• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    2016-05-16 02:42:02CHENGGuoHELinXURongwu
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:線譜研究所噪聲

    CHENG Guo,HE Lin,XU Rong-wu

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    CHENG Guoa,b,HE Lina,b,XU Rong-wua,b

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Aiming at real-time evaluation of the underwater noise radiated by complex structures,a theoretical model is proposed based on the operational transfer path analysis for signals with line spectra.The number of required sensors is reduced,and the joint application of operational condition classification and this model also improve the accuracy of noise radiation evaluation.This model is verified by numerical simulation and validated by a lake experiment.The results show that the proposed model is simple and effective:the errors of noise radiation evaluation in most frequency bands are less than 2 dB,and the errors at most peak frequencies are less than 2.5 dB.This study may be useful to ship noise evaluation.

    sparse sensors;radiated noise;line spectrum;transfer path

    0 Introduction

    Real-time evaluation of the underwater noise radiated by complex structures,such as ships,is important in theoretical research and engineering applications.The methods of evaluation can be classified into two categories:numerical calculation and experimental measurement.For the same requirement of accuracy,numerical calculation is more time-consuming, so experimental measurement is dominantly adopted in practical applications[1-2].

    A commonly used experimental approach is the model of transfer path analysis(TPA), which can evaluate the radiated noise in real time based on the pre-measured transfer functions of different sound sources and the signals detected by the sensors mounted on the structures[3-4].However,it is often difficult to obtain the transfer functions because actuation inside the structures or disassembly of device is required.Hence the model of operational transfer path analysis(OTPA)was proposed,which only requires to measure the response signals under varied operation conditions before a structural-acoustic transfer matrix can be established if the principle of linear superposition is satisfied[5-6].Compared with the TPA method,the OTPA is simpler and suits for evaluating the noise radiated by complex structures.

    However,the OTPA requires a large number of sensors:the number of sensors on the structure should not be less than the number of sound sources[7].Inside complex structures such as ships,a large number of sources exist,and this requirement is hard to be satisfied.

    Therefore in this paper,a modified line-spectrum model of operational transfer path analysis is proposed to reduce the number of required sensors in ship applications.Firstly,the theoretical basis of the model is introduced.Secondly,an improved method of operational classification is proposed and then simulation is conducted with reconstructed actuating signals. Thirdly,the model is validated in a lake experiment.Lastly,the conclusions of this study are drawn.

    1 Basic theory

    1.1 Operational transfer path analysis

    Assume that there are L numbers of sources,M numbers of reference points and N numbers of observation points in a linear system.The influences of the sources on the reference points and the observation points can be described with the transfer functions hlmand hln,so each response signal at the reference point can be expressed as:

    where Slis the actuating signal of the source of No.l.

    Likewise,each response signal at the observation point can be expressed as:

    For the convenience of discussion,the above relation can be expressed in the matrix form:

    where W is the total number of different operations.Since the source signals cannot be measured directly,they are obtained with Eq.(3):

    Note that to definitely determine the source matrix,the number of reference points M should not be smaller than the number of sources L.Combining Eq.(3)with Eq.(4)yields

    If GW×Ncan be determined via definite number of measurements,then the signalsat observation points under an arbitrary condition of operation can be evaluated in real time based on the signals at the reference points

    In practical evaluation of the noise radiated by ship,owing to the large number of sound sources in the ship,the number of sensors is always smaller than the number of sources,so Eq.(7)is just the optimal approximation under the condition of sparse sensors.

    1.2 Background noise correction

    Background noise is inevitable in practical ship noise tests.The influences of background noise on the results of operational transfer path analysis can be divided into two parts:the error caused by signal coupling and the error caused by the inverse of ill-posed matrix.

    The error caused by signal coupling is introduced during the measurement stage.When the signal-to-noise ratio is deficient in the training or evaluation operating modes,assume that the background noise at the referential points isand the background noise at the observation points isin the training operating modes.If the sound field of the testing environment is time-invariant,thenandhave the same row vectors.

    Eq.(3)can also be expressed as:

    Eqs.(5)and(6)then become:

    Substituting Eqs.(6-10)into Eq.(12)yields

    The error in the inverse of ill-posed matrix is introduced in deriving GM×Nbased on the data in acquired in the training modes.Depending on the normal modes of the system,the dataobtained at the reference points for different training modes may be correlated;however,perfect correlation is impossible in practice owing to the background noise.Consequently,in the singular-value decomposition of matrix RW×M,zero singular value will not appear;instead,random small singular values will appear,becoming large reciprocals in matrix inverse and magnifying the error of measurement.

    Hence regularization is applied to eliminate the ill-posed error.The commonly used methods include the Tikhonov regularization,frequency range truncation,partial optimization,and so on[8].

