, we notice that the relaxation processes obtained from 1D and 2D TRTS are slightly different.The 1D data show two relaxation processes, with relaxation time of the orders of 10 ps and 50 ps, which cannot be fully correlated with the two carrier relaxation channels obtained from the 2D data.This is mainly because 1D data not only reflect the evolution of carrier concentration but are also affected by the transient change in carrier mobility,and therefore there are more factors included, leading to the difference observed by 1D and 2D TRTS.

    Furthermore, during the relaxation of photo-generated carriers, they can diffuse simultaneously, and the diffusion lengthLDcan be calculated by the following formula:[26]

    wherekBis the Boltzmann constant,Dis the diffusion constant at temperatureT, andkeffis the effective first-order recombination rate,which can be mathematically expressed as

    The results are shown in Fig.5,where the diffusion lengthLDvaries slightly with the pump time,and the change ofLDwith respect to pump delay time is more pronounced when the concentration of photo-generated carriers is high (before 30 ps).The value ofLDis around 0.4μm,which is similar to previous research.[38]

    Fig.5.Diffusion length of photogenerated carriers.

    5.Conclusion and perspectives

    We measure the time-resolved terahertz spectroscopy of GeSn thin film under 2500 nm laser excitation and study the ultrafast dynamics of its carriers.We find that there are two recombination channels: Auger process assisted by defects and defect capture,and the former dominates the carrier relaxation process within 20 ps after photoexcitation while the latter persists for a longer time.Meanwhile,we obtain the carrier diffusion length of GeSn,which is about 0.4μm.These results are important for the optoelectronic applications of GeSn semiconductors, and indicate that the minimum response time of this material can reach~100 ps,corresponding to a frequency upper limit of~10 GHz, making it a promising material for high-speed infrared detection.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12004067,11974070,62027807,and 52272137)and the National Key R&D Program of China(Grant No.2022YFA1403000).

