• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and simulation of an accelerometer based on NV center spin–strain coupling

    2024-01-25 07:11:12LuMinJi季魯敏LiYeZhao趙立業(yè)andYuHaiWang王裕海
    Chinese Physics B 2024年1期
    關(guān)鍵詞:立業(yè)

    Lu-Min Ji(季魯敏), Li-Ye Zhao(趙立業(yè)), and Yu-Hai Wang(王裕海)

    Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,Department of Instrument Science and Engineering,Southeast University,Nanjing 210096,China

    Keywords: nitrogen-vacancy(NV)accelerometer,spin–strain,diamond

    1.Introduction

    From fundamental physics to quantum metrology and quantum information processing, quantum systems have attracted a surge of interest recently.[1–3]Meanwhile, the development of nanofabrication technology has facilitated the fabrication of high-quality mechanical oscillators.[4–6]Benefiting from the diversity of interactions between oscillator motion and quantum systems,[5]quantum hybrid systems(QHSs) with different materials, structures, and principles combining their advantages have been widely explored, including conducting devices, ultracold atoms, and solid-state qubits.[7–12]They have stood out as strong candidates to replace conventional quantum and micro-electromechanical systems (MEMSs) for realizing high-precision magnetic field, acceleration, displacement, and other physical quantity sensing.[13–18]

    After studying the influence of strain, electric and magnetic fields on the ground state and excited state of the negatively charged nitrogen-vacancy (NV) center (hereafter referred to as NV center),[19,20]the verification of the NV spin oscillator systems paves the way for its intensive research in the field of precision measurement.[21–24]These QHSs based on NV realize the coupling of spin and mechanical oscillator through magnetic field gradient or the electric field introduced by strain.[22]The mechanical motion provides a coherent control method of the quantum system which in turn can be sensed as a signal source through spin state readout.[5]Owing to the atomic size of the center and the well-established quantum manipulation technology,they have been proven to be a powerful tool to achieve high-resolution measurement of the spin state phase.[25,26]In addition, the high Young’s modulus and low internal dissipation of diamond entail the possibility of production of the NV spin-oscillators with high frequency and strength.[5,13,27–29]

    However,the field fluctuations induced by the indispensable component including the magnetic tip or the cavity in the NV QHS using magnetic coupling or optical radiation force coupling respectively cannot be ignored.[5,10,27]To obtain systems that are less susceptible to ambient thermal noise and produce fewer stray fields,[23,30,31]researchers have shown a grown emphasis on the NV strain based QHS in which the coupling is intrinsic in the crystal and the simple monolithic structure does not require precise alignment of additional components.[13]University of California Santa Barbara demonstrated that the strain sensitivity of 3×10?6strain/and the displacement resolution of 7 nm could be achieved utilizing the designed diamond membrane.[30]University of Basel quantified the NV strain coupling constants and estimated the sensitivity of 76 MHz/μm using their cantilever beam.[32]Australian National University presented a diamond nanopillar structure and optimized the static force sensitivity to 100

    So far, previous studies have been conducted to consistently show that the NV strain based QHSs are capable of being burgeoning and leading platforms in the field of metrology,such as vibrometry and pressure sensing.However,what is not yet understood is the feasibility of applying NV spinstrain systems to the measurement of acceleration.In this paper, a MEMS accelerometer based on NV strain QHS is proposed.Compared with traditional piezoelectric or capacitive accelerometers,it does not need additional circuit connection and has the advantages of low power consumption,small size,high bandwidth, and satisfactory sensitivity.This research offers a new way of acceleration sensing in biomedicine, vibrometry,and inertial navigation fields.

    2.Principle

    The acceleration measurement device based on the NV spin-oscillator is shown in Fig.1(a).The mechanical oscillator fixed at both ends is a diamond membrane containing NV centers.The structural coordinate system(CS)is defined asXYZ, and the view along theZaxis of the structural CS is shown in Fig.1(b).The total lengthL, total widthWand heightDare along the directions ofX,YandZaxes, respectively.The effective sensitive unit is a cuboid in the middle of the whole structure with lengthL0and widthW0.When acceleration as shown is applied along theZaxis direction, the diamond structure generates strain under the action of inertial force.

    For this NV spin-strain coupling QHS, the NV electron spin states are initialized by laser pumping at 532 nm with non-radiative transition process and controlled by microwave sequences.The optical readout is realized by the dependence of photoluminescence on spin states.The strain generated by the diamond mechanical oscillator under acceleration changes the intensity and contrast of photoluminescence, thus providing a way to measure the external physical quantity.

    The crystal CS is defined asX0Y0Z0, and the four NV CSs in the crystal are defined asxyzm,m ∈{NV1,NV2,NV3,NV4}.The four internuclear NV axes corresponding to NV1, NV2, NV3, NV4 are along the direction ofin the crystal,which are thezaxes of the four NV CSs,respectively.The relationship between the crystal CS and the four internal NV CSs is shown in Fig.2(a).The strain that contributes to atomic displacement and electron density change in the diamond crystal can be regarded as an additional local electric field action on the NV centers.The Hamiltonian can be described by[20,34]

    whereD0= 2.87 GHz is the zero field splitting constant.γ=geμB/h=2.8 MHz/Gs is the electron gyromagnetic ratio.μBis the Bohr magnet.ge=2.0023 is the electrongfactor.Bis the applied magnetic field.Sx,SyandSzare the Pauli matrixes of spin 1.The normal strain components in the NV CS are represented byεxx,εyyandεzz.The ground state strain coupling constants parallel to and perpendicular to the NV axis are respectivelyd‖andd⊥.[32]

    Fig.1.Diamond-spin-oscillator acceleration sensor: (a) schematic diagram of the overall setup; (b) structure diagram of the diamond mechanical oscillator in structure CS.