    It is usually considered that the regularization is inessential when the condition number of the matrix is less than 100;and is necessary when the condition number is more than 1 000. Number 800 is selected as a threshold in this paper.When the condition number is over 800, the regularization is applied.According to the accuracy and computation cost of the methods, the partial optimization is selected[9].Firstly,define a breakpoint with the threshold of the condition number.Than keep the singular values which are before the breakpoint,and revise the singular values which are after the breakpoint with Tikhonov regularization method.The regularization parameter is defined as the singular value at the breakpoint.Illustrated by the case of RW×M,the singular-value decomposition is shown as:

    If the number q( q≤K)and 800dq≤d1≤800dq-1are exist,the partial optimization will be essential for the matrix.The regularization parameter is dqand the element tkis shown as:

    1.3 Generalization for signals with line-spectra

    Most devices in ship,such as pumps and shafts, are operating at one or more frequencies[10].Their vibration signals feature line spectra,and Fig.1 shows such a spectrum directly detected near a typical ship device.

    Reconsider Eq.(4)in the frequency domain.For a signal with frequency f,it can be expressed as

    Fig.1 The acceleration signal of a pump in a ship

    Although a large number of devices exist in aship,only a small number of devices generate noise with characteristic frequency f.In fact, high-resolution analysis of the spectra shows that it is hard to find two devices with identical line spectra,so some elements in SW×L(f)approximate to zero,compared with the other elements.Assume that the number of the devices with characteristic frequency f isand Eq.(14)becomes

    The number of reference points is required to satisfy‘M≥Kmax(f)’,where Kmax(f)is the maximum of K(f)for all characteristics frequencies([f]).In this case,Eq.(7)is not only the optimal approximation under the sparse-sensor condition,but also the exact solution at some characteristic frequencies.

    2 Numerical simulations

    2.1 Problem statement and simulation procedure

    Based on the noise signals of real ship devices,the simulation data are constructed.For the convenience of discussion,assume that there are 3 devices in a ship.The actuating signals caused by these devices are composed of the background noise, white noise(1-1 600 Hz),low-frequency wide-band noise(300-1 000 Hz)and stochastic line-spectrum signals.Fig.2 shows the radiated noise signal when a device operates solely.

    Two well separated reference points are selected at the center of the ship body,and two hydrophones are mounted there to record the sound pressure responses under internal actuation.A hydrophone array is placed 25 m away from the ship for recording the average sound pressure radiation under the excitation of devices inside the ship.For the convenience of discussion,the sampling frequency is set as 4 096 Hz for the signals collected by both hydrophones.

    The operating modes generated in the simulation are shown in Tab.1.The sound pressure data at reference points and the radiated noise in the combination of different operating modes are obtained by superposition of the data when the devices operate individually.In Tab.1,the symbol‘%’means that the device is operating.

    Fig.2 The radiated sound pressure signal of the simulated device 2#

    Tab.1 The simulated devices in different operating modes

    2.2 Simulation result

    The validity of the proposed model is verified first.The transfer matrix is derived with the data of the operating modes from Nos.2 to 4.The radiated noise in the No.1 operating mode is then evaluated based on the derived transfer matrix and the sound pressures data at the reference points in the No.1 operating mode.

    Fig.3 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.2 to 4 operating modes)

    In order to display the adaptability of the evaluation model in narrowband and wideband frequency analysis,the evaluation errors of the radiated noise are assessed in line spectrum and third-octave spectrum.Fig.3(a)shows that at most frequency points,including the characteristic frequency points shown in Fig.2,the errors are less than 3 dB.Only at minor part of the frequency points,the errors are large.The third octave spectrum in Fig.3(b)shows that the evaluation errors are less than 1 dB in mostly frequency bands,except for the band centered at 40 Hz,where larger error is found.

    The transfer matrix is also derived with the data of the operating modes from No.5 to No.7, and based on this transfer matrix,the noise radiated in the No.1 operating mode is also evaluated and the results are shown in Fig.4.

    Fig.4 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.5 to 7 operating modes)

    The noise radiation in the No.1 operating mode evaluated with the latter derived transfer matrix(based on the Nos.5 to 7 operating modes)is more accurate.Fig.4 shows that except for the band centered at 50 Hz,the error is less than 1 dB in each third octave frequency band.The errors at most frequencies are less than 2 dB in the sound pressure spectrum,and the larger errors are still smaller than the errors of the former evaluation results based on the data of the operating modes from Nos.2 to 4.

    The smaller evaluation error is very likely because the Nos.5-7 operating modes are more similar to the No.1 mode,compared with the Nos.2-4 modes,so the error introduced by signal coupling is smaller.Therefore,to reduce the error of noise evaluation in engineering applications,the training operations can be classified first before further calculation.