    猜你喜歡
    張岱
    體悟人生,感悟孤獨
    張岱的“癡”的疏狂與孤獨
    張岱:遺世而獨立
    《湖心亭看雪》,讓我們看得更深一點
    名作欣賞(2017年27期)2017-09-18 03:22:09
    一個人的夢
    視野(2016年7期)2016-05-14 00:42:39
    我看《湖心亭看雪》中的癡
    張岱與茶
    茶博覽(2015年12期)2015-03-09 06:49:50
    論張岱小品文的“以詩為文” ——以《補孤山種梅序》為中心
    評商震的《另眼看張岱及其他》
    一世界的熱鬧,一個人的夢
    久久影院123| 亚洲精品,欧美精品| 亚洲人成网站在线播| 99九九线精品视频在线观看视频| 99国产综合亚洲精品| 三上悠亚av全集在线观看| 亚洲美女黄色视频免费看| 久久精品夜色国产| 欧美bdsm另类| 性色av一级| 黑人高潮一二区| 精品酒店卫生间| 亚洲精品中文字幕在线视频| 一边亲一边摸免费视频| 免费高清在线观看日韩| 日日啪夜夜爽| 成人18禁高潮啪啪吃奶动态图 | 免费观看av网站的网址| 亚洲,一卡二卡三卡| 日韩大片免费观看网站| 久久99热这里只频精品6学生| 国产免费视频播放在线视频| 午夜精品国产一区二区电影| 午夜福利,免费看| 成年美女黄网站色视频大全免费 | 另类精品久久| 蜜桃在线观看..| 纵有疾风起免费观看全集完整版| 一本—道久久a久久精品蜜桃钙片| 91精品伊人久久大香线蕉| 国产成人aa在线观看| 欧美一级a爱片免费观看看| 亚洲三级黄色毛片| xxxhd国产人妻xxx| 国产视频内射| 人体艺术视频欧美日本| 一个人免费看片子| 国产有黄有色有爽视频| av又黄又爽大尺度在线免费看| 啦啦啦中文免费视频观看日本| 久久99热6这里只有精品| 两个人免费观看高清视频| 狠狠婷婷综合久久久久久88av| av免费观看日本| 成人18禁高潮啪啪吃奶动态图 | 蜜桃在线观看..| 伊人亚洲综合成人网| 亚洲av福利一区| av电影中文网址| 久久精品国产a三级三级三级| 久久鲁丝午夜福利片| 黄片无遮挡物在线观看| av在线播放精品| 丰满饥渴人妻一区二区三| 18+在线观看网站| 久久免费观看电影| 18禁在线播放成人免费| 中文字幕亚洲精品专区| 亚洲成人av在线免费| 一区二区av电影网| av电影中文网址| 国产乱人偷精品视频| 亚洲国产日韩一区二区| 国产极品粉嫩免费观看在线 | 亚洲内射少妇av| 人人妻人人澡人人爽人人夜夜| 97在线人人人人妻| 久久久久久人妻| 免费黄频网站在线观看国产| 亚洲精品乱码久久久v下载方式| 亚洲国产成人一精品久久久| 人妻系列 视频| 曰老女人黄片| 九色亚洲精品在线播放| 九色亚洲精品在线播放| 久久久精品区二区三区| 九色亚洲精品在线播放| 九色亚洲精品在线播放| 99热全是精品| 成年美女黄网站色视频大全免费 | 91aial.com中文字幕在线观看| 亚洲成人av在线免费| videosex国产| 精品国产一区二区三区久久久樱花| 久久精品人人爽人人爽视色| 大陆偷拍与自拍| 亚洲成色77777| 国产熟女欧美一区二区| 国产av码专区亚洲av| 夜夜看夜夜爽夜夜摸| 久久久久久久久久人人人人人人| 免费高清在线观看日韩| 亚洲无线观看免费| 久久精品国产亚洲av涩爱| 久久亚洲国产成人精品v| 国产又色又爽无遮挡免| 午夜福利,免费看| 人妻制服诱惑在线中文字幕| 夫妻性生交免费视频一级片| 亚洲欧美精品自产自拍| 一级,二级,三级黄色视频| 91国产中文字幕| 国产极品粉嫩免费观看在线 | 能在线免费看毛片的网站| av不卡在线播放| 狂野欧美激情性bbbbbb| 婷婷色av中文字幕| 乱人伦中国视频| 丝袜喷水一区| 一级毛片aaaaaa免费看小| 91精品一卡2卡3卡4卡| 免费大片黄手机在线观看| 国产熟女欧美一区二区| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 国产精品一国产av| 亚洲欧美成人综合另类久久久| 久久久久久久久大av| 各种免费的搞黄视频| 日韩av免费高清视频| 国产精品欧美亚洲77777| 亚洲情色 制服丝袜| 免费观看无遮挡的男女| 精品少妇内射三级| 高清欧美精品videossex| 国产 精品1| 久久精品国产亚洲网站| 婷婷成人精品国产| 国产日韩欧美亚洲二区| 久久精品熟女亚洲av麻豆精品| 热99久久久久精品小说推荐| 国产在线免费精品| 亚洲成色77777| 男女免费视频国产| 久久免费观看电影| 69精品国产乱码久久久| 十分钟在线观看高清视频www| 日韩av免费高清视频| 