    Considering that the diamond structure explored here is still a beam with a high aspect ratio, the shear strain components of the structure can be approximately ignored.The optimal lattice cutting direction is selected to minimize the coupling degree between the lateral components of the normal strain and the NV spin.In the NV CS (shown in Fig.2(b)),the strainε‖=εzzparallel to the NV axis causes the contraction and elongation of the nitrogen bond without changing theC3Vsymmetry of the NV center,which can be seen as a linear correction to the zero field splittingD0.[23]The strainperpendicular to the NV axis causes deformation of the carbon bond,destroying the rotational symmetry and breaking the degeneracy of the statems=±1,resulting in a spin mixing state.[30]The energy level of the NV spin state is presented in Fig.2(c).

    Fig.2.Schematic diagram of NV spin-strain coupling mechanism.(a) Schematic diagram of the relationship between 4 NV CSs and the crystal CS.(b)Normal strain components in parallel and vertical directions.(c)Energy levels of NV ground state in the presence of strain and magnetic field.

    Ramsey sequence can be utilized for acceleration measurement in this scheme.Applying a microwave field with an effective intensity ofB1and a frequency ofD0?γBz, the Hamiltonian of the ground spin state under rotating wave approximation is

    The axial magnetic fieldBzis assumed to be large enough to ignore the effect of the lateral strain coupling termThe subspace of state?1 and state 0 is used as two energy levels approximation.After the evolution processπ/2–τ–π/2, the two-level system will accumulate phaseΦ(τ)=d‖ε‖τbetween the two states.Considering the attenuation caused by the dephasing effect, the probability of the electronic spin state remaining in the state can be expressed as, thus the phase information could be obtained through the radiation fluorescence measurement.

    Mechanical oscillators can be classified by the geometry of the structure shape and the number of fixed ends.Typical oscillators include singly-clamped structures (e.g.,‘U’-shaped and cantilever) and doubly-clamped structures(e.g.,bridge).[35]For the general strip diamond structure with double-clamped ends,the vibration of the bridge with a length larger than the cross-section scale can be described by Euler–Bernoulli’s theory according to the elastic theory.[29,30]The eigenfrequency can be expressed as

    whereEis Young’s modulus of the material,ρis the density,Ais the cross-section area,landdare the length and height,respectively.Iis the moment of inertia,ωdnis thenth order eigenfrequency,andκnis the constant depending on the fixed way and order.[36]As the vibration frequency of the longitudinal mode is much higher than that of the transverse mode,the longitudinal mode is ignored here and only the fundamental mode is analyzed.

    3.Simulation results and analysis

    3.1.Sensitivity analysis

    Assuming that the NV axial strain of the diamond mechanical oscillator caused by the external accelerationaisε‖,the scale factor determined by the diamond structure and cutting orientation can be expressed asε‖/a.Considering that the interrogation time determined by the quantum manipulation sequence isτ, for the Ramsey and spin echo sequences,τcan be taken as the dephasing time and coherence time,i.e.,τ ≤T?2andτ ≤T2.A general sensitivity expression for the acceleration measurement can be obtained,In addition, the sensitivity of an NV spin-strain QHS is related to spin projection noise, photon shot noise, and overhead time.[37]Therefore, for the system here using Ramsey sequences,the noise determined acceleration sensing sensitivity can be expressed as follows:

    whereCis the fluorescence collection efficiencyC=0.3.[38]pcan be 1, 2, 3, andp=2 is taken here.tpolandtroare the initialization time and readout time, respectively, which can be ignored.Therefore,τis taken asτ=T?2/2 to obtain the optimal sensitivity.The number of effective spins is taken as a quarter of the total number of centersN=nV/4.The nitrogen density is about 1018cm?3,thus the NV center density isn=1017cm?3with NV center conversion ratio 0.1.[38]T?2is taken as 10μs,Vis the effective sensing volume,d‖is taken as 13.3 GHz.[33]Therefore, the sensitivity of acceleration measurement is expressed as

    3.2.Optimization of diamond crystal cutting orientation

    The structural strain tensor needs to be converted into the NV CSs to calculate the effective strain.Therefore, the cutting direction of the diamond crystal is optimized to reduce the coupling of transverse strain with the NV axis.TheXaxis in the structure CS can be chosen to be along[100],[110]or[111]direction with a great degree of symmetry in the crystal,[39]which is denoted asXYZk k∈{1,2,3}corresponding to the above three cases.Without loss of generality,the orientations of the three structure CSsXYZkand the four NV CSsxyzmin the crystal CS are assumed in Table 1.According to the rotation matrixLmkof thekth structure CS to themth NV CS,the strain tensorεxyzm=LεXYZLTin the NV CS can be obtained.The strain tensor forms in the structure CS and the NV CS are respectively shown below:

    The strain components in the corresponding CS satisfyεij=εji,i,j∈{X,Y,Z},i/=jandεpq=εqp,pq∈{x,y,z},p/=q.