    3 Experimental validations

    3.1 Experimental setup and procedure

    The proposed model is also validated by experiments conducted in the Thousand Islands Lake.The experiment site is located in an inlet, and the water waves and background noise in the inlet are negligible.Fig.5 shows the model structure used in the experiment.

    The tested structure is a 2.05-m-long cylinder with double-layer shell.The outer shell has 1.78 m diameter,and is 2 mm thick;the diameter of its inner shell is 1.46 m,and the thickness is 8 mm.The shell is supported by four equally spaced annular plates.The shell is airtight with 25-mm-thick stainless steel plates at both ends,and water is filled in the space between the inner and outer shells.In the interior of the inner shell, an 8-mm thick plate is fixed,on which a small air compressor(whose inlet and outlet valves are both open)and an actuator are mounted.A reference accelerometer is also mounted inside the shell,and a power cable and two signal cables come out of the cylinder through three holes on an end plate.

    The cylinder shell is suspended underwater by a crane on the bank.Four hydrophones are fixed to a boat anchored in 5.7-m distance away from the shell.

    The following procedure is designed and implemented in the experiments:

    (1)Suspend the cylinder shell underwater,start the air compressor,and record and analyze the acceleration signal recorded by the accelerometer in the shell and the radiated sound pressure at the location of the boat.

    (2)Keep the air compressor to operate and activate the actuator in the shell using powered signal with line-spectrum superposed by white noise.Record and analyze the signals listed in step(1).

    Fig.5 The model structure used in the experiment

    (3)Stop the air compressor,and only activate the actuator.Record and analyze the signals as at step(2).

    3.2 Experimental results

    Based on the above theory,the data obtained at any two steps introduced in the experimental procedure and the acceleration signal at the reference point of at the step left can be used to estimate the noise radiated noise at the step left.Without loss of generality,the transfer matrix is generated with the data acquired at steps(1)and(3),and the radiated noise at step (2)is evaluated.

    Fig.6 shows the acceleration signal at the reference point and the radiated noise signal when the air compressor is operating solely.The characteristic frequencies of the air compressor are located in 700-800 Hz,the level of vibration is about 100-110 dB,and the level of the radiated noise is about 115-125 dB.

    Fig.6 The signals of the air compressor

    Fig.7 The signals of the actuator

    Fig.7 shows the acceleration signal at the reference point and the radiated noise signal for step(3)when the actuator is operating solely.The characteristic frequencies of the actuator are widely distributed in the entire analysis frequency range.The level of vibration is about 90-110 dB,and the level of radiated noise is about 110-125 dB;both are equivalent to theactuating intensity of the air compressor.

    Based on the transfer matrix derived with the data obtained at steps(1)and(3),and along with the acceleration signal at the reference point of step(2),the noise radiated at step(2)is evaluated.Comparison of the evaluated and the measured sound pressure is shown in Fig.8.

    Fig.8 The evaluation result of the radiated sound pressure

    Fig.8(a)shows that the errors are less than 2.5 dB at most frequencies,including the characteristic frequencies.Only at a small number of frequencies,the errors are between 2.5 dB to 5 dB,and at three frequencies,the errors are larger than 5 dB.The third octave spectrum in Fig.8(b)shows that except for the error of 4 dB in the band centered at 200 Hz,the errors in most frequency bands are less than 2 dB.

    4 Conclusions

    For the real-time evaluation of ship radiated noise based on the operational transfer path analysis for signals with line-spectra,a modified model is proposed to reduce the number of required sensors.Numerical verification and experimental validation of the proposed model show that:

    (1)The proposed model is simple,effective,and the number of sensors is reduced in evaluating the noise radiated by ship.

    (2)For the radiated noise evaluated with the proposed model,the errors in most third octave frequency bands are less than 2 dB,and the errors at most characteristic line-spectrum frequencies are less than 2.5 dB.

    (3)In evaluating the noise radiation at different operating conditions,selecting the training modes closer to the operating modes and generating the transfer matrix separately would help to improve the evaluation accuracy.

    [1]Zou Mingsong,Wu Wenwei,Sun Jiangang,Li Zecheng.A semianalytical solution for free vibration of a cylindrical shell with two end plates[J].Journal of Ship Mechanics,2012,16(11):1306-1313.

    [2]Zhu X,Li T Y,Zhao Y,Yan J.Vibrational power flow analysis of thin cylindrical shell with a circumferential surface crack[J].Journal of Sound and Vibration,2007,302:332-349.

    [3]Elliott A S,Moorhouse A T,Huntley T,Tate S.In-situ source path contribution analysis of structure borne road noise[J]. Journal of Sound and Vibration,2013,332:6276-6295.