国产视频首页在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产av成人精品| 亚洲av免费高清在线观看| 人妻少妇偷人精品九色| 黄色视频在线播放观看不卡| 一边摸一边做爽爽视频免费| 亚洲精品中文字幕在线视频| 狠狠精品人妻久久久久久综合| 91成人精品电影| 欧美变态另类bdsm刘玥| 国产欧美亚洲国产| 成人亚洲欧美一区二区av| 你懂的网址亚洲精品在线观看| 在线看a的网站| 久久久亚洲精品成人影院| 亚洲av中文av极速乱| 哪个播放器可以免费观看大片| 人人妻人人澡人人看| 亚洲精品色激情综合| 制服人妻中文乱码| 亚洲,一卡二卡三卡| 18禁在线无遮挡免费观看视频| 春色校园在线视频观看| 97精品久久久久久久久久精品| 麻豆精品久久久久久蜜桃| 久久人人爽人人片av| 久热久热在线精品观看| 九九爱精品视频在线观看| 日本91视频免费播放| 国产成人午夜福利电影在线观看| 久久久国产精品麻豆| 久久久久久久久久久久大奶| 国产 一区精品| 99久久中文字幕三级久久日本| 国产精品国产三级国产av玫瑰| 免费不卡的大黄色大毛片视频在线观看| xxx大片免费视频| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| 美女内射精品一级片tv| 国产精品久久久久成人av| 国产成人aa在线观看| 日韩成人av中文字幕在线观看| 日本av手机在线免费观看| 精品国产国语对白av| 日韩亚洲欧美综合| 啦啦啦啦在线视频资源| 新久久久久国产一级毛片| h视频一区二区三区| 精品人妻熟女毛片av久久网站| 久久国产精品大桥未久av| 美女大奶头黄色视频| 美女主播在线视频| 五月玫瑰六月丁香| 天美传媒精品一区二区| 欧美 亚洲 国产 日韩一| 丝袜脚勾引网站| 亚洲av不卡在线观看| 91成人精品电影| 欧美激情 高清一区二区三区| 国产免费现黄频在线看| 交换朋友夫妻互换小说| 91aial.com中文字幕在线观看| 我的女老师完整版在线观看| 亚洲精品国产av成人精品| 精品人妻一区二区三区麻豆| 免费观看av网站的网址| 成人国语在线视频| 中文字幕精品免费在线观看视频 | tube8黄色片| 人体艺术视频欧美日本| 日韩中文字幕视频在线看片| 丰满少妇做爰视频| 亚洲精品一区蜜桃| 免费观看在线日韩| 成人国语在线视频| 99久久精品国产国产毛片| 丝袜喷水一区| 永久网站在线| 黑人高潮一二区| 男人爽女人下面视频在线观看| 午夜影院在线不卡| 欧美精品人与动牲交sv欧美| 国产精品欧美亚洲77777| 97精品久久久久久久久久精品| 99久久精品一区二区三区| 久久久亚洲精品成人影院| 欧美另类一区| 青春草国产在线视频| 亚洲精华国产精华液的使用体验| 2022亚洲国产成人精品| 国产日韩一区二区三区精品不卡 | 日本欧美视频一区| 人妻夜夜爽99麻豆av| 日本猛色少妇xxxxx猛交久久| 一级黄片播放器| 十八禁网站网址无遮挡| 日本色播在线视频| 久久 成人 亚洲| 自线自在国产av| 在线天堂最新版资源| 午夜久久久在线观看| 欧美xxxx性猛交bbbb| 精品一区二区三卡| 一级,二级,三级黄色视频| 成人18禁高潮啪啪吃奶动态图 | 久久久久国产网址| 精品久久久久久电影网| 能在线免费看毛片的网站| 日本欧美视频一区| 久久免费观看电影| 亚洲情色 制服丝袜| 18禁动态无遮挡网站| 女人久久www免费人成看片| 美女国产视频在线观看| 精品一区二区三区视频在线| 18+在线观看网站| 一区在线观看完整版| 免费观看性生交大片5| 黑人巨大精品欧美一区二区蜜桃 | 国产成人精品无人区| 国产亚洲最大av| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 国产一区二区在线观看日韩| 高清欧美精品videossex| 久久这里有精品视频免费| 欧美日韩在线观看h| 午夜福利视频精品| 国产日韩欧美亚洲二区| 国产成人精品久久久久久| 午夜久久久在线观看| 国产日韩欧美视频二区| 亚洲丝袜综合中文字幕| 欧美日韩综合久久久久久| 一级a做视频免费观看| a 毛片基地| 男女无遮挡免费网站观看| 蜜臀久久99精品久久宅男| 久久青草综合色| 18禁观看日本| 国产高清不卡午夜福利| 女人精品久久久久毛片| 国产 精品1| 久久久久久久久久成人| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 国产淫语在线视频| 日产精品乱码卡一卡2卡三| 黄色毛片三级朝国网站| 丝袜喷水一区| 男女啪啪激烈高潮av片| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| av网站免费在线观看视频| 在线观看美女被高潮喷水网站| 九九爱精品视频在线观看| 国产免费一级a男人的天堂| 