    Table 1.Representation of 3 structure CSs and 4 NV CSs in the crystal CS.

    A finite element analysis software is used to obtain the strain distribution of the diamond structure under the action of acceleration along the?Zaxis.Poisson ratio, Young’s modulus, and density of diamond are 0.069, 1220 GPa, and 3.515 g/cm3, respectively.[33,36]In Figs.3(a)–3(c), the strain is concentrated at the sensitive unit and the fixed ends of the overall structure.In the length direction of the oscillator (Xaxis in the structure CS),the strain at the sensitive unit is relatively high.In the height direction(Zaxis), the strain at the sensitive element gradually decreases from the surface to the middle.It is apparent from Fig.3(d)that in the sensitive unit,εXZandεYZare significantly smaller among the shear components of the strain tensor,and about one order of magnitude lower thanεXY.Similarly,εXXis the maximum among the normal strain, one order of magnitude higher thanεXXandεYY.This result can be explained by the fact that the structure is overall beam-shaped and the acceleration is input along theZdirection.Meanwhile,the shear strain components,which can be ignored,are more than two orders of magnitude lower than the normal strain components.

    Fig.3.Mechanical simulation of the spin–strain coupling oscillator.(a)The log-normalized effective strain distribution of the diamond structure on the surface parallel to the XOY plane under acceleration.The effective strain distribution along the length(b)and height(c)directions of the structure is shown in(a).(d)Schematic diagram of the components of the log-normalized strain on the surface of the structure parallel to the plane XOY.

    The influence of different diamond cutting orientations on the sensing performance can be analyzed according to the above simulation results.The effective strain transformation results are calculated for three different diamond cut orientations in four NV CSs shown in Table 1.The effective strain componentsε‖are present in Table 2.Considering that the influence of the normal strain components perpendicular to the NV axis on the energy splitting between 0 and 1 states can be approximated asd2⊥((εxxm)2+(εyym)2)/(2γB)according to Eq.(6), we can ignore the normal strain componentε⊥and shear strain in the NV CS,and takeε‖as the effective strain.For the normalization of the normal strain tensor of the structure,εXX,εYYandεZZcan be expressed as 1,0.1,0.1.It can be concluded that theXaxis along[110]or[111]could achieve a 19.3%improvement of the effective strain than being along[100] direction.In addition, the effective strain of NV1 and NV2 is equal,which increases the number of the effective NV centers twice and optimizes the sensitivity of the ensemble NV measurement scheme of acceleratitimes.The results of this investigation show that the[110]direction is better because there is no energy level difference in this direction NV3 and NV4,so the energy level splitting can be easier to identify.

    Table 1.Normal strain component parallel to the NV axis in the NV CS.

    3.3.Structural parameters influence on sensing performance

    To characterize the sensing performance of the spin-strain coupling system,simulations are conducted from the perspectives of sensitivity, power, and size.Based on the analysis above,the diamond cutting orientationX‖[110]and effective NV axis of NV1 and NV2 are applied in the simulation,with the corresponding effective strainε‖=εXX.

    First of all, the influence of the sensitive unit size on the sensitivity is simulated when the overall size of the structure is determined.We chooseL=1000 μm,W=100 μm,D=1 μm, and length-height ratio to be 1000.[40]The single NV center is in the center of the sensitive unit surface to avoid strain upheaval points for a single NV scheme.For the ensemble NV scheme,the effective center is taken as the whole sensitive unit containing centers.The lengthL0and widthW0are adjusted with the optimization principle:D ≤L0≤L,D ≤W0≤W.So the variation ranges ofL0andW0are respectively[1μm, 1000μm]and[1μm, 100μm].

    The results of sensitivity change with the size of the sensitive unit are shown in Figs.4(a)and 4(b).Points A,marked with circles,and points B,marked with asterisks,indicate the best and worst sensitivity simulation results,respectively.Evidently, the sensitivity of the ensemble NV center-based system is considerably better than that of the single NV centerbased system.Optimal sensitivities are 6.7×10?5(L0=30 μm,W0=1 μm) and 0.068(L0=1 μm,W0=1μm),respectively.If the length and width of the sensitive unit are equal to the length and width of the overall structure, respectively, the structure is a simple Euler–Bernoulli beam.The corresponding sensitivity and power consumption are not optimal, which verifies the effectiveness of the proposed structure in this work.In addition, the obvious difference between the two measurement methods is that for the multi-spin scheme, the structural parameters leading to relatively good performance correspond to the length and width of the sensitive element being synchronous large and small.While for the single-spin scheme,they only correspond to the length and width being small at the same time.Reducing the overall size of the sensitive unit can increase the effective mass and decrease the system’s stiffness for both single and ensemble center based schemes.When the length and width are increasing simultaneously, the sensitivity is excellent for the muti-spin scheme,which benefits from the increase in the number of effective NV centers.Through this structure optimization,the sensitivity of the single spin and multi-spin measurement schemes can be respectively improved by 2.4 and 1.6 orders of magnitude.