    [4]Zhang Lei,Cao Yueyun,Yang Zichun,He Yuanan.Vibration-acoustic transfer path analysis of a submerged cylindrical double-shell[J].Journal of Ship Mechanics,2015,19(4):462-469.

    [5]DeKlerk D,Ossipov A.Operational transfer path analysis:Theory,guidelines and tire noise application[J].Mechanical Systems and Signal Processing,2010,24:1950-1962.

    [6]Sandiera C,Leclerea Q,Roozen N B.Operational transfer path analysis:Theoretical aspects and experimental validation [C].ACOUSTICS,2012.

    [7]Zhou Junwei,He Lin,Xü Rongwu,Cui Lilin.Practical application and experimental verification of transmissibility function in ship mechanical noise prediction[J].Journal of Vibration and Shock,2014,33(22):78-82.

    [8]Sanchez J,Benaroya H.Review of force reconstruction techniques[J].Journal of Sound and Vibration,2014,333:2999-3018.

    [9]Lu Dingding,He Lin,Cheng Guo,Nie Yongfa.Research on pseudo-forces method used in characterization of machine force[J].Journal of Ship Mechanics,2013,17(10):1169-1175.

    [10]Li Yan,He Lin,Shuai Changgeng,Ma Jianguo,Wang Fei,Liu Yong.Active control of low-frequency sinusoidal vibration transmission of ship machinery[J].Journal of Ship Mechanics,2015,19(12):1549-1563.

    基于少量測(cè)點(diǎn)的水下輻射噪聲評(píng)估模型

    程果a,b,何琳a,b,徐榮武a,b

    (海軍工程大學(xué)a.船舶振動(dòng)噪聲國(guó)家重點(diǎn)實(shí)驗(yàn)室;b.振動(dòng)與噪聲研究所,武漢430033)

    文章針對(duì)復(fù)雜結(jié)構(gòu)的水下輻射噪聲實(shí)時(shí)評(píng)估問(wèn)題,提出了一套基于工況傳遞路徑法的線譜條件下理論模型,在確保輻射噪聲評(píng)估準(zhǔn)確性的同時(shí),減少了傳感器的使用數(shù)量。模型與工況分類相結(jié)合,提高了輻射噪聲的評(píng)估精度。之后對(duì)該模型進(jìn)行了數(shù)值仿真和湖上試驗(yàn)驗(yàn)證,結(jié)果表明,提出的模型簡(jiǎn)單有效。頻段輻射噪聲評(píng)估誤差小于2 dB,多數(shù)線譜峰值頻率處誤差小于2.5 dB。該研究對(duì)船舶噪聲評(píng)估具有參考意義。

    少量測(cè)點(diǎn);輻射噪聲;線譜;傳遞路徑

    O429

    A

    程果(1988-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;何琳(1957-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授,博士生導(dǎo)師;徐榮武(1980-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所副研究員,通訊作者。

    O429 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.012

    1007-7294(2016)12-1626-10

    Received date:2016-06-21

    Biography:CHENG Guo(1988-),male,Ph.D.candidate of Naval University of Engineering,E-mail:stunicorn@126.com; HE Lin(1957-),male,professor/tutor,E-mail:helin202@vip.sina.com;XU Rong-wu(1980-),male,associate researcher,corresponding author,E-mail:rongwu_xu@126.com.