久久久久人妻精品一区果冻| 久久久久久人妻| 男女免费视频国产| 精品一区在线观看国产| 久久99热6这里只有精品| 黄色一级大片看看| 啦啦啦在线观看免费高清www| 久久99热6这里只有精品| 精品酒店卫生间| av免费在线看不卡| 一边摸一边做爽爽视频免费| 精品少妇黑人巨大在线播放| 久久久久久伊人网av| 欧美日韩av久久| 十八禁网站网址无遮挡| 制服人妻中文乱码| 欧美成人午夜免费资源| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级| 蜜桃久久精品国产亚洲av| 高清黄色对白视频在线免费看| 大码成人一级视频| 性色av一级| 久久女婷五月综合色啪小说| 色哟哟·www| 超碰97精品在线观看| 亚洲成人av在线免费| 成人国产av品久久久| 欧美bdsm另类| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| av在线观看视频网站免费| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 久久免费观看电影| 视频中文字幕在线观看| 嘟嘟电影网在线观看| 国产成人精品一,二区| 男女免费视频国产| 成人国语在线视频| 久久国产亚洲av麻豆专区| av在线老鸭窝| 91aial.com中文字幕在线观看| 精品久久久精品久久久| 国产精品国产av在线观看| 只有这里有精品99| 丝袜美足系列| 日韩一区二区视频免费看| 婷婷色综合大香蕉| 中文乱码字字幕精品一区二区三区| 伦精品一区二区三区| 五月玫瑰六月丁香| 亚洲国产成人一精品久久久| 两个人的视频大全免费| 国产免费视频播放在线视频| av专区在线播放| 3wmmmm亚洲av在线观看| 欧美日韩av久久| 国产白丝娇喘喷水9色精品| 成人影院久久| 乱码一卡2卡4卡精品| 免费人妻精品一区二区三区视频| 在线观看免费高清a一片| 久久精品熟女亚洲av麻豆精品| 日韩中字成人| 国产黄色视频一区二区在线观看| 亚洲成人av在线免费| 亚洲国产精品一区三区| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 国产精品嫩草影院av在线观看| 不卡视频在线观看欧美| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 91午夜精品亚洲一区二区三区| 性色avwww在线观看| 在线精品无人区一区二区三| 在线观看三级黄色| 丝袜在线中文字幕| 国产永久视频网站| 黄色毛片三级朝国网站| 18+在线观看网站| 国产一区亚洲一区在线观看| 三上悠亚av全集在线观看| 91午夜精品亚洲一区二区三区| videossex国产| 国产成人freesex在线| 午夜激情久久久久久久| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 午夜老司机福利剧场| 欧美人与善性xxx| 一级a做视频免费观看| 国产日韩欧美亚洲二区| 国产黄色免费在线视频| 国产亚洲精品久久久com| 久久久国产精品麻豆| 亚洲av电影在线观看一区二区三区| av在线app专区| 日产精品乱码卡一卡2卡三| 午夜老司机福利剧场| 欧美激情国产日韩精品一区| 大片电影免费在线观看免费| 老熟女久久久| 成人手机av| 男人爽女人下面视频在线观看| 亚洲国产日韩一区二区| 青春草亚洲视频在线观看| 欧美一级a爱片免费观看看| 少妇人妻 视频| 韩国av在线不卡| 两个人的视频大全免费| av电影中文网址| 看免费成人av毛片| 激情五月婷婷亚洲| 欧美一级a爱片免费观看看| 人人妻人人澡人人看| 婷婷色av中文字幕| a级毛片在线看网站| 国内精品宾馆在线| 免费高清在线观看日韩| 9色porny在线观看| 精品一区二区三卡| 桃花免费在线播放| 国产精品久久久久久久久免| 日韩人妻高清精品专区| 在现免费观看毛片| 精品国产露脸久久av麻豆| 91精品国产国语对白视频| 国产精品人妻久久久久久| 少妇的逼好多水| 丁香六月天网| 亚洲av成人精品一二三区| 国产精品久久久久久久久免| 亚洲精品视频女| 男人爽女人下面视频在线观看| 成人亚洲欧美一区二区av| 国产黄片视频在线免费观看| 蜜桃在线观看..