    Fig.4.The comprehensive effect of the length and width of the sensitive unit in(a)single NV and(b)ensemble NV center based schemes on the sensitivity of acceleration measurement.Points A and B represent the best and worst simulation results in both figures.(c)The influence of excited light power on the sensitivity of the ensemble NV center based sensor.Point A represents the best simulation result.

    Considering that the sensitivity optimization procedures for a multi-spin system have different requirements on the excitation light power, we analyze the effect of laser power on the sensitivity of acceleration measurements later.The black line through(L0min,W0min)and(L0max,W0max),the red line through(L0max,W0min)and(L0max/2,W0max/2), the yellow line through (L0min,W0max) and (L0max/2,W0max/2) in Fig.4(a)are chosen to calculate the power consumption.Assume that each NV center requires three excited photons of 532 nm to achieve optical polarization, then the laser power expression is

    wherehis Planck’s constant,cis the speed of light, and the 532 nm light wavelengthλis taken.As can be seen from the black curve in Fig.4(c),with the increase of the available power,the curve shows a trend of decreasing,increasing,and then decreasing.This phenomenon can be attributed to the counterbalance between the system response and the effective color number.When the length and width of the sensitive unit vary by the same multiple, the system performance is optimized at a certain intermediate value,as indicated by point A marked with a circle.The corresponding moderate power is only 1.1μW,which is three orders of magnitude less than the maximum power,and better sensitivity can be obtained.It can be concluded from the red and yellow lines in Fig.4(c) that the sensitivity nearly shows a monotonically improving trend with the increase of provided power.Starting from that point,the sensitivity of increasing the length is slightly better than that of increasing the width with a fixed power consumption.Moreover,for the optimal sensitivity of the multi-spin scheme aforementioned, the power required is only 0.69 μW, on the sub-μW scale.

    Then we explore the influence of the structure heightDon sensitivity,and setW=1000μm,L=100μm,L0=W0=10μm,1μm<D <10μm.As shown in Fig.5,the sensitivity improvement is less than one order magnitude(about 3 times)when the height changes by 10 times,indicating that the thickness has a limited effect on the performance under the current parameters.

    Fig.5.The influence of the overall structure height on the sensitivity.

    Finally, the frequency response caused by the change in the overall length of the structure with other parameters being constant (W= 100 μm,L0= 30 μm,W0= 1 μm, andD= 1 μm) is investigated.As shown in Fig.6(a), if the lengthLincreases from 100μm to 1000μm,the corresponding resonant frequency will decrease from the order of 1 MHz to the order of 10 kHz.It can be inferred from the inset of Fig.6(b) that the eigenfrequency of the system and the total lengthLare negatively correlated, and can be fitted byy= 5.03×106/x1.97.This relationship, which is approximatelyw1∝1/L2,is similar to that of the Eulbernoulli beam.

    What’s more,the relationship between the sensitivity and the bandwidth is simulated in Fig.6(b).When the length is increased by one order of magnitude,the corresponding bandwidth, from 790 kHz to 10 kHz, is decreased by nearly two orders of magnitude,and the sensitivity is improved by nearly three orders of magnitude.The simulation result represents a trade-off between bandwidth and sensitivity.For the frequency of acceleration lower than 3 kHz, a better sensitivity can be obtained whenLis chosen to be sufficiently large,e.g.,1000μm.For a high-frequency signal(hundreds of kHz)sensing,a smallerLis preferred to obtain a larger working range.

    Fig.6.Influence of different overall lengths L on sensor performance.(a) Different frequency responses of effective strain.(b) The relationship between bandwidth and sensitivity.The inset shows the impact of L on the eigenfrequency.

    4.Discussion

    The performance compared with other types of MEMS accelerometers is shown in Table 3.Compared with traditional accelerometers, the superiority of the MEMS accelerometer proposed in this paper is reflected in its flexibility,versatility,and integrated potential.With its fine sensitivity, wide bandwidth, and non-contact measurement properties, this sensor has broad prospects in inertial navigation,[41]seismology,and bioscience in the future.

    Table 3.Main performance comparisons of this work and other MEMS accelerometers.

    In general,although the NV strain based system does not require the precise alignment of spin and oscillator,the precise positioning of the NV center in the single NV center scheme is necessary, which is still challenging.This problem can be weakened by using the ensemble NV system.However, the noise calculation method described here,which does not fully consider the impact of impurities in ensemble samples,cannot be ignored in practical application.[5]To further improve sensor performance, optimization could be conducted from the following perspectives in the future.The Ramsey sequence could be replaced with spin echo with longer interrogation time to improve the sensitivity by abouttimes.Similarly,a more complex dynamic decoupling sequence can further increase the interrogation time at the cost of bandwidth loss.[38,45]Considering the sensitivity of the ensemble NV based system related to the number of effective NV centers,a scheme with an array of small-volume diamond oscillators could be investigated with the development of nanoelectromechanical systems(NEMS)fabrication technology.The method of coupling the oscillator with the NV spin excited state to improve the coupling strength is also worth further exploring.[36]

    5.Conclusion

    In summary, this work proposes a diamond based spinstrain coupling scheme for acceleration measurement and characterizes its performance.The effective strain under acceleration applied along three symmetrical crystal directions is analyzed through the transformation between the structure,crystal, and NV CSs.The measurement bandwidth ranges from 3 kHz to hundreds of kHz with structure optimization.The sensitivity can reach 6.7×10?5withμm level effective size and sub-μW power consumption.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.62071118) and the Primary Research & Development Plan of Jiangsu Province (Grant No.BE2021004-3).

