• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    2016-05-16 02:42:02CHENGGuoHELinXURongwu
    船舶力學(xué) 2016年12期
    關(guān)鍵詞:線譜研究所噪聲

    CHENG Guo,HE Lin,XU Rong-wu

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Sparse-Sensor-Based Real-Time Evaluation of Underwater Noise Radiation

    CHENG Guoa,b,HE Lina,b,XU Rong-wua,b

    (a.National Key Laboratory on Ship Vibration&Noise;b.Institute of Noise and Vibration, Naval University of Engineering,Wuhan 430033,China)

    Aiming at real-time evaluation of the underwater noise radiated by complex structures,a theoretical model is proposed based on the operational transfer path analysis for signals with line spectra.The number of required sensors is reduced,and the joint application of operational condition classification and this model also improve the accuracy of noise radiation evaluation.This model is verified by numerical simulation and validated by a lake experiment.The results show that the proposed model is simple and effective:the errors of noise radiation evaluation in most frequency bands are less than 2 dB,and the errors at most peak frequencies are less than 2.5 dB.This study may be useful to ship noise evaluation.

    sparse sensors;radiated noise;line spectrum;transfer path

    0 Introduction

    Real-time evaluation of the underwater noise radiated by complex structures,such as ships,is important in theoretical research and engineering applications.The methods of evaluation can be classified into two categories:numerical calculation and experimental measurement.For the same requirement of accuracy,numerical calculation is more time-consuming, so experimental measurement is dominantly adopted in practical applications[1-2].

    A commonly used experimental approach is the model of transfer path analysis(TPA), which can evaluate the radiated noise in real time based on the pre-measured transfer functions of different sound sources and the signals detected by the sensors mounted on the structures[3-4].However,it is often difficult to obtain the transfer functions because actuation inside the structures or disassembly of device is required.Hence the model of operational transfer path analysis(OTPA)was proposed,which only requires to measure the response signals under varied operation conditions before a structural-acoustic transfer matrix can be established if the principle of linear superposition is satisfied[5-6].Compared with the TPA method,the OTPA is simpler and suits for evaluating the noise radiated by complex structures.

    However,the OTPA requires a large number of sensors:the number of sensors on the structure should not be less than the number of sound sources[7].Inside complex structures such as ships,a large number of sources exist,and this requirement is hard to be satisfied.

    Therefore in this paper,a modified line-spectrum model of operational transfer path analysis is proposed to reduce the number of required sensors in ship applications.Firstly,the theoretical basis of the model is introduced.Secondly,an improved method of operational classification is proposed and then simulation is conducted with reconstructed actuating signals. Thirdly,the model is validated in a lake experiment.Lastly,the conclusions of this study are drawn.

    1 Basic theory

    1.1 Operational transfer path analysis

    Assume that there are L numbers of sources,M numbers of reference points and N numbers of observation points in a linear system.The influences of the sources on the reference points and the observation points can be described with the transfer functions hlmand hln,so each response signal at the reference point can be expressed as:

    where Slis the actuating signal of the source of No.l.

    Likewise,each response signal at the observation point can be expressed as:

    For the convenience of discussion,the above relation can be expressed in the matrix form:

    where W is the total number of different operations.Since the source signals cannot be measured directly,they are obtained with Eq.(3):

    Note that to definitely determine the source matrix,the number of reference points M should not be smaller than the number of sources L.Combining Eq.(3)with Eq.(4)yields

    If GW×Ncan be determined via definite number of measurements,then the signalsat observation points under an arbitrary condition of operation can be evaluated in real time based on the signals at the reference points

    In practical evaluation of the noise radiated by ship,owing to the large number of sound sources in the ship,the number of sensors is always smaller than the number of sources,so Eq.(7)is just the optimal approximation under the condition of sparse sensors.

    1.2 Background noise correction

    Background noise is inevitable in practical ship noise tests.The influences of background noise on the results of operational transfer path analysis can be divided into two parts:the error caused by signal coupling and the error caused by the inverse of ill-posed matrix.

    The error caused by signal coupling is introduced during the measurement stage.When the signal-to-noise ratio is deficient in the training or evaluation operating modes,assume that the background noise at the referential points isand the background noise at the observation points isin the training operating modes.If the sound field of the testing environment is time-invariant,thenandhave the same row vectors.

    Eq.(3)can also be expressed as:

    Eqs.(5)and(6)then become:

    Substituting Eqs.(6-10)into Eq.(12)yields

    The error in the inverse of ill-posed matrix is introduced in deriving GM×Nbased on the data in acquired in the training modes.Depending on the normal modes of the system,the dataobtained at the reference points for different training modes may be correlated;however,perfect correlation is impossible in practice owing to the background noise.Consequently,in the singular-value decomposition of matrix RW×M,zero singular value will not appear;instead,random small singular values will appear,becoming large reciprocals in matrix inverse and magnifying the error of measurement.