    猜你喜歡
    線譜研究所噪聲
    UUV慣導(dǎo)系統(tǒng)多線譜振動(dòng)抑制研究
    睡眠研究所·Arch
    睡眠研究所民宿
    未來(lái)研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    噪聲可退化且依賴于狀態(tài)和分布的平均場(chǎng)博弈
    控制噪聲有妙法
    “”維譜在艦船輻射噪聲線譜提取中的應(yīng)用
    一種基于白噪聲響應(yīng)的隨機(jī)載荷譜識(shí)別方法
    基于隱馬爾可夫模型的線譜跟蹤技術(shù)
    車內(nèi)噪聲傳遞率建模及計(jì)算
    亚洲av不卡在线观看| 你懂的网址亚洲精品在线观看| 18+在线观看网站| 欧美人与善性xxx| 日韩,欧美,国产一区二区三区| 色网站视频免费| .国产精品久久| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久久久按摩| 国内少妇人妻偷人精品xxx网站| 久久热精品热| 亚洲av国产av综合av卡| 日本黄大片高清| 成人毛片a级毛片在线播放| 免费高清在线观看视频在线观看| 日韩精品青青久久久久久| 婷婷色麻豆天堂久久| 日韩精品有码人妻一区| 中文精品一卡2卡3卡4更新| 97在线视频观看| 国精品久久久久久国模美| 最后的刺客免费高清国语| 中文乱码字字幕精品一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 午夜精品在线福利| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜 | 美女cb高潮喷水在线观看| 嘟嘟电影网在线观看| 18+在线观看网站| 亚洲精品aⅴ在线观看| 免费不卡的大黄色大毛片视频在线观看 | av黄色大香蕉| 欧美最新免费一区二区三区| 七月丁香在线播放| 欧美xxxx黑人xx丫x性爽| 免费黄网站久久成人精品| 日韩,欧美,国产一区二区三区| 国产精品无大码| 亚洲av电影在线观看一区二区三区 | 午夜福利成人在线免费观看| h日本视频在线播放| 国产一区二区在线观看日韩| 97热精品久久久久久| 亚洲av在线观看美女高潮| 亚洲色图av天堂| 久久精品久久久久久噜噜老黄| 听说在线观看完整版免费高清| 青春草亚洲视频在线观看| 免费观看性生交大片5| 干丝袜人妻中文字幕| 亚洲国产日韩欧美精品在线观看| 日韩欧美精品v在线| 一级二级三级毛片免费看| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美| 网址你懂的国产日韩在线| 26uuu在线亚洲综合色| 亚洲欧美日韩卡通动漫| 亚洲av不卡在线观看| 尾随美女入室| 国产免费一级a男人的天堂| 欧美成人午夜免费资源| 日本黄色片子视频| 久久精品国产亚洲网站| av卡一久久| 国产黄色小视频在线观看| 99久久精品国产国产毛片| 一级毛片久久久久久久久女| 久久久色成人| 韩国av在线不卡| 久久精品国产鲁丝片午夜精品| 亚洲国产精品国产精品| 九九爱精品视频在线观看| 99热6这里只有精品| 晚上一个人看的免费电影| 天堂网av新在线| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 国产精品熟女久久久久浪| 欧美xxxx性猛交bbbb| 美女被艹到高潮喷水动态| 精品不卡国产一区二区三区| 在线观看一区二区三区| 国内揄拍国产精品人妻在线| 啦啦啦中文免费视频观看日本| 亚洲欧洲日产国产| 久久久久九九精品影院| 久久精品国产鲁丝片午夜精品| 十八禁网站网址无遮挡 | 欧美日韩在线观看h| 久久99热这里只有精品18| 男人舔女人下体高潮全视频| 嫩草影院新地址| 免费看av在线观看网站| 国产激情偷乱视频一区二区| 亚洲怡红院男人天堂| 九九久久精品国产亚洲av麻豆| 女人久久www免费人成看片| 国产高清三级在线| 国产激情偷乱视频一区二区| 成人亚洲精品一区在线观看 | a级毛片免费高清观看在线播放| 69av精品久久久久久| 精品人妻熟女av久视频| 亚洲精品乱码久久久v下载方式| 不卡视频在线观看欧美| 深夜a级毛片| 嫩草影院新地址| 中文字幕制服av| 天堂网av新在线| 日韩视频在线欧美| 国产麻豆成人av免费视频| 秋霞在线观看毛片| 男女那种视频在线观看| 在线播放无遮挡| av在线观看视频网站免费| 色综合亚洲欧美另类图片| 亚洲婷婷狠狠爱综合网| 国产亚洲一区二区精品| 秋霞伦理黄片| 久久热精品热| 精品一区在线观看国产| 久久久久精品性色| 欧美高清性xxxxhd video| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 男女国产视频网站| 最近手机中文字幕大全| 女的被弄到高潮叫床怎么办| 成人av在线播放网站| 国产色婷婷99| 