    猜你喜歡
    立業(yè)
    GRU-DNN改進的行人導(dǎo)航零速檢測方法
    先安居,后立業(yè) 畢業(yè)季租房的這些問題,我們幫你一一解答
    上海工運(2020年8期)2020-12-14 03:11:50
    壓力均勻性對軟包電池模組一致性影響分析
    北京汽車(2020年1期)2020-05-07 06:35:28
    成家立業(yè)之我見
    青年生活(2020年6期)2020-03-28 01:25:37
    以品質(zhì)立業(yè),以專注強業(yè)——訪寧波恒隆車業(yè)有限公司總經(jīng)理胡如科
    訪鴿子王潘光偉
    天然氣處理站的管線配管
    擷英園
    特別健康(2017年6期)2017-07-19 10:52:54
    廉潔咨詢是立業(yè)之本
    兩個兒子怎比優(yōu)劣?“雙面膠”父親喲釀命案
    国产一区二区在线观看日韩| 毛片女人毛片| 欧美极品一区二区三区四区| 亚洲久久久国产精品| 国产成人精品久久久久久| 3wmmmm亚洲av在线观看| 免费观看无遮挡的男女| 中文字幕免费在线视频6| 中国美白少妇内射xxxbb| 男的添女的下面高潮视频| 我的女老师完整版在线观看| 久久人人爽av亚洲精品天堂 | 久久久亚洲精品成人影院| 国产欧美另类精品又又久久亚洲欧美| 日韩制服骚丝袜av| 亚洲成人手机| 高清在线视频一区二区三区| 国产成人精品福利久久| 男女下面进入的视频免费午夜| 国产精品一区二区在线不卡| 三级国产精品片| 国产av一区二区精品久久 | 亚洲色图综合在线观看| 狠狠精品人妻久久久久久综合| 麻豆成人av视频| 2022亚洲国产成人精品| 视频中文字幕在线观看| 18禁动态无遮挡网站| 少妇的逼水好多| 日本黄大片高清| 亚州av有码| 一级毛片我不卡| 直男gayav资源| 色综合色国产| 亚洲av.av天堂| 亚洲成人手机| 99热这里只有是精品50| 欧美精品一区二区大全| 夫妻午夜视频| 久久99热6这里只有精品| 97超碰精品成人国产| 日韩av不卡免费在线播放| 精品久久国产蜜桃| 久久精品国产亚洲网站| 在线精品无人区一区二区三 | 老熟女久久久| 国产精品久久久久久久电影| 欧美精品国产亚洲| 久久久久国产精品人妻一区二区| 国产精品人妻久久久久久| 日韩一本色道免费dvd| 精品久久国产蜜桃| 51国产日韩欧美| a级一级毛片免费在线观看| 亚洲精品aⅴ在线观看| 777米奇影视久久| 高清欧美精品videossex| tube8黄色片| 国产有黄有色有爽视频| 精品久久久久久久久av| 国产人妻一区二区三区在| 大又大粗又爽又黄少妇毛片口| 身体一侧抽搐| 狂野欧美激情性xxxx在线观看| 51国产日韩欧美| kizo精华| 日韩中字成人| 最后的刺客免费高清国语| 高清在线视频一区二区三区| 欧美区成人在线视频| 少妇人妻久久综合中文| 亚洲婷婷狠狠爱综合网| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 国产亚洲午夜精品一区二区久久| 久久99热6这里只有精品| 欧美人与善性xxx| 欧美日韩在线观看h| 视频中文字幕在线观看| 国产日韩欧美亚洲二区| 精品熟女少妇av免费看| 丰满乱子伦码专区| 如何舔出高潮| 美女脱内裤让男人舔精品视频| 久久久成人免费电影| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 亚洲激情五月婷婷啪啪| 日本爱情动作片www.在线观看| 国产v大片淫在线免费观看| 国产在线视频一区二区| 久久久久久久久大av| 高清欧美精品videossex| 国产免费又黄又爽又色| 国产精品偷伦视频观看了| 欧美一区二区亚洲| 国产深夜福利视频在线观看| av在线蜜桃| 麻豆国产97在线/欧美| 亚洲精品日本国产第一区| 秋霞伦理黄片| 日日啪夜夜撸| 日韩成人av中文字幕在线观看| 中文字幕亚洲精品专区| 天堂中文最新版在线下载| 又粗又硬又长又爽又黄的视频| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| 2021少妇久久久久久久久久久| 免费少妇av软件| 免费观看在线日韩| 一区二区av电影网| 午夜免费鲁丝| 青春草国产在线视频| 午夜视频国产福利| 午夜福利网站1000一区二区三区| 亚洲自偷自拍三级| 能在线免费看毛片的网站| 香蕉精品网在线| 国产伦理片在线播放av一区| 国产精品福利在线免费观看| 欧美少妇被猛烈插入视频| 欧美xxxx黑人xx丫x性爽| 性色av一级| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| 国产精品人妻久久久影院| 春色校园在线视频观看| 亚洲人成网站高清观看| 国产黄片美女视频| 观看av在线不卡| 美女xxoo啪啪120秒动态图| 夜夜骑夜夜射夜夜干| 