    Hence regularization is applied to eliminate the ill-posed error.The commonly used methods include the Tikhonov regularization,frequency range truncation,partial optimization,and so on[8].

    It is usually considered that the regularization is inessential when the condition number of the matrix is less than 100;and is necessary when the condition number is more than 1 000. Number 800 is selected as a threshold in this paper.When the condition number is over 800, the regularization is applied.According to the accuracy and computation cost of the methods, the partial optimization is selected[9].Firstly,define a breakpoint with the threshold of the condition number.Than keep the singular values which are before the breakpoint,and revise the singular values which are after the breakpoint with Tikhonov regularization method.The regularization parameter is defined as the singular value at the breakpoint.Illustrated by the case of RW×M,the singular-value decomposition is shown as:

    If the number q( q≤K)and 800dq≤d1≤800dq-1are exist,the partial optimization will be essential for the matrix.The regularization parameter is dqand the element tkis shown as:

    1.3 Generalization for signals with line-spectra

    Most devices in ship,such as pumps and shafts, are operating at one or more frequencies[10].Their vibration signals feature line spectra,and Fig.1 shows such a spectrum directly detected near a typical ship device.

    Reconsider Eq.(4)in the frequency domain.For a signal with frequency f,it can be expressed as

    Fig.1 The acceleration signal of a pump in a ship

    Although a large number of devices exist in aship,only a small number of devices generate noise with characteristic frequency f.In fact, high-resolution analysis of the spectra shows that it is hard to find two devices with identical line spectra,so some elements in SW×L(f)approximate to zero,compared with the other elements.Assume that the number of the devices with characteristic frequency f isand Eq.(14)becomes

    The number of reference points is required to satisfy‘M≥Kmax(f)’,where Kmax(f)is the maximum of K(f)for all characteristics frequencies([f]).In this case,Eq.(7)is not only the optimal approximation under the sparse-sensor condition,but also the exact solution at some characteristic frequencies.

    2 Numerical simulations

    2.1 Problem statement and simulation procedure

    Based on the noise signals of real ship devices,the simulation data are constructed.For the convenience of discussion,assume that there are 3 devices in a ship.The actuating signals caused by these devices are composed of the background noise, white noise(1-1 600 Hz),low-frequency wide-band noise(300-1 000 Hz)and stochastic line-spectrum signals.Fig.2 shows the radiated noise signal when a device operates solely.

    Two well separated reference points are selected at the center of the ship body,and two hydrophones are mounted there to record the sound pressure responses under internal actuation.A hydrophone array is placed 25 m away from the ship for recording the average sound pressure radiation under the excitation of devices inside the ship.For the convenience of discussion,the sampling frequency is set as 4 096 Hz for the signals collected by both hydrophones.

    The operating modes generated in the simulation are shown in Tab.1.The sound pressure data at reference points and the radiated noise in the combination of different operating modes are obtained by superposition of the data when the devices operate individually.In Tab.1,the symbol‘%’means that the device is operating.

    Fig.2 The radiated sound pressure signal of the simulated device 2#

    Tab.1 The simulated devices in different operating modes

    2.2 Simulation result

    The validity of the proposed model is verified first.The transfer matrix is derived with the data of the operating modes from Nos.2 to 4.The radiated noise in the No.1 operating mode is then evaluated based on the derived transfer matrix and the sound pressures data at the reference points in the No.1 operating mode.

    Fig.3 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.2 to 4 operating modes)

    In order to display the adaptability of the evaluation model in narrowband and wideband frequency analysis,the evaluation errors of the radiated noise are assessed in line spectrum and third-octave spectrum.Fig.3(a)shows that at most frequency points,including the characteristic frequency points shown in Fig.2,the errors are less than 3 dB.Only at minor part of the frequency points,the errors are large.The third octave spectrum in Fig.3(b)shows that the evaluation errors are less than 1 dB in mostly frequency bands,except for the band centered at 40 Hz,where larger error is found.

    The transfer matrix is also derived with the data of the operating modes from No.5 to No.7, and based on this transfer matrix,the noise radiated in the No.1 operating mode is also evaluated and the results are shown in Fig.4.

    Fig.4 The evaluation result of the radiated sound pressure in the simulation (training operation:Nos.5 to 7 operating modes)

    The noise radiation in the No.1 operating mode evaluated with the latter derived transfer matrix(based on the Nos.5 to 7 operating modes)is more accurate.Fig.4 shows that except for the band centered at 50 Hz,the error is less than 1 dB in each third octave frequency band.The errors at most frequencies are less than 2 dB in the sound pressure spectrum,and the larger errors are still smaller than the errors of the former evaluation results based on the data of the operating modes from Nos.2 to 4.