| 色哟哟·www| 国产深夜福利视频在线观看| 国产精品一国产av| 久久精品国产亚洲网站| 久久热精品热| 国产片特级美女逼逼视频| 99视频精品全部免费 在线| 热re99久久国产66热| 国产欧美亚洲国产| 18禁在线播放成人免费| 午夜免费男女啪啪视频观看| 色吧在线观看| 国产一级毛片在线| 男女啪啪激烈高潮av片| 丰满少妇做爰视频| 成年人免费黄色播放视频| 欧美少妇被猛烈插入视频| 久久久国产欧美日韩av| 亚洲欧洲国产日韩| 丰满饥渴人妻一区二区三| 国产免费一级a男人的天堂| 插阴视频在线观看视频| 久久精品人人爽人人爽视色| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 国产色爽女视频免费观看| 免费高清在线观看日韩| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美日韩在线播放| 久久99蜜桃精品久久| 黄色视频在线播放观看不卡| 熟女电影av网| 嫩草影院入口| 国产欧美亚洲国产| 9色porny在线观看| 国产不卡av网站在线观看| √禁漫天堂资源中文www| 午夜福利视频在线观看免费| 亚洲怡红院男人天堂| 99热这里只有精品一区| 美女主播在线视频| 欧美亚洲日本最大视频资源| 91aial.com中文字幕在线观看| 秋霞在线观看毛片| av网站免费在线观看视频| 日韩免费高清中文字幕av| 一个人看视频在线观看www免费| 国产精品欧美亚洲77777| 日韩视频在线欧美| 大码成人一级视频| 国产一区有黄有色的免费视频| 久久久久久伊人网av| 纯流量卡能插随身wifi吗| 久久久亚洲精品成人影院| 欧美 亚洲 国产 日韩一| 精品国产露脸久久av麻豆| 精品少妇内射三级| 女性生殖器流出的白浆| 啦啦啦视频在线资源免费观看| 尾随美女入室| 精品一区在线观看国产| 另类亚洲欧美激情| 搡老乐熟女国产| 中国美白少妇内射xxxbb| 美女国产视频在线观看| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 久久韩国三级中文字幕| h视频一区二区三区| 亚洲国产精品专区欧美| 久久精品国产鲁丝片午夜精品| 亚洲综合色惰| 97在线人人人人妻| 女人精品久久久久毛片| 日日啪夜夜爽| 亚洲伊人久久精品综合| 久久久久久人妻| 又大又黄又爽视频免费| 香蕉精品网在线| 制服诱惑二区| 99热全是精品| 婷婷色麻豆天堂久久| 三级国产精品片| av在线观看视频网站免费| 天堂俺去俺来也www色官网| 亚洲色图 男人天堂 中文字幕 | av国产久精品久网站免费入址| 免费av不卡在线播放| 亚洲精品国产av成人精品| 国产免费福利视频在线观看| 下体分泌物呈黄色| 日韩一本色道免费dvd| 午夜激情福利司机影院| 久久99蜜桃精品久久| 婷婷成人精品国产| 少妇被粗大猛烈的视频| 内地一区二区视频在线| 99热网站在线观看| 在线观看人妻少妇| 亚洲内射少妇av| 国产又色又爽无遮挡免| 99九九线精品视频在线观看视频| 国产探花极品一区二区| 亚洲色图综合在线观看| 亚洲成色77777| 一本大道久久a久久精品| 亚洲国产精品一区二区三区在线| 简卡轻食公司| 亚洲av国产av综合av卡| 丰满饥渴人妻一区二区三| 欧美日韩视频精品一区| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 中文字幕最新亚洲高清| 亚洲在久久综合| 亚洲成人手机| 日本免费在线观看一区| 国产精品久久久久久精品电影小说| 91午夜精品亚洲一区二区三区| 青春草国产在线视频| 26uuu在线亚洲综合色| 国产乱人偷精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 日韩一区二区视频免费看| 国产日韩一区二区三区精品不卡 | 亚洲欧洲国产日韩| 国产亚洲精品第一综合不卡 | 99九九线精品视频在线观看视频| 国产在线视频一区二区| 国产免费一区二区三区四区乱码| 精品熟女少妇av免费看| 久久精品夜色国产| 欧美日韩视频精品一区| 99久久人妻综合| 在线观看三级黄色| 国产精品国产av在线观看| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频 | av在线观看视频网站免费| 国产欧美日韩一区二区三区在线 | 日日啪夜夜爽| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 国产免费视频播放在线视频| 免费观看av网站的网址| 熟女人妻精品中文字幕| 国产一区二区三区av在线| 自线自在国产av| 国产男人的电影天堂91| 91精品一卡2卡3卡4卡| 黄色毛片三级朝国网站| 久久人妻熟女aⅴ| 在线免费观看不下载黄p国产| 日本午夜av视频| 国产亚洲av片在线观看秒播厂| 一级a做视频免费观看| 亚洲,欧美,日韩| 午夜福利视频精品| 中文字幕人妻丝袜制服| 少妇 在线观看| 欧美人与性动交α欧美精品济南到 | 国产日韩欧美视频二区| 69精品国产乱码久久久| videos熟女内射| 又粗又硬又长又爽又黄的视频| 80岁老熟妇乱子伦牲交| 在线观看美女被高潮喷水网站| 亚洲中文av在线| 我要看黄色一级片免费的| 男女边摸边吃奶| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 国产又色又爽无遮挡免| 一二三四中文在线观看免费高清|