婷婷色av中文字幕| 赤兔流量卡办理| 肉色欧美久久久久久久蜜桃 | av播播在线观看一区| 亚洲av男天堂| 综合色av麻豆| 国产69精品久久久久777片| 国产欧美日韩精品一区二区| av福利片在线观看| 深夜a级毛片| 久久综合国产亚洲精品| 麻豆精品久久久久久蜜桃| 久久久a久久爽久久v久久| 亚洲在久久综合| 国产一区二区三区综合在线观看 | 99视频精品全部免费 在线| 91av网一区二区| 又粗又硬又长又爽又黄的视频| 嫩草影院入口| 国产精品久久久久久久久免| 国产又色又爽无遮挡免| 97人妻精品一区二区三区麻豆| 嫩草影院入口| 中国美白少妇内射xxxbb| 成人国产麻豆网| 国产精品嫩草影院av在线观看| 欧美高清成人免费视频www| av国产免费在线观看| 亚洲va在线va天堂va国产| 可以在线观看毛片的网站| 国产 一区精品| 日韩欧美精品免费久久| 波多野结衣巨乳人妻| 日韩中字成人| 亚洲国产精品成人久久小说| 免费无遮挡裸体视频| 久久久成人免费电影| 水蜜桃什么品种好| 99久久九九国产精品国产免费| 免费电影在线观看免费观看| 国产精品久久久久久久久免| 在线观看av片永久免费下载| 色播亚洲综合网| 免费少妇av软件| 神马国产精品三级电影在线观看| 欧美日韩国产mv在线观看视频 | 蜜桃久久精品国产亚洲av| 成年女人看的毛片在线观看| or卡值多少钱| 真实男女啪啪啪动态图| 国产乱人视频| 色播亚洲综合网| 日韩欧美国产在线观看| 男的添女的下面高潮视频| 偷拍熟女少妇极品色| videos熟女内射| 精品人妻偷拍中文字幕| 色播亚洲综合网| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 午夜激情欧美在线| 网址你懂的国产日韩在线| 亚洲欧洲日产国产| 高清毛片免费看| 午夜福利高清视频| 少妇猛男粗大的猛烈进出视频 | 成人无遮挡网站| 成人午夜精彩视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久久久久久人人人人人人| 少妇的逼好多水| 女的被弄到高潮叫床怎么办| 久久久午夜欧美精品| 成人午夜高清在线视频| 日本三级黄在线观看| 亚洲精品一二三| 中文字幕制服av| 人妻一区二区av| 日本-黄色视频高清免费观看| 99久久精品热视频| 国产精品熟女久久久久浪| 午夜免费观看性视频| 国产欧美日韩精品一区二区| 午夜日本视频在线| 日本免费a在线| 麻豆av噜噜一区二区三区| 午夜精品一区二区三区免费看| 九草在线视频观看| 深夜a级毛片| 亚洲最大成人av| 国产亚洲av嫩草精品影院| 国产亚洲av片在线观看秒播厂 | 国产高清不卡午夜福利| 老女人水多毛片| 亚洲欧美日韩东京热| 神马国产精品三级电影在线观看| 亚洲最大成人av| 亚洲精品中文字幕在线视频 | 日韩一区二区三区影片| 久久久久免费精品人妻一区二区| 亚洲欧洲日产国产| 少妇猛男粗大的猛烈进出视频 | 免费黄频网站在线观看国产| 国产有黄有色有爽视频| 亚州av有码| 一级二级三级毛片免费看| 又大又黄又爽视频免费| 亚州av有码| 日韩欧美精品免费久久| 能在线免费看毛片的网站| 亚洲内射少妇av| 在线观看免费高清a一片| 国产精品蜜桃在线观看| 伊人久久精品亚洲午夜| 国产 亚洲一区二区三区 | 夫妻午夜视频| 99热全是精品| 亚洲无线观看免费| 国产一区二区三区av在线| 久久久精品欧美日韩精品| 亚洲精品第二区| 亚洲在线观看片| 两个人的视频大全免费| 国产成人精品婷婷| 午夜福利在线观看吧| 国产单亲对白刺激| 久久久精品免费免费高清| 伦理电影大哥的女人| 成人国产麻豆网| 午夜亚洲福利在线播放| 美女高潮的动态| 久久久精品免费免费高清| 天天躁夜夜躁狠狠久久av| 嫩草影院精品99| 91精品国产九色| 亚洲激情五月婷婷啪啪| 男人和女人高潮做爰伦理| 白带黄色成豆腐渣| 免费大片18禁| 亚洲人成网站在线观看播放| 有码 亚洲区| 老师上课跳d突然被开到最大视频| 少妇人妻一区二区三区视频| 99热这里只有是精品在线观看| 国产免费一级a男人的天堂| 欧美xxxx黑人xx丫x性爽| 一个人看视频在线观看www免费| 欧美另类一区| 久久久精品免费免费高清| 在线免费观看的www视频| 狠狠精品人妻久久久久久综合| 2022亚洲国产成人精品| 男人爽女人下面视频在线观看| 人人妻人人澡人人爽人人夜夜 | 联通29元200g的流量卡| 99久久中文字幕三级久久日本| 欧美 日韩 精品 国产| 在线观看av片永久免费下载| 午夜爱爱视频在线播放| 身体一侧抽搐| 2021少妇久久久久久久久久久| 亚洲经典国产精华液单| 69人妻影院| 日韩在线高清观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 亚洲欧美成人综合另类久久久| 建设人人有责人人尽责人人享有的 | 最近2019中文字幕mv第一页| 1000部很黄的大片| 