    The smaller evaluation error is very likely because the Nos.5-7 operating modes are more similar to the No.1 mode,compared with the Nos.2-4 modes,so the error introduced by signal coupling is smaller.Therefore,to reduce the error of noise evaluation in engineering applications,the training operations can be classified first before further calculation.

    3 Experimental validations

    3.1 Experimental setup and procedure

    The proposed model is also validated by experiments conducted in the Thousand Islands Lake.The experiment site is located in an inlet, and the water waves and background noise in the inlet are negligible.Fig.5 shows the model structure used in the experiment.

    The tested structure is a 2.05-m-long cylinder with double-layer shell.The outer shell has 1.78 m diameter,and is 2 mm thick;the diameter of its inner shell is 1.46 m,and the thickness is 8 mm.The shell is supported by four equally spaced annular plates.The shell is airtight with 25-mm-thick stainless steel plates at both ends,and water is filled in the space between the inner and outer shells.In the interior of the inner shell, an 8-mm thick plate is fixed,on which a small air compressor(whose inlet and outlet valves are both open)and an actuator are mounted.A reference accelerometer is also mounted inside the shell,and a power cable and two signal cables come out of the cylinder through three holes on an end plate.

    The cylinder shell is suspended underwater by a crane on the bank.Four hydrophones are fixed to a boat anchored in 5.7-m distance away from the shell.

    The following procedure is designed and implemented in the experiments:

    (1)Suspend the cylinder shell underwater,start the air compressor,and record and analyze the acceleration signal recorded by the accelerometer in the shell and the radiated sound pressure at the location of the boat.

    (2)Keep the air compressor to operate and activate the actuator in the shell using powered signal with line-spectrum superposed by white noise.Record and analyze the signals listed in step(1).

    Fig.5 The model structure used in the experiment

    (3)Stop the air compressor,and only activate the actuator.Record and analyze the signals as at step(2).

    3.2 Experimental results

    Based on the above theory,the data obtained at any two steps introduced in the experimental procedure and the acceleration signal at the reference point of at the step left can be used to estimate the noise radiated noise at the step left.Without loss of generality,the transfer matrix is generated with the data acquired at steps(1)and(3),and the radiated noise at step (2)is evaluated.

    Fig.6 shows the acceleration signal at the reference point and the radiated noise signal when the air compressor is operating solely.The characteristic frequencies of the air compressor are located in 700-800 Hz,the level of vibration is about 100-110 dB,and the level of the radiated noise is about 115-125 dB.

    Fig.6 The signals of the air compressor

    Fig.7 The signals of the actuator

    Fig.7 shows the acceleration signal at the reference point and the radiated noise signal for step(3)when the actuator is operating solely.The characteristic frequencies of the actuator are widely distributed in the entire analysis frequency range.The level of vibration is about 90-110 dB,and the level of radiated noise is about 110-125 dB;both are equivalent to theactuating intensity of the air compressor.

    Based on the transfer matrix derived with the data obtained at steps(1)and(3),and along with the acceleration signal at the reference point of step(2),the noise radiated at step(2)is evaluated.Comparison of the evaluated and the measured sound pressure is shown in Fig.8.

    Fig.8 The evaluation result of the radiated sound pressure

    Fig.8(a)shows that the errors are less than 2.5 dB at most frequencies,including the characteristic frequencies.Only at a small number of frequencies,the errors are between 2.5 dB to 5 dB,and at three frequencies,the errors are larger than 5 dB.The third octave spectrum in Fig.8(b)shows that except for the error of 4 dB in the band centered at 200 Hz,the errors in most frequency bands are less than 2 dB.

    4 Conclusions

    For the real-time evaluation of ship radiated noise based on the operational transfer path analysis for signals with line-spectra,a modified model is proposed to reduce the number of required sensors.Numerical verification and experimental validation of the proposed model show that:

    (1)The proposed model is simple,effective,and the number of sensors is reduced in evaluating the noise radiated by ship.

    (2)For the radiated noise evaluated with the proposed model,the errors in most third octave frequency bands are less than 2 dB,and the errors at most characteristic line-spectrum frequencies are less than 2.5 dB.

    (3)In evaluating the noise radiation at different operating conditions,selecting the training modes closer to the operating modes and generating the transfer matrix separately would help to improve the evaluation accuracy.

    [1]Zou Mingsong,Wu Wenwei,Sun Jiangang,Li Zecheng.A semianalytical solution for free vibration of a cylindrical shell with two end plates[J].Journal of Ship Mechanics,2012,16(11):1306-1313.

    [2]Zhu X,Li T Y,Zhao Y,Yan J.Vibrational power flow analysis of thin cylindrical shell with a circumferential surface crack[J].Journal of Sound and Vibration,2007,302:332-349.

