• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    2016-05-16 02:41:56WANGJinweiZOUZojin
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:冰體冰區(qū)破冰船

    WANG Jin-wei,ZOU Zo-jin,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical Simulation of Ship Icebreaking in Level Ice based on Nonlinear Finite Element Method

    WANG Jian-weia,ZOU Zao-jiana,b

    (a.School of Naval Architecture,Ocean and Civil Engineering;b.State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Numerical simulation of an icebreaker advancing in level ice is carried out by using the nonlinear finite element method.An ice material model is verified by comparing the simulation results with experimental data.Using the ice material model,the dynamic response of the ship during icebreaking in level ice of different thicknesses at different speeds is numerically studied.The deformations of level ice,the magnitudes of ice force,the changes of ice deformation energy and kinetic energy during the icebreaking process are presented,and the influences of the ship speed and level ice thickness on the icebreaking resistance are analyzed.The results have a certain reference value for analyzing the dynamic response of an icebreaker in level ice.

    icebreaker;level ice;icebreaking resistance;nonlinear FEM; numerical simulation

    0 Introduction

    Due to the climate change,the melting speed of ice in Arctic region has been accelerating,which makes the marine transportation in Arctic region possible.In these waters,merchant ships need to clear channel with the help of icebreakers to ensure a successful navigation. Besides,since the global economy is developing rapidly,the resource requirements have been increasing.As the land resources being exhausted,the exploitation of energy in ocean and polar becomes urgent,and the scientific investigation of polar energy is only possible by means of icebreaking.Nowadays,a new generation of icebreaker is under researching and developing all over the world;to accurately predict the dynamic performance of an icebreaker in level ice is of particular importance for icebreaker design,and relevant researches have a practical significance.

    In recent years,some researchers have studied icebreaking resistance of polar ships.Wang et al[1]used two commercial finite element codes(ANSYS and LS-DYNA)to present numerical results of resistance prediction for an icebreaker in level ice.Park et al[2]applied three methods including empirical analysis,numerical analysis and physical model experiments toobtain icebreaking resistance of three ore carriers that have different hull forms under the same ship speed and ice thickness.Considering the coupling between continuous ice forces and ship motions,Su et al[3]used a numerical method to simulate ship maneuvers in level ice and solved the equation of three degree-of-freedom rigid body surge,sway and yaw motions.Some other researchers have studied the issues related to structural response of ship-ice collision.Wang et al[4]developed a collision model for nonlinear dynamic finite element analysis on a LNG ship and crushable ice using commercial code DYTRAN.Lee et al[5]established the finite element model of Arctic LNG carriers and predicted impact loadings from ship and iceberg collision. Liu[6]studied the numerical model of ice materials and applied it to dynamic analysis of shipiceberg collision.Kim et al[7]used finite element model and scale model test to investigate the resistance performance of an icebreaking cargo vessel in pack ice conditions.Yang et al[8]adopted the method of fluid-structure interaction and established the nonlinear finite element model of collision between ship and ocean platform by taking sea ice as medium.They simulated the collision process numerically,compared the results of collision under conditions with and without sea ice medium and analyzed the influence of the range of sea ice on platform. Zhang et al[9-10]performed a numerical simulation of ship-ice collision by using a nonlinear finite element method.

    This paper conducts a numerical simulation study on the dynamic response of an icebreaker in level ice by using the commercial software LS-DYNA based on the nonlinear finite element method.The reliability of the proposed ice material model is firstly verified;the 3D finite element models of ship and level ice are established.The deformation of level ice,the ice force and the ice deformation energy and kinetic energy during the icebreaking process are predicted by numerical simulation,and the influences of ship speed and ice thickness on the icebreaking resistance are analyzed.

    1 Mathematical model

    In the finite element method,the motion equation of ship in level ice can be described as

    where M is the mass matrix,C is the damping matrix,K is the stiffness matrix,x is the displacement vector,and Fextis the external load vector.

    It is assumed that the acceleration remains the same in one time step.The explicit central difference method is used to discretize the motion equation,and the solving formula can be derived as

    2 Numerical modeling of ice material

    Tab.1 Ice model characteristics

    In order to verify the ice material,the reaction generated from the extrusion on ice cone by steel plate is calculated.The finite element model is shown in Fig.1.The fixed boundary condition(fixed B.C.)is applied at ice cone bottom to implement the conditions attached to the testing machine.A steel plate attached on the top of the testing machine is moving downwards at a specified velocity v.Two body contact simulation is performed.The material property of the steel plate is taken as a rigid body,because the plate is thick enough to be considered as rigid.The characteristics of the steel material model are shown in Tab.2.