成年av动漫网址| 人妻 亚洲 视频| 夫妻性生交免费视频一级片| 蜜臀久久99精品久久宅男| 爱豆传媒免费全集在线观看| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 大又大粗又爽又黄少妇毛片口| 欧美最新免费一区二区三区| 亚洲精品日韩av片在线观看| 多毛熟女@视频| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| 国内少妇人妻偷人精品xxx网站| 成人国产av品久久久| 欧美xxxx黑人xx丫x性爽| 午夜激情福利司机影院| 青春草视频在线免费观看| 五月开心婷婷网| 汤姆久久久久久久影院中文字幕| 国产亚洲欧美精品永久| 18禁在线无遮挡免费观看视频| 妹子高潮喷水视频| 国产精品国产av在线观看| 寂寞人妻少妇视频99o| 亚洲综合色惰| 国产av国产精品国产| 色视频www国产| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 自拍欧美九色日韩亚洲蝌蚪91 | 在线 av 中文字幕| 另类亚洲欧美激情| 日日撸夜夜添| 免费黄色在线免费观看| 99精国产麻豆久久婷婷| 久久综合国产亚洲精品| 国产大屁股一区二区在线视频| 22中文网久久字幕| 好男人视频免费观看在线| 成人综合一区亚洲| 免费播放大片免费观看视频在线观看| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| av又黄又爽大尺度在线免费看| 韩国高清视频一区二区三区| 亚洲av日韩在线播放| 青青草视频在线视频观看| 亚洲国产精品国产精品| 国产午夜精品久久久久久一区二区三区| 亚洲成人手机| 日韩在线高清观看一区二区三区| 七月丁香在线播放| 久久久久久久大尺度免费视频| 欧美日韩一区二区视频在线观看视频在线| 午夜免费鲁丝| 80岁老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 成年免费大片在线观看| 91精品一卡2卡3卡4卡| 国产永久视频网站| 91aial.com中文字幕在线观看| 国产高清不卡午夜福利| 日韩av不卡免费在线播放| 免费久久久久久久精品成人欧美视频 | 亚洲,欧美,日韩| 久久精品人妻少妇| 国产精品免费大片| 亚洲国产精品成人久久小说| 成人美女网站在线观看视频| 全区人妻精品视频| 七月丁香在线播放| 最后的刺客免费高清国语| 国产乱人偷精品视频| 国产精品.久久久| 精华霜和精华液先用哪个| 国产高清国产精品国产三级 | 久久热精品热| 最近手机中文字幕大全| 黄色配什么色好看| 国产精品精品国产色婷婷| 97在线人人人人妻| 亚洲熟女精品中文字幕| 五月天丁香电影| 日本黄色日本黄色录像| 成人特级av手机在线观看| 国产深夜福利视频在线观看| 亚洲精品久久久久久婷婷小说| 一级毛片我不卡| 亚洲无线观看免费| 亚洲欧洲日产国产| 老师上课跳d突然被开到最大视频| 久久久午夜欧美精品| 欧美成人一区二区免费高清观看| 亚洲欧美日韩东京热| 中文精品一卡2卡3卡4更新| 男人狂女人下面高潮的视频| 亚洲av欧美aⅴ国产| 国产成人a∨麻豆精品| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 国产成人aa在线观看| 夫妻性生交免费视频一级片| av在线播放精品| 午夜免费观看性视频| 成人国产麻豆网| 免费在线观看成人毛片| 1000部很黄的大片| 春色校园在线视频观看| av福利片在线观看| 一二三四中文在线观看免费高清| 熟女av电影| 亚洲精品乱久久久久久| 精品亚洲乱码少妇综合久久| 黄片wwwwww| 97精品久久久久久久久久精品| .国产精品久久| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 精品国产乱码久久久久久小说| 国产成人aa在线观看| 亚洲成人av在线免费| 我要看日韩黄色一级片| 成人一区二区视频在线观看| 五月玫瑰六月丁香| 又爽又黄a免费视频| 国产精品福利在线免费观看| 久久人人爽人人片av| 国产av码专区亚洲av| av在线播放精品| 国产精品国产av在线观看| 18禁裸乳无遮挡动漫免费视频| 久热久热在线精品观看| 街头女战士在线观看网站| 日韩亚洲欧美综合| 国产男女超爽视频在线观看| 久久韩国三级中文字幕| 黄色配什么色好看| 国产精品精品国产色婷婷| 美女中出高潮动态图| 日日撸夜夜添| 97在线人人人人妻| 亚洲美女视频黄频| 国产爽快片一区二区三区| 亚洲国产精品成人久久小说| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 91狼人影院| 高清av免费在线| videos熟女内射| av免费观看日本| 免费在线观看成人毛片| 亚洲精品自拍成人| 国产美女午夜福利| 亚洲精品aⅴ在线观看| 一区二区三区乱码不卡18| www.av在线官网国产| 一级二级三级毛片免费看| 黄色欧美视频在线观看| av免费在线看不卡| 又爽又黄a免费视频| 26uuu在线亚洲综合色| 99热这里只有是精品在线观看| 永久免费av网站大全| 王馨瑶露胸无遮挡在线观看| 性高湖久久久久久久久免费观看| 亚洲aⅴ乱码一区二区在线播放| 蜜桃在线观看..