    [3]Elliott A S,Moorhouse A T,Huntley T,Tate S.In-situ source path contribution analysis of structure borne road noise[J]. Journal of Sound and Vibration,2013,332:6276-6295.

    [4]Zhang Lei,Cao Yueyun,Yang Zichun,He Yuanan.Vibration-acoustic transfer path analysis of a submerged cylindrical double-shell[J].Journal of Ship Mechanics,2015,19(4):462-469.

    [5]DeKlerk D,Ossipov A.Operational transfer path analysis:Theory,guidelines and tire noise application[J].Mechanical Systems and Signal Processing,2010,24:1950-1962.

    [6]Sandiera C,Leclerea Q,Roozen N B.Operational transfer path analysis:Theoretical aspects and experimental validation [C].ACOUSTICS,2012.

    [7]Zhou Junwei,He Lin,Xü Rongwu,Cui Lilin.Practical application and experimental verification of transmissibility function in ship mechanical noise prediction[J].Journal of Vibration and Shock,2014,33(22):78-82.

    [8]Sanchez J,Benaroya H.Review of force reconstruction techniques[J].Journal of Sound and Vibration,2014,333:2999-3018.

    [9]Lu Dingding,He Lin,Cheng Guo,Nie Yongfa.Research on pseudo-forces method used in characterization of machine force[J].Journal of Ship Mechanics,2013,17(10):1169-1175.

    [10]Li Yan,He Lin,Shuai Changgeng,Ma Jianguo,Wang Fei,Liu Yong.Active control of low-frequency sinusoidal vibration transmission of ship machinery[J].Journal of Ship Mechanics,2015,19(12):1549-1563.

    基于少量測(cè)點(diǎn)的水下輻射噪聲評(píng)估模型

    程果a,b,何琳a,b,徐榮武a,b

    (海軍工程大學(xué)a.船舶振動(dòng)噪聲國(guó)家重點(diǎn)實(shí)驗(yàn)室;b.振動(dòng)與噪聲研究所,武漢430033)

    文章針對(duì)復(fù)雜結(jié)構(gòu)的水下輻射噪聲實(shí)時(shí)評(píng)估問(wèn)題,提出了一套基于工況傳遞路徑法的線譜條件下理論模型,在確保輻射噪聲評(píng)估準(zhǔn)確性的同時(shí),減少了傳感器的使用數(shù)量。模型與工況分類相結(jié)合,提高了輻射噪聲的評(píng)估精度。之后對(duì)該模型進(jìn)行了數(shù)值仿真和湖上試驗(yàn)驗(yàn)證,結(jié)果表明,提出的模型簡(jiǎn)單有效。頻段輻射噪聲評(píng)估誤差小于2 dB,多數(shù)線譜峰值頻率處誤差小于2.5 dB。該研究對(duì)船舶噪聲評(píng)估具有參考意義。

    少量測(cè)點(diǎn);輻射噪聲;線譜;傳遞路徑

    O429

    A

    程果(1988-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所博士研究生;何琳(1957-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所教授,博士生導(dǎo)師;徐榮武(1980-),男,海軍工程大學(xué)振動(dòng)與噪聲研究所副研究員,通訊作者。

    O429 < class="emphasis_bold">Document code:A

    A

    10.3969/j.issn.1007-7294.2016.12.012

    1007-7294(2016)12-1626-10

    Received date:2016-06-21

    Biography:CHENG Guo(1988-),male,Ph.D.candidate of Naval University of Engineering,E-mail:stunicorn@126.com; HE Lin(1957-),male,professor/tutor,E-mail:helin202@vip.sina.com;XU Rong-wu(1980-),male,associate researcher,corresponding author,E-mail:rongwu_xu@126.com.