    Fig.1 FE model of ice cone and steel plate

    Tab.2 Steel material model characteristics

    The numerical simulation model developed in this study is verified by comparing the results of numerical simulation with the test results of Ref.[11].An ice cone with 10cm diameter and 120°coning angle is chosen for the test.The main focus of developing a numerical simulation model is to create a model that can be directly applied to a diverse condition such asdifferent strain-rate or ice size.In other words,the aim is to create a numerical simulation model that can be used in multiple conditions without any modification of ice material properties or simulation conditions.The application of the ice material model under different strainrate conditions are investigated firstly,setting steel plate speed v=1 mm/s and 100 mm/s respectively.The comparison of the ice force-displacement curves at different steel plate speeds is shown in Fig.2.

    Fig.2 Comparison of ice force-displacement curves at different steel plate speeds,case 1

    From Fig.2 it can be seen that the numerical and experimental results agree well to a certain extent and the error at low speed is smaller than that at high speed.No matter at low speed or at high speed,the calculated results exhibit the correct growth trend of ice force with displacement.The ice force fluctuates at some displacement,because that as the steel plate is pressing the ice body,the phenomenon of broken occurs,causing immediately the drastic changes of ice force.

    In order to verify the reliability of the ice material model further,it is applied to a larger ice cone with 25 cm diameter and 130°coning angle.The numerical and experimental results of ice force-displacement curves at the steel plate speed 1 mm/s and 100 mm/s are compared in Fig.3.From this figure it can be seen that the growth trends of the calculated and experimental ice forces agree well,and they both show the fluctuation generated from the ice body’s fracture.The higher the steel plate speed is,the larger the fluctuation amplitude is.These results indicate that the ice material model selected in this paper can be used for numerical sim-ulation of the collisions between ship and ice.

    Fig.3 Comparison of ice force-displacement curves at different steel plate speeds,case 2

    3 Numerical simulation of ship in level ice

    3.1 3D finite element model of an icebreaker

    An icebreaker is selected in this paper,whose particulars are listed in Tab.3.

    For the real ship,high-strength steel is used in ship bow,whose deformation can be ignored during the icebreaking process.Therefore,in order to simplify the model,the hull plate is regarded as rigid and the internal structure is ignored in the numerical simulation.For the motion states of the ship, regardless of the influence on ship motion in icebreaking process,the ship is set to move forward at a constant speed,and the other five degrees of freedom of motionare constrained.

    3.2 3D finite element model of level ice

    During the icebreaking process,the mechanical properties of level ice are internal factors which affect fracture of level ice and are the basis of study on icebreaking resistance. During the process of ship-ice collision,ice will be broken when the ice stress reaches a certain value.The interaction between ice and ship will show different damage forms,which immediately influence the ice load on ship.In general,there are four forms of ice failure,including crushing failure,buckling failure,shear failure and bending failure[12].

    For establishing 3D finite element model of level ice,solid element is used considering the ice thickness and generation as well as extension of cracks.There are two methods to simulate the generation and extension of cracks.One is that cracks are generated in the structure by element failure;the other one is that cracks are generated by defining the failure of constraint nodes.The first method requires that there is a dense grid in cracks of the model;the shortcomings of the second method is that the process of establishing the model is relatively complex[13].In this paper,the first method is chosen to establish the model.When the stress and strain of the finite element model exceed a certain value,the element will be of failure, and the element will be deleted from the model.Cracks occur when numerous elements are deleted from a path.That is why the grids of level ice should be divided densely.In this paper,the size of the solid element is 125 mm×125 mm×125 mm.

    The icebreaking resistance when the ship sails in infinite level ice is studied.Different from floating ice,infinite level ice can be regarded as fixed.Limited by the conditions of numerical simulation,size of the level ice cannot be established infinitely.In this paper,the length of the level ice along the longitudinal direction(X-direction)is taken as 40 m,and the length perpendicular to the longitudinal direction(Y-direction)is 80 m.The boundary that collides with the ship is the free end.The influence of the collision area on far-field of the level ice is so small that it can be neglected;hence the far-field boundary is simplified as rigid fixed.

    Tab.3 Ship characteristics

    3.3 Application of fluid-structure interaction

    In the icebreaking process,the buoyancy and gravity of ice need to be considered.Gravity is loaded through body force and the gravitational acceleration is 9.81 N/kg.The load of buoyancy is realized by utilizing fluid-structure interaction.

    There are three basic algorithms about 3D finite element in LS-DYNA.They are Lagrange, Euler and ALE(Arbitrary Lagrange-Euler)formulations.Solid structures usually adopt Lagrange formulation,whose element is attached to the material and is deformed with the change of the structure’s form.As for fluid-structure interaction,the flow of material may result in serious deform of finite element.Thus it may cause the difficulty of numerical simulation and end the operation of the program.Euler formulation can be understood as the fact that two layers of mesh overlap with each other.One layer is fixed in the space and the other one is attached to the material;it flows in the space grid with the material and is achieved through the following two steps:The material grid firstly performs a Lagrange step,and then the state variables of Lagrange elements are reflected in or transported to the fixed space grid.This grid is always fixed and indeformable,just as material flowing in the grid.Like the Euler formulation,in ALE the space grid can be interpreted as two layers of grids overlapping.But it can freely flow in the space.ALE and Euler formulations can overcome the difficulty of numerical simulation caused by serious deforms of element and implement the dynamic analysis of fluid-structure interaction.