| 免费久久久久久久精品成人欧美视频 | 波野结衣二区三区在线| 99久久综合免费| 免费看光身美女| 成人特级av手机在线观看| 日本欧美视频一区| 亚州av有码| 高清在线视频一区二区三区| 色婷婷av一区二区三区视频| 伊人久久国产一区二区| 99久久精品热视频| 欧美成人午夜免费资源| 亚洲怡红院男人天堂| 蜜桃亚洲精品一区二区三区| 亚洲美女黄色视频免费看| 在现免费观看毛片| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| av福利片在线观看| 能在线免费看毛片的网站| 亚洲色图av天堂| av国产精品久久久久影院| 国产精品不卡视频一区二区| 在线观看国产h片| 久久婷婷青草| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 777米奇影视久久| 最近最新中文字幕大全电影3| 菩萨蛮人人尽说江南好唐韦庄| 午夜精品国产一区二区电影| 26uuu在线亚洲综合色| 蜜桃亚洲精品一区二区三区| 最黄视频免费看| 妹子高潮喷水视频| 自拍偷自拍亚洲精品老妇| 最近2019中文字幕mv第一页| 久久热精品热| 少妇熟女欧美另类| 亚洲精品久久久久久婷婷小说| 狂野欧美白嫩少妇大欣赏| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 日韩av在线免费看完整版不卡| 久久久久网色| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 边亲边吃奶的免费视频| 亚洲人与动物交配视频| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 亚洲欧美一区二区三区黑人 | 一级毛片aaaaaa免费看小| 日韩三级伦理在线观看| 日本欧美视频一区| 精品久久国产蜜桃| 18+在线观看网站| 91久久精品国产一区二区三区| 精品视频人人做人人爽| 亚洲欧洲日产国产| 97超碰精品成人国产| 国产高清国产精品国产三级 | 一区二区三区免费毛片| 国产精品久久久久久久电影| 在线 av 中文字幕| 日韩av在线免费看完整版不卡| 亚洲人与动物交配视频| 国产黄频视频在线观看| 欧美日韩亚洲高清精品| 国产一区二区在线观看日韩| 亚洲av在线观看美女高潮| 亚洲国产av新网站| 一个人免费看片子| 国产男女内射视频| 日韩在线高清观看一区二区三区| 视频中文字幕在线观看| 国产精品.久久久| 嫩草影院入口| 亚洲电影在线观看av| 大香蕉97超碰在线| 国产高潮美女av| 在线 av 中文字幕| 亚洲av中文av极速乱| 韩国av在线不卡| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 欧美少妇被猛烈插入视频| 国产午夜精品一二区理论片| 成人18禁高潮啪啪吃奶动态图 | 国产无遮挡羞羞视频在线观看| av播播在线观看一区| 热re99久久精品国产66热6| 亚洲欧美精品专区久久| 晚上一个人看的免费电影| 3wmmmm亚洲av在线观看| 又爽又黄a免费视频| 亚洲一级一片aⅴ在线观看| 国产成人精品一,二区| 777米奇影视久久| h视频一区二区三区| 国产亚洲最大av| 久久久精品免费免费高清| 黑人猛操日本美女一级片| 久久久欧美国产精品| 99九九线精品视频在线观看视频| 国产欧美亚洲国产| 午夜老司机福利剧场| 国产有黄有色有爽视频| 国产人妻一区二区三区在| 亚洲激情五月婷婷啪啪| 男人狂女人下面高潮的视频| 日本wwww免费看| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 亚洲第一av免费看| 欧美国产精品一级二级三级 | 一区二区三区精品91| 国产v大片淫在线免费观看| 日韩不卡一区二区三区视频在线| 又黄又爽又刺激的免费视频.