    猜你喜歡
    線譜研究所噪聲
    UUV慣導(dǎo)系統(tǒng)多線譜振動(dòng)抑制研究
    睡眠研究所·Arch
    睡眠研究所民宿
    未來(lái)研究所
    軍事文摘(2020年20期)2020-11-16 00:32:12
    噪聲可退化且依賴于狀態(tài)和分布的平均場(chǎng)博弈
    控制噪聲有妙法
    “”維譜在艦船輻射噪聲線譜提取中的應(yīng)用
    一種基于白噪聲響應(yīng)的隨機(jī)載荷譜識(shí)別方法
    基于隱馬爾可夫模型的線譜跟蹤技術(shù)
    車內(nèi)噪聲傳遞率建模及計(jì)算
    亚洲男人的天堂狠狠| 欧美老熟妇乱子伦牲交| 黑丝袜美女国产一区| 嫁个100分男人电影在线观看| 中出人妻视频一区二区| 欧美激情久久久久久爽电影 | 欧美色欧美亚洲另类二区 | 亚洲七黄色美女视频| 三级毛片av免费| av天堂久久9| 午夜激情av网站| 亚洲第一av免费看| 俄罗斯特黄特色一大片| 成人国语在线视频| 女人爽到高潮嗷嗷叫在线视频| 日本免费一区二区三区高清不卡 | 亚洲精品av麻豆狂野| 亚洲成人免费电影在线观看| 黄色女人牲交| 久久天躁狠狠躁夜夜2o2o| 色av中文字幕| 岛国在线观看网站| 男女做爰动态图高潮gif福利片 | 国产亚洲精品av在线| 老熟妇仑乱视频hdxx| 中文字幕人妻丝袜一区二区| a在线观看视频网站| 91麻豆av在线| 九色亚洲精品在线播放| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 久久伊人香网站| 激情在线观看视频在线高清| 美女免费视频网站| 老鸭窝网址在线观看| 色av中文字幕| 一边摸一边做爽爽视频免费| 少妇被粗大的猛进出69影院| 国产精品久久久久久人妻精品电影| 久久精品国产99精品国产亚洲性色 | 国产精品99久久99久久久不卡| 日本欧美视频一区| 亚洲精华国产精华精| 国产精品久久电影中文字幕| 亚洲av五月六月丁香网| 在线观看免费日韩欧美大片| 成人18禁高潮啪啪吃奶动态图| 一二三四在线观看免费中文在| 一a级毛片在线观看| 日日干狠狠操夜夜爽| 可以免费在线观看a视频的电影网站| 香蕉久久夜色| 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲| 国产精品秋霞免费鲁丝片| 国产精品野战在线观看| 天天躁夜夜躁狠狠躁躁| 叶爱在线成人免费视频播放| 国产97色在线日韩免费| 色老头精品视频在线观看| 国产一区在线观看成人免费| 久久久精品欧美日韩精品| 国产麻豆69| 丝袜美足系列| 搡老岳熟女国产| 亚洲精品中文字幕一二三四区| 精品久久蜜臀av无| 麻豆成人av在线观看| 国产蜜桃级精品一区二区三区| a级毛片在线看网站| svipshipincom国产片| 国产精品98久久久久久宅男小说| 精品人妻在线不人妻| 中国美女看黄片| 黄色丝袜av网址大全| 亚洲五月色婷婷综合| 亚洲视频免费观看视频| 十八禁人妻一区二区| 久久人妻av系列| 动漫黄色视频在线观看| 久久久久久久午夜电影| 国产成人一区二区三区免费视频网站| 亚洲午夜理论影院| 日韩精品免费视频一区二区三区| 亚洲国产欧美一区二区综合| 在线播放国产精品三级| 成人特级黄色片久久久久久久| 午夜福利,免费看| 成年人黄色毛片网站| 免费观看精品视频网站| 村上凉子中文字幕在线| 99国产精品一区二区蜜桃av| 亚洲第一电影网av| 老汉色∧v一级毛片| 19禁男女啪啪无遮挡网站| 黄色片一级片一级黄色片| 色综合婷婷激情| 村上凉子中文字幕在线| 日韩高清综合在线| 99国产精品99久久久久| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 成人18禁在线播放| 日本免费一区二区三区高清不卡 | 老司机在亚洲福利影院| 精品国产美女av久久久久小说| 男人的好看免费观看在线视频 | 丰满人妻熟妇乱又伦精品不卡| 中文亚洲av片在线观看爽| 国产成年人精品一区二区| 中文字幕人妻熟女乱码| 99久久99久久久精品蜜桃| 无遮挡黄片免费观看| 亚洲一码二码三码区别大吗| 国产av一区在线观看免费| 不卡一级毛片| 国产亚洲精品久久久久5区| 婷婷丁香在线五月| 亚洲成人免费电影在线观看| 欧美激情极品国产一区二区三区| 97超级碰碰碰精品色视频在线观看| 中文字幕精品免费在线观看视频| 国产高清激情床上av| 十八禁人妻一区二区| 国产精品电影一区二区三区| 国产男靠女视频免费网站| 久久人妻福利社区极品人妻图片| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播放欧美日韩| 长腿黑丝高跟| 老司机福利观看| 变态另类成人亚洲欧美熟女 | 国产伦一二天堂av在线观看| 国产主播在线观看一区二区| 国产色视频综合| 看黄色毛片网站| 亚洲国产毛片av蜜桃av| 国产精华一区二区三区| 中文字幕精品免费在线观看视频| 