    This paper simulates the dynamic process of fluid-structure interaction with LS-DYNA and ALE formulation.Through the load of gravity on water and air,pressure gradient is generated in the vertical direction and the buoyancy on the ice is simulated.

    Fluid materials in the numerical model include water and air.In the finite element model,these two materials have the same nodes.The length and width of water and air are the same as those of level ice.However,the height of water is 4 times of the draft and the height of air is 1.5 times of the draft.

    Both of water and air adopt null material model to simulate the materials having fluid behaviors and linear polynomial state equation,whose pressure is calculated as

    where ci(i=0,1,2,…6)are the coefficients;E is the internal energy of unit volume, V is the relative volume.

    3.4 Ship-ice contact model

    There are a lot of contact models in LS-DYNA,including node-to-surface contact,surface-to-surface contact and single-surface contact.Considering the failure of ice material and the penetration phenomenon generated during the collision,this paper adopts eroding-surfaceto-surface contact model.This model is very useful and is generally applied in the contacts of various shapes and large contact areas.

    4 Results and analysis of numerical simulation

    As shown in Fig.4,the water plane of the level ice is consistent with that of the ship.In the simulation,the ship speed is 2 m/s.The distance between the ship and the level ice is 0.1 m before simulation and simulation time is 8.0 s.

    Fig.4 FE model of ship icebreaking in level ice

    4.1 Results of numerical simulation of icebreaking process

    The deformations of the level ice at 2.0 s,4.0 s,6.0 s and 8.0 s are shown in Fig.5.It can be seen in Fig.5 that the deformation mainly occurs in the area of ice contacting and colliding with the icebreaker.After colliding with the ship,the ice failure occurs when the failure pressure is reached.The cracks are generated by elements deleted for failure.During the icebreaking process,because of the brittleness of the ice material,some ices are separated from the level ice and flow in the water.

    Fig.5 Deformation of the level ice

    Fig.6 Time history of ice force on ship in Y direction

    Fig.7 Time history of ice force on ship in Z direction

    The time histories of ice force on the ship in Y direction and Z direction are shown in Fig.6 and Fig.7,respectively.From these figures it can be seen that during the whole period, the ice force presents highly nonlinear characteristics and changes violently with time,with a general rising trend.From the analysis of the time histories of ice force in Fig.6 and Fig.7 and the deformation of level ice in Fig.5,it is known that the unloading phenomenon is generated by ice failure as the ship moves in the level ice.

    4.2 Influence of ship speed

    In order to study the influence of ship speed on the icebreaking resistance,numerical simulation is carried out for the ship sailing in the level ice of thickness 0.5 m at the speed 2 m/s,3 m/s and 4 m/s.

    The time histories of the icebreaking resistance at different ship speeds are shown in Fig.8.It can be seen that the ship speed has a significant influence on the icebreaking resistance and the amplitude and peak value of icebreaking resistance increase with the ship speed. The common point of the time histories at different ship speeds is that as the icebreaking resistance rises,it will suddenly drop.It shows an unloading phenomenon during the icebreaking process because of the ice element failure.

    Fig.8 Time histories of the icebreaking resistance at different ship speeds

    The time histories of the level ice deformation energy and kinetic energy at different ship speeds are shown in Fig.9.It can be seen that the level ice deformation energy and kinetic energy increase with the ship speed.

    Fig.9 Time histories of level ice deformation energy and kinetic energy at different ship speeds

    4.3 Influence of ice thickness

    In order to study the influence of ice thickness on the icebreaking resistance,numerical simulation is carried out for the ship sailing at the speed of 2 m/s in the level ice of thickness 0.25 m,0.50 m,0.75 m.The time histories of icebreaking resistance under different ice thicknesses are shown in Fig.10.It can be seen that the peak value of icebreaking resistance increases with the ice thickness.Besides,the time histories show the different degrees of fluctuation for the level ice with different thicknesses.It also shows the unloading phenomenon in icebreaking resistance during the icebreaking process because of the ice element failure.

    Fig.10 Time histories of the icebreaking resistance under different ice thicknesses

    The time histories of level ice deformation energy and kinetic energy under different ice thicknesses are shown in Fig.11.It can be seen that the level ice deformation energy and kinetic energy increase with the ice thicknesses.

    Fig.11 Time histories of level ice deformation energy and kinetic energy under different ice thicknesses

    5 Conclusions

    This paper carries out a numerical simulation study on the dynamic response of an icebreaker during icebreaking process in level ice by using finite element method.The ice material model used in the numerical simulation is firstly verified.Systematic numerical simulationis are then carried out for the icebreaker at different forward speeds in the level ice of different thicknesses.The following conclusions can be drawn from this study:

    (1)The ice material model proposed in this paper is used in numerical simulation underdifferent conditions.The validity of the model is verified by comparing the simulation results with those of experiment.It is shown that the material model can be applied in numerical simulation of icebreaking process;

    (2)Keeping the ice thickness unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ship speed;

    (3)Keeping the ship speed unchanged,the peak values of ice force,level ice deformation energy and kinetic energy increase with ice thicknesses;

    The results of this study can provide a certain reference for the design of icebreakers to be served as icebreaking in level ice.