2021少妇久久久久久久久久久| 老司机影院毛片| 亚洲精品久久午夜乱码| 色5月婷婷丁香| 成人特级av手机在线观看| 国产成人a区在线观看| 亚洲欧美成人综合另类久久久| 国产精品伦人一区二区| 亚洲精品,欧美精品| 国产麻豆成人av免费视频| 中文欧美无线码| 亚洲欧美一区二区三区国产| 久久精品人妻少妇| 亚洲国产精品成人久久小说| 成人毛片a级毛片在线播放| 2021少妇久久久久久久久久久| 在线a可以看的网站| 免费观看性生交大片5| 亚洲性久久影院| 亚洲精品国产成人久久av| 一级毛片aaaaaa免费看小| av又黄又爽大尺度在线免费看| 精品亚洲乱码少妇综合久久| 国产精品久久久久久精品电影| 午夜精品国产一区二区电影 | 国产精品国产三级国产av玫瑰| 直男gayav资源| 成人国产麻豆网| 亚洲综合色惰| 国产综合懂色| 91aial.com中文字幕在线观看| 久久精品夜色国产| 亚洲精品亚洲一区二区| 午夜激情福利司机影院| 久久久午夜欧美精品| 最近的中文字幕免费完整| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 免费观看av网站的网址| 日本欧美国产在线视频| 亚洲av日韩在线播放| 婷婷色综合www| 国产熟女欧美一区二区| 亚洲综合精品二区| 全区人妻精品视频| 插阴视频在线观看视频| av.在线天堂| 春色校园在线视频观看| 全区人妻精品视频| 免费观看无遮挡的男女| 久久久欧美国产精品| 久久久久久伊人网av| 亚洲精品久久午夜乱码| 一个人免费在线观看电影| 久久人人爽人人片av| 欧美人与善性xxx| 男女下面进入的视频免费午夜| 国产精品嫩草影院av在线观看| 久久久久久久久久久免费av| 日韩强制内射视频| 国产乱人偷精品视频| 亚洲激情五月婷婷啪啪| 校园人妻丝袜中文字幕| 久久久久久久亚洲中文字幕| 久久久久久九九精品二区国产| 嫩草影院精品99| 精品久久久久久久久久久久久| 国产乱人视频| 观看美女的网站| 日日啪夜夜爽| 国产永久视频网站| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 欧美xxⅹ黑人| 99九九线精品视频在线观看视频| 欧美 日韩 精品 国产| 精品熟女少妇av免费看| 久久人人爽人人爽人人片va| 成人性生交大片免费视频hd| av在线亚洲专区| 高清日韩中文字幕在线| 国产精品嫩草影院av在线观看| 麻豆成人av视频| 爱豆传媒免费全集在线观看| 蜜桃久久精品国产亚洲av| 2022亚洲国产成人精品| 在现免费观看毛片| 国产精品1区2区在线观看.| 国产综合精华液| 亚洲精品一区蜜桃| 国产在视频线在精品| 亚洲第一区二区三区不卡| 一级二级三级毛片免费看| 国产精品伦人一区二区| 国产女主播在线喷水免费视频网站 | 看十八女毛片水多多多| 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 亚洲精华国产精华液的使用体验| 美女国产视频在线观看| 青春草国产在线视频| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 午夜免费男女啪啪视频观看| av免费观看日本| 久久久色成人| 搞女人的毛片| 有码 亚洲区| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 亚洲精品久久午夜乱码| 久久久久久久亚洲中文字幕| 亚洲精品日韩在线中文字幕| 卡戴珊不雅视频在线播放| 欧美潮喷喷水| 在线观看一区二区三区| 中文乱码字字幕精品一区二区三区 | 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 91久久精品电影网| 国产精品嫩草影院av在线观看| 在线a可以看的网站| 卡戴珊不雅视频在线播放| 国产一区亚洲一区在线观看| 在线免费观看不下载黄p国产| 久久久久久久久久人人人人人人| 最近最新中文字幕免费大全7| 免费黄网站久久成人精品| 国产黄频视频在线观看| 日韩欧美精品免费久久| 日韩,欧美,国产一区二区三区| 国产精品日韩av在线免费观看| 男女那种视频在线观看| 久久精品国产自在天天线| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 听说在线观看完整版免费高清| 99热这里只有是精品50| 婷婷六月久久综合丁香| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站 | 一本一本综合久久| 国产黄片美女视频| av国产久精品久网站免费入址| 精品午夜福利在线看| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 国产精品美女特级片免费视频播放器| 成年女人看的毛片在线观看| 久久久久九九精品影院| 老司机影院毛片| 丝袜美腿在线中文| 特级一级黄色大片| 