丰满的人妻完整版| 性少妇av在线| 久久精品91蜜桃| 女生性感内裤真人,穿戴方法视频| 99久久精品国产亚洲精品| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久精品电影 | 99精品在免费线老司机午夜| 神马国产精品三级电影在线观看 | 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看| 精品福利观看| 欧美日韩中文字幕国产精品一区二区三区 | netflix在线观看网站| 搡老岳熟女国产| 国产成人影院久久av| 中文字幕av电影在线播放| 亚洲成人精品中文字幕电影| 成在线人永久免费视频| 最新在线观看一区二区三区| 午夜日韩欧美国产| 999久久久国产精品视频| 天堂√8在线中文| 夜夜夜夜夜久久久久| 精品福利观看| 亚洲精品美女久久av网站| 日本vs欧美在线观看视频| 色婷婷久久久亚洲欧美| 亚洲av日韩精品久久久久久密| 免费在线观看亚洲国产| 成人精品一区二区免费| 成人国产一区最新在线观看| 90打野战视频偷拍视频| 国产片内射在线| 精品电影一区二区在线| 麻豆av在线久日| 可以在线观看毛片的网站| 色在线成人网| 真人一进一出gif抽搐免费| 国产亚洲精品av在线| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 一卡2卡三卡四卡精品乱码亚洲| 久久精品成人免费网站| 欧美丝袜亚洲另类 | 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 在线观看舔阴道视频| 国产亚洲精品久久久久久毛片| 男女下面进入的视频免费午夜 | 亚洲av成人不卡在线观看播放网| 国产私拍福利视频在线观看| а√天堂www在线а√下载| 99久久国产精品久久久| 麻豆一二三区av精品| 悠悠久久av| 国产av一区二区精品久久| 99国产综合亚洲精品| 免费在线观看黄色视频的| xxx96com| 亚洲成人免费电影在线观看| 国产精品一区二区三区四区久久 | 天堂动漫精品| 高清毛片免费观看视频网站| 国产片内射在线| 亚洲欧美日韩另类电影网站| 最好的美女福利视频网| 亚洲精品国产精品久久久不卡| 免费看十八禁软件| 亚洲免费av在线视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲情色 制服丝袜| 国产精品国产高清国产av| 黄网站色视频无遮挡免费观看| 在线观看免费视频网站a站| av有码第一页| 最近最新中文字幕大全免费视频| aaaaa片日本免费| 成人欧美大片| 欧美精品啪啪一区二区三区| 久久久久久人人人人人| 亚洲男人天堂网一区| 精品免费久久久久久久清纯| 国产欧美日韩综合在线一区二区| 欧美国产日韩亚洲一区| 韩国av一区二区三区四区| 欧美成人午夜精品| 国产又爽黄色视频| 国产一区二区三区综合在线观看| av超薄肉色丝袜交足视频| 久久人妻av系列| 成人特级黄色片久久久久久久| 成人免费观看视频高清| 最新在线观看一区二区三区| 欧美绝顶高潮抽搐喷水| 日韩 欧美 亚洲 中文字幕| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 9热在线视频观看99| 男女下面进入的视频免费午夜 | 国产三级在线视频| 大陆偷拍与自拍| 国产欧美日韩综合在线一区二区| 看免费av毛片| 悠悠久久av| 国产午夜精品久久久久久| 色精品久久人妻99蜜桃| 久久久国产成人精品二区| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一出视频| 久久国产乱子伦精品免费另类| 国产一区二区三区综合在线观看| 中国美女看黄片| 国产精品亚洲av一区麻豆| 中文字幕久久专区| 亚洲五月色婷婷综合| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 69av精品久久久久久| 操美女的视频在线观看| 91在线观看av| 午夜视频精品福利| 亚洲精品国产精品久久久不卡| 嫁个100分男人电影在线观看| 十分钟在线观看高清视频www| 一本大道久久a久久精品| 中文字幕人成人乱码亚洲影| 夜夜爽天天搞| 国产成人av激情在线播放| 老汉色∧v一级毛片| 天堂√8在线中文| 日韩有码中文字幕| 中文字幕久久专区| 日本免费一区二区三区高清不卡 | 亚洲免费av在线视频| 丁香六月欧美| 不卡一级毛片| 国产91精品成人一区二区三区| 99国产精品一区二区蜜桃av| 成人国语在线视频| 午夜日韩欧美国产| 午夜视频精品福利| 天堂√8在线中文| 久久性视频一级片| 高清在线国产一区| 午夜福利高清视频| 俄罗斯特黄特色一大片| 亚洲第一欧美日韩一区二区三区| 欧美日本视频| 搡老岳熟女国产| 夜夜爽天天搞| 久久国产精品人妻蜜桃| 亚洲中文字幕一区二区三区有码在线看 | 国产成人欧美| 久久香蕉国产精品| 久久这里只有精品19| 