    [1]Wang J,Derradji-Aouat A.Numerical prediction for resistance of Canadian icebreaker CCGS Terry Fox in level ice[C]// ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:9-15.

    [2]Park K D,Chung Y K,Jang Y S,et al.Development of hull forms for a 190,000 DWT icebreaking ore carrier[C]// OMAE2011,30th International Conference on Ocean,Offshore and Arctic Engineering.Rotterdam,the Netherlands, 2011,1:949-955.

    [3]Su B,Riska K,Moan T.A numerical method for the prediction of ship performance in level ice[J].Cold Regions Science and Technology,2010,60(3):177-188.

    [4]Wang B,Yu H C,Basu R.Ship and ice collision modeling and strength evaluation of LNG ship structure[C]//OMAE2008, 27th International Conference on Offshore Mechanics and Arctic Engineering.Estoril,Portugal,2008,3:911-918.

    [5]Lee S G,Lee J S,Baek Y H,et al.Structural safety assessment in membrane-type CCS in LNGC under iceberg collisions [C]//ICSOT2009,International Conference on Ship and Offshore Technology.Busan,Korea,2009:69-81.

    [6]Liu Z.Analytical and numerical analysis of iceberg collisions with ship structures[D].Trondheim:Norwegian University of Science and Technology,2011.

    [7]Kim M C,Lee S K,Lee W J,et al.Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions[J].International Journal of Naval Architecture and Ocean Engineering,2013, 5(1):116-131.

    [8]Yang L,Ma J.Numerical simulation analysis for the collision between offshore platform under the sea ice medium[J].China Offshore Platform,2008,23(2):29-33.(in Chinese)

    [9]Zhang J,Wan Z Q,Chen C.Research on structure dynamic response of bulbous bow in ship-ice collision load[J].Journal of Ship Mechanics,2014,18(1):106-114.(in Chinese)

    [10]Zhang J,Zhang M R,Wan Z Q,et al.Research on ice material model applied in numerical simulation of ship structure response under iceberg Collision[J].Shipbuilding of China,2013(4):100-108.(in Chinese)

    [11]Kim H.Simulation of compressive‘cone-shaped’ice specimen experiments using LS-DYNA[C]//13th International LSDYNA Users Conference.Detroit,America,2014.

    [12]Wei W D,Ning J G.Critical load between sea ice and sea structure[J].Journal of Glaciology and Geocryology,2003,25 (3):351-354.

    [13]Bai Z J.Theoretical basis and example analysis of LS-DYNA3D[M].Beijing:Science Press,2005.(in Chinese)

    基于非線性有限元法的船舶冰區(qū)破冰數(shù)值模擬

    王健偉a,鄒早建a,b

    (上海交通大學(xué)a.船舶海洋與建筑工程學(xué)院;b.海洋工程國家重點實驗室,上海200240)

    應(yīng)用非線性有限元法進行了破冰船冰區(qū)破冰數(shù)值模擬。通過比較數(shù)值模擬結(jié)果和試驗結(jié)果,對冰體材料模型進行了驗證;采用該冰體材料模型,對破冰船以不同航速在不同厚度的層冰中破冰航行時的動態(tài)響應(yīng)進行了數(shù)值研究,給出了破冰過程中層冰的變形、冰力的大小以及冰的變形能和動能變化,分析了船速、冰層厚度對破冰阻力的影響。該研究結(jié)果對分析破冰船在層冰中破冰時的動態(tài)響應(yīng)特性具有一定的參考價值。

    破冰船;層冰;破冰阻力;非線性有限元法;數(shù)值模擬

    U661.4

    A

    王健偉(1989-),男,上海交通大學(xué)碩士;鄒早建(1956-),男,上海交通大學(xué)教授,博士生導(dǎo)師。

    U661.4 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.008

    1007-7294(2016)12-1584-11

    Received date:2016-08-24

    Biography:WANG Jian-wei(1989-),male,master of Shanghai Jiao Tong University,E-mail:wangjianweime@163.com; ZOU Zao-jian(1956-),professor/tutor of Shanghai Jiao Tong University,E-mail:zjzou@sjtu.edu.cn.