| 国产精品人妻久久久影院| 精品一品国产午夜福利视频| 久久人人爽av亚洲精品天堂 | 国产精品嫩草影院av在线观看| 国产女主播在线喷水免费视频网站| 国产黄色视频一区二区在线观看| 日本与韩国留学比较| 女的被弄到高潮叫床怎么办| 99久久中文字幕三级久久日本| 日韩视频在线欧美| 久久影院123| 亚洲国产日韩一区二区| 一本久久精品| 91午夜精品亚洲一区二区三区| 久久久久性生活片| 欧美日韩精品成人综合77777| 国产深夜福利视频在线观看| 欧美精品国产亚洲| 久久av网站| 91精品国产国语对白视频| 黑丝袜美女国产一区| 一本一本综合久久| 国产黄色免费在线视频| 蜜桃亚洲精品一区二区三区| 99久久中文字幕三级久久日本| 久久精品熟女亚洲av麻豆精品| 成人18禁高潮啪啪吃奶动态图 | 直男gayav资源| av又黄又爽大尺度在线免费看| 午夜视频国产福利| 久久97久久精品| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 永久免费av网站大全| 久久久久性生活片| 亚洲av成人精品一二三区| 久久久a久久爽久久v久久| 亚洲国产欧美人成| 看免费成人av毛片| 春色校园在线视频观看| 亚洲av中文av极速乱| 如何舔出高潮| 免费不卡的大黄色大毛片视频在线观看| 成人一区二区视频在线观看| 日韩成人av中文字幕在线观看| 欧美最新免费一区二区三区| 丝袜脚勾引网站| 深夜a级毛片| 亚洲图色成人| 国产国拍精品亚洲av在线观看| 欧美日本视频| av卡一久久| 两个人的视频大全免费| 国产精品久久久久久精品古装| 亚洲av成人精品一二三区| 黄色欧美视频在线观看| 国产综合精华液| 波野结衣二区三区在线| 熟女人妻精品中文字幕| 国产一区二区在线观看日韩| 久久国产精品男人的天堂亚洲 | 大陆偷拍与自拍| 成年人午夜在线观看视频| 国产永久视频网站| 欧美极品一区二区三区四区| 国产亚洲91精品色在线| 尾随美女入室| 欧美成人一区二区免费高清观看| 91午夜精品亚洲一区二区三区| 国产精品蜜桃在线观看| 在线观看三级黄色| 亚洲无线观看免费| 一级毛片我不卡| 男人舔奶头视频| 狠狠精品人妻久久久久久综合| 大码成人一级视频| 在线精品无人区一区二区三 | 日日啪夜夜撸| 亚洲国产精品国产精品| 伦理电影免费视频| 三级经典国产精品| 下体分泌物呈黄色| 在线观看一区二区三区| 日韩视频在线欧美| 国产黄片视频在线免费观看| 国产成人精品久久久久久| 美女高潮的动态| 色婷婷av一区二区三区视频| 国产成人午夜福利电影在线观看| 国产成人a∨麻豆精品| 中文天堂在线官网| 中文字幕免费在线视频6| 国产成人精品婷婷| 久久精品国产亚洲av涩爱| 夜夜骑夜夜射夜夜干| 自拍偷自拍亚洲精品老妇| av在线app专区| 国产高清国产精品国产三级 | 最近的中文字幕免费完整| 视频区图区小说| 午夜免费观看性视频| 久久 成人 亚洲| 亚洲av欧美aⅴ国产| 纯流量卡能插随身wifi吗| xxx大片免费视频| 精品少妇黑人巨大在线播放| 高清欧美精品videossex| 自拍偷自拍亚洲精品老妇| 中文字幕人妻熟人妻熟丝袜美| 噜噜噜噜噜久久久久久91| 久久久久久久久久人人人人人人| 一级黄片播放器| 亚洲国产av新网站| 免费看不卡的av| 一区二区三区免费毛片| 国产精品国产三级专区第一集| 国产深夜福利视频在线观看| 男女国产视频网站| 色网站视频免费| 亚洲欧美日韩另类电影网站 | 久久久久久久大尺度免费视频| 国产国拍精品亚洲av在线观看| 九草在线视频观看| a 毛片基地| 搡女人真爽免费视频火全软件| h视频一区二区三区| 91精品伊人久久大香线蕉| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线 | 爱豆传媒免费全集在线观看| 一个人看视频在线观看www免费| 日韩亚洲欧美综合| 在线观看一区二区三区| 赤兔流量卡办理| 97热精品久久久久久| 国产精品国产三级专区第一集| 精品亚洲成国产av| 观看美女的网站| 我的老师免费观看完整版| 国产v大片淫在线免费观看| 少妇的逼好多水| 成人亚洲精品一区在线观看 | 在线看a的网站| 欧美极品一区二区三区四区| 成人特级av手机在线观看| 色网站视频免费| 啦啦啦啦在线视频资源| 国产亚洲91精品色在线| 2018国产大陆天天弄谢| www.av在线官网国产| 51国产日韩欧美| 一级毛片 在线播放| 99re6热这里在线精品视频| 精品一区二区三区视频在线| 26uuu在线亚洲综合色| 国产精品国产av在线观看| 亚洲综合精品二区| 国产精品无大码| 久久精品熟女亚洲av麻豆精品| 亚洲高清免费不卡视频| 自拍偷自拍亚洲精品老妇| 国产免费又黄又爽又色| 久久韩国三级中文字幕| av在线观看视频网站免费| 丝袜喷水一区| 最近中文字幕高清免费大全6| 22中文网久久字幕| 国产日韩欧美亚洲二区| 嫩草影院新地址| 久久久亚洲精品成人影院| 老师上课跳d突然被开到最大视频| 色视频在线一区二区三区| 交换朋友夫妻互换小说| 97在线人人人人妻| 天美传媒精品一区二区| 国产永久视频网站| 精品亚洲成国产av| 国精品久久久久久国模美| 这个男人来自地球电影免费观看 | 在线观看人妻少妇| av国产精品久久久久影院| 午夜日本视频在线| 亚洲人成网站高清观看| 少妇猛男粗大的猛烈进出视频| 免费人妻精品一区二区三区视频| 亚洲三级黄色毛片| 久久午夜福利片| 日本色播在线视频| 久久毛片免费看一区二区三区| 国语对白做爰xxxⅹ性视频网站| 五月伊人婷婷丁香| 欧美高清成人免费视频www| 中文字幕精品免费在线观看视频 |