国产伦一二天堂av在线观看| 变态另类成人亚洲欧美熟女 | 在线观看日韩欧美| 99国产精品99久久久久| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 欧美成人免费av一区二区三区| 欧美精品啪啪一区二区三区| 欧美黑人精品巨大| 黄片大片在线免费观看| 欧美最黄视频在线播放免费| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 狂野欧美激情性xxxx| 亚洲午夜精品一区,二区,三区| 精品人妻在线不人妻| 青草久久国产| 色播在线永久视频| 一级a爱片免费观看的视频| 人成视频在线观看免费观看| 正在播放国产对白刺激| 妹子高潮喷水视频| 欧美日韩中文字幕国产精品一区二区三区 | 在线观看日韩欧美| 91在线观看av| av欧美777| 18美女黄网站色大片免费观看| 50天的宝宝边吃奶边哭怎么回事| 国产高清视频在线播放一区| 久久人妻熟女aⅴ| 亚洲av电影不卡..在线观看| 亚洲人成网站在线播放欧美日韩| 亚洲av日韩精品久久久久久密| 老司机午夜福利在线观看视频| 久久国产精品影院| 成人免费观看视频高清| 欧美中文日本在线观看视频| 亚洲欧美精品综合一区二区三区| 国产午夜精品久久久久久| 国产单亲对白刺激| 午夜激情av网站| 国产黄a三级三级三级人| 亚洲第一欧美日韩一区二区三区| 夜夜看夜夜爽夜夜摸| 极品教师在线免费播放| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看 | av电影中文网址| 美女大奶头视频| 亚洲人成电影观看| 咕卡用的链子| 他把我摸到了高潮在线观看| 国产精品美女特级片免费视频播放器 | 午夜久久久在线观看| 99久久久亚洲精品蜜臀av| 国产伦人伦偷精品视频| 国内精品久久久久精免费| 亚洲美女黄片视频| 午夜免费激情av| 在线观看舔阴道视频| 久久精品国产清高在天天线| 99久久精品国产亚洲精品| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲| 高清在线国产一区| 久久久久亚洲av毛片大全| www.www免费av| 国产免费男女视频| 天堂动漫精品| 免费不卡黄色视频| 欧美日韩瑟瑟在线播放| 两个人免费观看高清视频| 日本vs欧美在线观看视频| 九色亚洲精品在线播放| 亚洲性夜色夜夜综合| 亚洲情色 制服丝袜| 中文字幕人成人乱码亚洲影| 无人区码免费观看不卡| 亚洲电影在线观看av| 欧美在线一区亚洲| 亚洲av片天天在线观看| 亚洲av成人av| 精品久久久久久成人av| 亚洲全国av大片| 丝袜人妻中文字幕| 美国免费a级毛片| 国产亚洲欧美在线一区二区| 91麻豆av在线| 黄色 视频免费看| 性色av乱码一区二区三区2| 9色porny在线观看| 美女大奶头视频| 18美女黄网站色大片免费观看| 最近最新中文字幕大全电影3 | 一本大道久久a久久精品| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 咕卡用的链子| 国产三级黄色录像| 国产精品 欧美亚洲| 成人国产一区最新在线观看| 一个人观看的视频www高清免费观看 | 麻豆国产av国片精品| 国产乱人伦免费视频| videosex国产| 国产在线精品亚洲第一网站| 日韩欧美国产一区二区入口| 视频在线观看一区二区三区| 欧美乱码精品一区二区三区| 88av欧美| 午夜福利成人在线免费观看| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 精品国产乱子伦一区二区三区| 精品久久久久久,| 69精品国产乱码久久久| 少妇熟女aⅴ在线视频| 黄片小视频在线播放| 两人在一起打扑克的视频| 亚洲欧美日韩另类电影网站| 久久中文字幕一级| 国内久久婷婷六月综合欲色啪| 啦啦啦韩国在线观看视频| 纯流量卡能插随身wifi吗| 亚洲五月天丁香| 亚洲av成人一区二区三| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 久久婷婷成人综合色麻豆| 电影成人av| 亚洲最大成人中文| 国产午夜精品久久久久久| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 18禁国产床啪视频网站| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 丰满的人妻完整版| 亚洲第一电影网av| 国产精品久久久人人做人人爽| 国产精品永久免费网站| 国产精品久久久人人做人人爽| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 级片在线观看| 国产精品免费一区二区三区在线| 久久热在线av| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频| 99热只有精品国产| 国产在线精品亚洲第一网站| 