    猜你喜歡
    冰體冰區(qū)破冰船
    “怪獸號”破冰船
    照亮回家的路
    我國高校首艘破冰船“中山大學(xué)極地”號成功開展冰區(qū)試航
    珠江水運(2023年3期)2023-03-04 16:28:28
    重覆冰區(qū)220kV雙回路窄基鋼管塔設(shè)計及試驗研究
    吉林電力(2022年1期)2022-11-10 09:20:48
    彈體高速侵徹冰體研究
    冰區(qū)船舶壓載艙防凍方案研究
    能源工程(2022年2期)2022-05-23 13:51:44
    高速彈體侵徹冰材料過程數(shù)值模擬研究
    世界最大破冰船
    冰體質(zhì)量和撞擊角度對船首結(jié)構(gòu)碰撞性能的影響
    基于船-水-冰耦合技術(shù)的撞擊參數(shù)對船冰碰撞性能的影響
    亚洲精品久久久久久婷婷小说 | 国产午夜精品一二区理论片| 欧美性猛交╳xxx乱大交人| 97超视频在线观看视频| 国产精品一区二区三区四区久久| 搡女人真爽免费视频火全软件| 汤姆久久久久久久影院中文字幕 | 成人性生交大片免费视频hd| 美女xxoo啪啪120秒动态图| 国产午夜精品久久久久久一区二区三区| 国产精品99久久久久久久久| 国产一区有黄有色的免费视频 | 亚洲精品日韩av片在线观看| 天天一区二区日本电影三级| 成人美女网站在线观看视频| 99久国产av精品国产电影| 色综合站精品国产| 久久精品久久久久久噜噜老黄 | 亚洲av一区综合| 亚洲美女视频黄频| 男人舔奶头视频| 久久精品91蜜桃| 伊人久久精品亚洲午夜| 女的被弄到高潮叫床怎么办| 男人的好看免费观看在线视频| 亚洲18禁久久av| 日本与韩国留学比较| 两个人的视频大全免费| 国产伦在线观看视频一区| 国产黄色视频一区二区在线观看 | videos熟女内射| 一本久久精品| 精品国产三级普通话版| av天堂中文字幕网| 青春草视频在线免费观看| 成人欧美大片| av在线亚洲专区| 一个人看视频在线观看www免费| 在线播放无遮挡| 女人久久www免费人成看片 | 久久人人爽人人爽人人片va| 在线免费观看的www视频| 亚洲欧洲国产日韩| 汤姆久久久久久久影院中文字幕 | 搞女人的毛片| 免费av观看视频| a级一级毛片免费在线观看| 国产成人一区二区在线| 亚洲中文字幕一区二区三区有码在线看| 国内精品美女久久久久久| 欧美bdsm另类| 国产男人的电影天堂91| 日韩强制内射视频| av国产久精品久网站免费入址| 最近2019中文字幕mv第一页| 亚洲国产精品久久男人天堂| 免费一级毛片在线播放高清视频| 国产探花在线观看一区二区| 97超碰精品成人国产| 国产老妇女一区| 色网站视频免费| 日韩精品青青久久久久久| 久久欧美精品欧美久久欧美| 精品一区二区免费观看| 免费播放大片免费观看视频在线观看 | 成人亚洲精品av一区二区| 亚洲不卡免费看| 国产精品人妻久久久久久| 小说图片视频综合网站| 神马国产精品三级电影在线观看| 七月丁香在线播放| 亚洲av电影在线观看一区二区三区 | 日韩一区二区视频免费看| 欧美日本视频| 亚洲图色成人| 亚洲国产精品久久男人天堂| 尾随美女入室| 亚洲国产高清在线一区二区三| 波多野结衣高清无吗| 亚洲精品日韩av片在线观看| 亚洲国产精品成人综合色| 国产精品久久久久久久久免| 国产精品.久久久| 日本wwww免费看| 好男人视频免费观看在线| 尤物成人国产欧美一区二区三区| 夜夜看夜夜爽夜夜摸| av又黄又爽大尺度在线免费看 | 国语自产精品视频在线第100页| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| 乱码一卡2卡4卡精品| 国产精品一区二区性色av| 亚洲内射少妇av| 乱系列少妇在线播放| 亚洲av中文字字幕乱码综合| 91av网一区二区| 一二三四中文在线观看免费高清| 国产久久久一区二区三区| 一级黄色大片毛片| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清专用| 中文字幕av在线有码专区| 日本五十路高清| 校园人妻丝袜中文字幕| 最近最新中文字幕大全电影3| 国产免费福利视频在线观看| 国产成年人精品一区二区| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 国产综合懂色| 免费黄色在线免费观看| 久久精品夜色国产| 亚洲人成网站在线播| 国产精品不卡视频一区二区| 成人午夜精彩视频在线观看| 好男人视频免费观看在线| 一个人观看的视频www高清免费观看| 51国产日韩欧美| 国产成人a区在线观看| 九九在线视频观看精品| 亚州av有码| 欧美激情在线99| 欧美成人精品欧美一级黄| kizo精华| 亚洲国产精品sss在线观看| 国产精品爽爽va在线观看网站| 人妻少妇偷人精品九色| 中文在线观看免费www的网站| 