深爱激情五月婷婷| 久久亚洲国产成人精品v| 国国产精品蜜臀av免费| 成人综合一区亚洲| 免费不卡的大黄色大毛片视频在线观看 | 一级爰片在线观看| 亚州av有码| 国产色爽女视频免费观看| 草草在线视频免费看| 欧美日韩亚洲高清精品| 少妇人妻一区二区三区视频| 韩国av在线不卡| 国产黄色免费在线视频| 亚洲aⅴ乱码一区二区在线播放| 国内精品一区二区在线观看| 亚洲va在线va天堂va国产| 国内少妇人妻偷人精品xxx网站| 亚洲欧美一区二区三区国产| 国产爱豆传媒在线观看| 国产美女午夜福利| 国产片特级美女逼逼视频| 国产精品99久久久久久久久| 久久久国产一区二区| 干丝袜人妻中文字幕| 免费看a级黄色片| 国产麻豆成人av免费视频| 成人毛片a级毛片在线播放| 毛片女人毛片| 在线天堂最新版资源| 久久6这里有精品| 国语对白做爰xxxⅹ性视频网站| 美女被艹到高潮喷水动态| 日日撸夜夜添| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 亚洲精品第二区| 国产精品综合久久久久久久免费| 国产精品熟女久久久久浪| 全区人妻精品视频| 性色avwww在线观看| 精品国产一区二区三区久久久樱花 | 18禁在线无遮挡免费观看视频| 色综合色国产| 一个人观看的视频www高清免费观看| www.av在线官网国产| 欧美激情在线99| 黄色一级大片看看| av在线播放精品| 伊人久久精品亚洲午夜| 国产高清有码在线观看视频| 亚洲无线观看免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色吧在线观看| 午夜精品国产一区二区电影 | 汤姆久久久久久久影院中文字幕 | 久久久久久久久久人人人人人人| 18禁裸乳无遮挡免费网站照片| 成年女人看的毛片在线观看| 嫩草影院入口| 欧美成人精品欧美一级黄| 97人妻精品一区二区三区麻豆| 国产黄a三级三级三级人| kizo精华| 日本免费a在线| 亚洲成色77777| 日韩亚洲欧美综合| 日韩av在线免费看完整版不卡| 又爽又黄无遮挡网站| 免费播放大片免费观看视频在线观看| 亚洲精品一区蜜桃| 国产成年人精品一区二区| 别揉我奶头 嗯啊视频| 国产成年人精品一区二区| 免费少妇av软件| 亚洲精品国产成人久久av| 一个人看视频在线观看www免费| 亚洲国产精品成人综合色| 一个人看的www免费观看视频| 97热精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 国产高清有码在线观看视频| 99久久九九国产精品国产免费| 亚洲高清免费不卡视频| 九九在线视频观看精品| 五月天丁香电影| 国产黄频视频在线观看| 内地一区二区视频在线| 国产精品一及| 夜夜爽夜夜爽视频| 久久久精品欧美日韩精品| 亚洲欧美日韩东京热| 欧美xxxx黑人xx丫x性爽| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| av在线蜜桃| 久久精品国产亚洲网站| 3wmmmm亚洲av在线观看| 色尼玛亚洲综合影院| 国产 亚洲一区二区三区 | 中文字幕制服av| 亚洲伊人久久精品综合| 黄色欧美视频在线观看| 色综合色国产| 97在线视频观看| 99re6热这里在线精品视频| 18禁在线无遮挡免费观看视频| 日本黄大片高清| 国产乱来视频区| 亚洲成人中文字幕在线播放| 内地一区二区视频在线| 丰满人妻一区二区三区视频av| 国产激情偷乱视频一区二区| 男女国产视频网站| 欧美激情久久久久久爽电影| 欧美成人一区二区免费高清观看| av.在线天堂| 亚洲精品成人av观看孕妇| 精品久久久久久久久亚洲| 老师上课跳d突然被开到最大视频| 国产精品日韩av在线免费观看| 成人高潮视频无遮挡免费网站| 性色avwww在线观看| 男的添女的下面高潮视频| 国产精品一二三区在线看| 亚洲精品成人久久久久久| 精品99又大又爽又粗少妇毛片| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 亚洲内射少妇av| 在线播放无遮挡| 国精品久久久久久国模美| 国产高清不卡午夜福利| 最近手机中文字幕大全| 午夜福利高清视频| 欧美3d第一页| 搡女人真爽免费视频火全软件| 天堂影院成人在线观看| 国产黄a三级三级三级人| 亚洲,欧美,日韩| 欧美xxxx黑人xx丫x性爽| ponron亚洲| 国产单亲对白刺激| 国产 亚洲一区二区三区 | 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 亚洲人成网站在线观看播放| 一个人免费在线观看电影| 免费观看av网站的网址| 少妇熟女欧美另类| av国产免费在线观看| 午夜久久久久精精品| 2018国产大陆天天弄谢| 国产亚洲精品av在线| 色播亚洲综合网| 国产熟女欧美一区二区| 久99久视频精品免费| av免费观看日本| 男女那种视频在线观看|