天堂动漫精品| 亚洲 欧美一区二区三区| 黄色视频不卡| 男男h啪啪无遮挡| 免费高清在线观看日韩| 99精品在免费线老司机午夜| 1024香蕉在线观看| 正在播放国产对白刺激| 午夜福利一区二区在线看| 法律面前人人平等表现在哪些方面| 亚洲精品久久成人aⅴ小说| 色尼玛亚洲综合影院| 亚洲激情在线av| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 精品一区二区三区av网在线观看| 久久精品影院6| 波多野结衣巨乳人妻| 日韩视频一区二区在线观看| 韩国av一区二区三区四区| 精品国产乱码久久久久久男人| 欧美性长视频在线观看| 日日干狠狠操夜夜爽| 成年版毛片免费区| 又大又爽又粗| 日韩中文字幕欧美一区二区| 大香蕉久久成人网| 亚洲成人久久性| 美女 人体艺术 gogo| 久久久久亚洲av毛片大全| 欧美黄色淫秽网站| 国产在线观看jvid| 精品久久久久久成人av| 亚洲激情在线av| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 看片在线看免费视频| 成在线人永久免费视频| 欧美绝顶高潮抽搐喷水| 69av精品久久久久久| 久热爱精品视频在线9| 黄片大片在线免费观看| 老司机靠b影院| 非洲黑人性xxxx精品又粗又长| 久久久国产欧美日韩av| 欧美成人免费av一区二区三区| 一区二区日韩欧美中文字幕| 日韩欧美国产在线观看| 亚洲久久久国产精品| 成人欧美大片| 大陆偷拍与自拍| 岛国在线观看网站| 视频在线观看一区二区三区| 亚洲电影在线观看av| 操出白浆在线播放| 国产三级在线视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久人人做人人爽| 91老司机精品| av有码第一页| 无限看片的www在线观看| 国产成人精品无人区| 一边摸一边做爽爽视频免费| 国产熟女午夜一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 国产精品亚洲av一区麻豆| 男女下面进入的视频免费午夜 | 欧美色欧美亚洲另类二区 | 日本vs欧美在线观看视频| 大型黄色视频在线免费观看| 国产欧美日韩一区二区精品| 免费在线观看影片大全网站| 一区二区三区精品91| 国产一区二区三区视频了| 好男人在线观看高清免费视频 | 亚洲欧美激情在线| 大型av网站在线播放| 中文字幕精品免费在线观看视频| 国产av精品麻豆| 色播在线永久视频| 露出奶头的视频| 搡老熟女国产l中国老女人| 免费女性裸体啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 91av网站免费观看| 不卡av一区二区三区| 日韩欧美免费精品| 色婷婷久久久亚洲欧美| 欧美成人一区二区免费高清观看 | 久久国产乱子伦精品免费另类| 日本vs欧美在线观看视频| 国产亚洲精品第一综合不卡| 国产成人欧美在线观看| 国产一区在线观看成人免费| 精品久久久久久成人av| 亚洲视频免费观看视频| 久久热在线av| 黄色视频不卡| 91九色精品人成在线观看| 叶爱在线成人免费视频播放| 中文字幕高清在线视频| 成在线人永久免费视频| 欧美精品啪啪一区二区三区| 一个人观看的视频www高清免费观看 | 国产欧美日韩一区二区精品| 久久久久久人人人人人| 美女 人体艺术 gogo| 无遮挡黄片免费观看| 成熟少妇高潮喷水视频| 免费av毛片视频| 九色国产91popny在线| 十八禁网站免费在线| 窝窝影院91人妻| 亚洲性夜色夜夜综合| 日韩国内少妇激情av| 电影成人av| 国产一级毛片七仙女欲春2 | 日本一区二区免费在线视频| 成人国产一区最新在线观看| 两人在一起打扑克的视频| 91成人精品电影| 中文字幕色久视频| 亚洲片人在线观看| 国产高清videossex| 岛国视频午夜一区免费看| 亚洲色图综合在线观看| 90打野战视频偷拍视频| 女人爽到高潮嗷嗷叫在线视频| 免费观看人在逋| 欧美乱码精品一区二区三区| 国内毛片毛片毛片毛片毛片| 一本大道久久a久久精品| 制服丝袜大香蕉在线| 欧美日韩瑟瑟在线播放| 色精品久久人妻99蜜桃| 身体一侧抽搐| aaaaa片日本免费| 啦啦啦免费观看视频1| 成人18禁在线播放| 中文字幕人妻丝袜一区二区| 在线国产一区二区在线| 免费女性裸体啪啪无遮挡网站| 国产精品乱码一区二三区的特点 | 精品一区二区三区av网在线观看| 亚洲久久久国产精品| 日日摸夜夜添夜夜添小说| 国产成人精品在线电影| 国产成+人综合+亚洲专区| 老鸭窝网址在线观看| 国产99白浆流出| 国产成人一区二区三区免费视频网站| 村上凉子中文字幕在线| 国产精品久久电影中文字幕| 88av欧美| 搡老熟女国产l中国老女人| 久久人妻熟女aⅴ| 女同久久另类99精品国产91| 中文字幕人妻熟女乱码| 天天躁狠狠躁夜夜躁狠狠躁| 午夜久久久在线观看| 亚洲男人天堂网一区| 看黄色毛片网站| 亚洲aⅴ乱码一区二区在线播放 | www.www免费av|