看免费成人av毛片| 男的添女的下面高潮视频| 久久久久久国产a免费观看| 日韩 亚洲 欧美在线| 成人一区二区视频在线观看| 午夜福利高清视频| 欧美一区二区国产精品久久精品| 男插女下体视频免费在线播放| 亚洲在线自拍视频| 寂寞人妻少妇视频99o| 日韩大片免费观看网站 | 亚洲欧美日韩高清专用| 高清毛片免费看| 人人妻人人看人人澡| 亚洲精品亚洲一区二区| 久久久久久久午夜电影| 青青草视频在线视频观看| 男人的好看免费观看在线视频| 又爽又黄无遮挡网站| 久久精品国产自在天天线| 少妇的逼好多水| 男女视频在线观看网站免费| 麻豆精品久久久久久蜜桃| 亚洲人成网站高清观看| 国产白丝娇喘喷水9色精品| av播播在线观看一区| 一级二级三级毛片免费看| 日韩成人av中文字幕在线观看| 亚洲欧美清纯卡通| 女人被狂操c到高潮| 久久这里有精品视频免费| 成年女人看的毛片在线观看| 久久久久久伊人网av| 欧美激情在线99| 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 亚洲欧美成人综合另类久久久 | 十八禁国产超污无遮挡网站| 国产白丝娇喘喷水9色精品| 午夜a级毛片| 久久久久久久午夜电影| 亚洲精品国产av成人精品| 中文字幕免费在线视频6| 搞女人的毛片| 日韩欧美精品v在线| 久久久精品欧美日韩精品| 一级黄片播放器| 一级爰片在线观看| 91在线精品国自产拍蜜月| 高清av免费在线| av视频在线观看入口| 国内精品宾馆在线| 国产色爽女视频免费观看| 色网站视频免费| 亚洲怡红院男人天堂| 91精品伊人久久大香线蕉| 99热这里只有精品一区| 日本黄大片高清| 99九九线精品视频在线观看视频| 精品久久久噜噜| av播播在线观看一区| 一区二区三区乱码不卡18| 人人妻人人看人人澡| 国产精品av视频在线免费观看| 熟女人妻精品中文字幕| 亚洲成人av在线免费| 如何舔出高潮| 色综合色国产| 乱人视频在线观看| 精品久久久噜噜| 亚洲欧美日韩无卡精品| 亚洲欧美一区二区三区国产| 女人久久www免费人成看片 | 日韩视频在线欧美| 久久久成人免费电影| 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 免费不卡的大黄色大毛片视频在线观看 | 一本久久精品| 国产毛片a区久久久久| АⅤ资源中文在线天堂| 日本三级黄在线观看| 国产三级中文精品| 国产精品嫩草影院av在线观看| 欧美日本视频| 哪个播放器可以免费观看大片| 嫩草影院入口| 国产美女午夜福利| 国产一区二区在线av高清观看| a级毛片免费高清观看在线播放| 国语对白做爰xxxⅹ性视频网站| 国产探花在线观看一区二区| 2021天堂中文幕一二区在线观| 狠狠狠狠99中文字幕| 国产 一区 欧美 日韩| 天堂中文最新版在线下载 | 日韩 亚洲 欧美在线| 小蜜桃在线观看免费完整版高清| 日韩欧美精品v在线| 日韩欧美精品免费久久| 国产精品野战在线观看| 精品国产一区二区三区久久久樱花 | 内射极品少妇av片p| 国产精品av视频在线免费观看| 一区二区三区乱码不卡18| 亚洲三级黄色毛片| 欧美不卡视频在线免费观看| 午夜福利高清视频| 亚洲内射少妇av| 国产淫片久久久久久久久| 美女被艹到高潮喷水动态| 久久久久久九九精品二区国产| 欧美一区二区国产精品久久精品| 精品无人区乱码1区二区| 亚洲性久久影院| av国产免费在线观看| 亚洲最大成人手机在线| 三级经典国产精品| 国产黄片视频在线免费观看| 国产亚洲精品av在线| 爱豆传媒免费全集在线观看| 亚洲人成网站在线播| 午夜福利在线在线| av女优亚洲男人天堂| h日本视频在线播放| 亚洲精品国产成人久久av| 中文在线观看免费www的网站| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 国产极品精品免费视频能看的| 国产高清有码在线观看视频| 国产午夜精品论理片| АⅤ资源中文在线天堂| 一级爰片在线观看| 美女黄网站色视频| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 男的添女的下面高潮视频| 国产精品久久视频播放| 精品酒店卫生间| 亚洲欧洲日产国产| 成人综合一区亚洲| 日韩三级伦理在线观看| 老女人水多毛片| 免费观看a级毛片全部| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 九草在线视频观看| 亚洲av一区综合| 成人欧美大片| 国产成人福利小说| 欧美97在线视频| 久久99热这里只有精品18| 免费看av在线观看网站| 国产精品福利在线免费观看| 免费在线观看成人毛片| 在线观看av片永久免费下载| 亚洲国产色片| 国产精品一区二区性色av| 一边摸一边抽搐一进一小说| 在线观看66精品国产| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 我要看日韩黄色一级片| 免费观看精品视频网站| 欧美bdsm另类| 1024手机看黄色片| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 国产精品一及| 国产黄色视频一区二区在线观看 | 一边亲一边摸免费视频| 狂野欧美白嫩少妇大欣赏| 不卡视频在线观看欧美| 久久99热这里只有精品18| 久久久国产成人免费| 一个人看视频在线观看www免费| 在线免费观看的www视频| 亚洲欧美精品综合久久99| 成人毛片60女人毛片免费| 午夜老司机福利剧场| 尤物成人国产欧美一区二区三区| 人妻制服诱惑在线中文字幕| 直男gayav资源| 成人高潮视频无遮挡免费网站| 精品一区二区免费观看| 老司机影院成人| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久久久久电影网 | 少妇熟女aⅴ在线视频| 免费播放大片免费观看视频在线观看 | 日本欧美国产在线视频| av在线亚洲专区| 九九热线精品视视频播放| 久久精品熟女亚洲av麻豆精品 | 久久综合国产亚洲精品| 国产亚洲精品av在线| 久久久精品94久久精品| 国产成人午夜福利电影在线观看| 男女国产视频网站| 97超碰精品成人国产| 精品久久久久久久久av| 亚洲丝袜综合中文字幕| 97在线视频观看| 可以在线观看毛片的网站| 又爽又黄a免费视频| 欧美bdsm另类| 亚洲图色成人| 国产精品久久久久久精品电影| 蜜桃久久精品国产亚洲av| 亚洲精品久久久久久婷婷小说 | 国产黄片美女视频| 99久久无色码亚洲精品果冻| 欧美最新免费一区二区三区| 国产精品久久视频播放| 高清午夜精品一区二区三区| 国产亚洲av嫩草精品影院| 亚洲中文字幕日韩| 日韩亚洲欧美综合| 午夜福利网站1000一区二区三区| 久久久国产成人免费| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 99视频精品全部免费 在线| 久久6这里有精品| 欧美激情久久久久久爽电影| 美女内射精品一级片tv| 美女脱内裤让男人舔精品视频| 国模一区二区三区四区视频| 日本黄色视频三级网站网址| 亚洲欧美日韩高清专用| 久久精品人妻少妇| 青春草国产在线视频| 国产三级中文精品| 国产69精品久久久久777片| 久久99精品国语久久久| 女人被狂操c到高潮| 国产一区二区三区av在线| 又爽又黄无遮挡网站| 精品人妻视频免费看| 一级av片app| 国产 一区精品| 99久国产av精品| 深夜a级毛片| 又爽又黄无遮挡网站| 少妇人妻一区二区三区视频| 久久草成人影院| 3wmmmm亚洲av在线观看| 亚洲国产精品国产精品| av免费在线看不卡| 精品久久久噜噜| 99在线人妻在线中文字幕| 成人综合一区亚洲| 九九热线精品视视频播放| 97超碰精品成人国产| 偷拍熟女少妇极品色| 国产探花极品一区二区| 亚洲aⅴ乱码一区二区在线播放| 少妇高潮的动态图| 午夜福利在线观看吧| 高清午夜精品一区二区三区| 简卡轻食公司| 蜜臀久久99精品久久宅男| 99热这里只有是精品在线观看| 2021天堂中文幕一二区在线观| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 99久久人妻综合| 99热网站在线观看| 联通29元200g的流量卡| 久久久精品欧美日韩精品| av在线亚洲专区| 日本爱情动作片www.在线观看| 国产精品99久久久久久久久| 国产精品久久久久久av不卡| 精品国产一区二区三区久久久樱花 | 国产高清三级在线| 99在线人妻在线中文字幕| 欧美变态另类bdsm刘玥| 天美传媒精品一区二区| 久久久久久久久久久免费av| 性色avwww在线观看| 国产免费福利视频在线观看| 精品无人区乱码1区二区| 日韩欧美精品v在线| 中文字幕免费在线视频6| 国产成人91sexporn| 十八禁国产超污无遮挡网站| 色综合站精品国产| 国产探花极品一区二区| 日韩高清综合在线| 两个人的视频大全免费| 国产亚洲一区二区精品| 最新中文字幕久久久久| 99热这里只有是精品50| 九九热线精品视视频播放| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| 99视频精品全部免费 在线| 欧美色视频一区免费| 神马国产精品三级电影在线观看| 特级一级黄色大片| 国产av不卡久久| 亚洲av中文字字幕乱码综合| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看| 亚洲欧美清纯卡通| 成人亚洲欧美一区二区av| 我要搜黄色片| 国产精品一区二区在线观看99 | 舔av片在线| 内射极品少妇av片p| 欧美成人a在线观看| 插逼视频在线观看| 成人av在线播放网站| 2021天堂中文幕一二区在线观| 18禁动态无遮挡网站| 九九久久精品国产亚洲av麻豆| 国产高清三级在线| a级毛片免费高清观看在线播放| 久久久久久久久久成人| 嫩草影院入口| 欧美精品一区二区大全| 三级国产精品片| 3wmmmm亚洲av在线观看| 国产精品麻豆人妻色哟哟久久 | 麻豆成人午夜福利视频| 中文欧美无线码| 亚洲不卡免费看| 亚洲自偷自拍三级| 久久亚洲国产成人精品v| 69av精品久久久久久| 最近中文字幕2019免费版| 国产精品久久久久久精品电影小说 | 春色校园在线视频观看| 国产乱人视频| 99热全是精品| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说 | 特级一级黄色大片| 最近视频中文字幕2019在线8| 秋霞伦理黄片| 亚洲精品乱久久久久久| videos熟女内射| 久久久久久伊人网av| 直男gayav资源| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久亚洲| 成年免费大片在线观看| 91午夜精品亚洲一区二区三区| 乱系列少妇在线播放| 三级国产精品欧美在线观看| 久久久久九九精品影院| 美女脱内裤让男人舔精品视频| 99国产精品一区二区蜜桃av| 内射极品少妇av片p| 亚洲av一区综合| 国产精品99久久久久久久久| 18禁在线播放成人免费| 中文资源天堂在线| 日韩强制内射视频| 久久久久久久久中文| 一夜夜www| 全区人妻精品视频| 午夜激情欧美在线| 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 亚洲欧美成人综合另类久久久 | 18禁在线播放成人免费| 国产老妇女一区| 少妇人妻精品综合一区二区| 久久这里只有精品中国| 成人午夜精彩视频在线观看| 免费搜索国产男女视频| 寂寞人妻少妇视频99o| 国产69精品久久久久777片| 美女国产视频在线观看| 中文字幕av在线有码专区| 亚洲欧美日韩卡通动漫| 欧美精品一区二区大全| 成人亚洲精品av一区二区| 国产男人的电影天堂91| 日韩国内少妇激情av| 禁无遮挡网站| 国产三级在线视频| av黄色大香蕉| 91久久精品国产一区二区三区| 看十八女毛片水多多多| 国产黄色视频一区二区在线观看 | 中文字幕久久专区| 久久99热这里只频精品6学生 | 性插视频无遮挡在线免费观看| 中文天堂在线官网| 午夜精品国产一区二区电影 | 久久久久久九九精品二区国产| 亚洲欧美精品综合久久99| 亚洲国产欧美在线一区| 国产免费男女视频| 在现免费观看毛片| 日产精品乱码卡一卡2卡三| 国产一级毛片在线| 国产精品人妻久久久影院| 欧美激情国产日韩精品一区| 午夜精品在线福利| av国产免费在线观看| 啦啦啦观看免费观看视频高清| 一个人免费在线观看电影| av.在线天堂| 国产69精品久久久久777片| 在线免费观看的www视频| 国产伦在线观看视频一区| 国产在视频线精品| 村上凉子中文字幕在线| 丝袜喷水一区| 午夜亚洲福利在线播放| 寂寞人妻少妇视频99o| 久久草成人影院| 国产成人精品婷婷| 国产精品乱码一区二三区的特点| 亚洲国产精品成人久久小说| 国内揄拍国产精品人妻在线| a级一级毛片免费在线观看| av卡一久久| 男女啪啪激烈高潮av片| 国产在线一区二区三区精 | 啦啦啦观看免费观看视频高清| av在线播放精品| 欧美精品一区二区大全| 亚洲精品乱码久久久v下载方式| a级毛片免费高清观看在线播放| av天堂中文字幕网| 久久99热6这里只有精品| 免费播放大片免费观看视频在线观看 | 美女被艹到高潮喷水动态| 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看 | 一级毛片我不卡| 亚洲av中文av极速乱| 精品99又大又爽又粗少妇毛片| 免费电影在线观看免费观看| 看黄色毛片网站| 免费观看性生交大片5| 波野结衣二区三区在线| 国产老妇伦熟女老妇高清| 欧美精品一区二区大全| 中文字幕精品亚洲无线码一区| 男女下面进入的视频免费午夜| 啦啦啦观看免费观看视频高清| 免费大片18禁| 黄色日韩在线| 午夜爱爱视频在线播放| 亚洲精品日韩av片在线观看| 男女那种视频在线观看| 亚洲国产欧美人成| 99热精品在线国产| 色哟哟·www| 欧美变态另类bdsm刘玥| 精品久久久久久久久av| 亚洲在久久综合| 一级二级三级毛片免费看| h日本视频在线播放| av女优亚洲男人天堂| 国产极品天堂在线| 精品久久久久久久久久久久久| 97在线视频观看| 人人妻人人澡人人爽人人夜夜 | 亚洲欧美日韩卡通动漫| 免费无遮挡裸体视频| 精品欧美国产一区二区三| 哪个播放器可以免费观看大片| 色尼玛亚洲综合影院| 亚洲国产欧美在线一区| 国产伦在线观看视频一区| 精品久久久久久久末码| 午夜福利在线观看免费完整高清在| 成人鲁丝片一二三区免费| 亚洲欧美日韩无卡精品| 久久久久久久亚洲中文字幕| 精品午夜福利在线看| 欧美97在线视频| 久久精品久久精品一区二区三区|