• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-order topological Anderson insulator on the Sierpi′nski lattice

    2024-01-25 07:11:34HuanChen陳煥ZhengRongLiu劉崢嶸RuiChen陳銳andBinZhou周斌
    Chinese Physics B 2024年1期
    關(guān)鍵詞:周斌

    Huan Chen(陳煥), Zheng-Rong Liu(劉崢嶸), Rui Chen(陳銳),?, and Bin Zhou(周斌),2,?

    1Department of Physics,Hubei University,Wuhan 430062,China

    2Key Laboratory of Intelligent Sensing System and Security of Ministry of Education,Hubei University,Wuhan 430062,China

    Keywords: fractal system,topological insulator

    1.Introduction

    Fractals are graphs with self-similarity, in which each constituent exhibits the same character as the whole.[1,2]In recent years,theoretical works concerning quantum effects on fractal lattices have been extensively studied, such as Anderson localization,[3–5]electronic[6,7]and optical conductivity,[8]plasmon dispersion relations,[9]and other related topics.[10–14]Despite being embedded in integer dimensional space, a fractal lattice is characterized by a non-integer Hausdorff dimension.[15]Due to its unique characteristics and motivated by the experimental developments,[16,17]the fractal lattices have attracted much attention in recent years.

    On the other hand, tremendous efforts have been devoted to the study of topological systems in integer dimensions during the past two decades.[18–21]Nowadays, researchers have extended these topological phases to fractal systems,which allow for new topological phenomena that are impossible in crystals.For example, topological phases in fractals do not possess a well-defined bulk like their crystalline counterparts, but they are able to support topologically protected states on the boundary.[22]Topological phases have been widely investigated in different fractal systems,[23–25]such as the Chern insulator,[26–31]higher-order topological insulator,[32–34]non-Hermitian topological insulator,[35]and topological superconductor.[36,37]The second-order topological insulator (SOTI) in fractals exhibits unique inner corner modes.[32]The Chern insulator in fractals is protected by the robust mobility gap instead of the direct bandgap in conventional topological insulators.[33]In the meantime, topological phases in fractals have been experimentally reported in various systems, such as the Chern insulator[33]and higherorder topological insulator[34,38]in acoustic systems and Floquet topological insulator[22,39]and higher-order topological insulator[24]in photonic systems.

    Moreover, the interplay between disorder and dimensionality plays a critical role in the research of topological systems.The disorder-induced topological phase, which is referred to as the topological Anderson insulator (TAI),was first proposed by Liet al.[40]Since then, the TAI phases have been investigated in numerous systems in integer dimensions.[41–58]So far, the TAI phase has been observed experimentally in one-dimensional disordered atomic wires,[59]photonic platforms,[60–62]and a quantum simulator on a superconducting-circuit device.[63]Recently, the TAI phase has been proposed to be realized in an electric circuit.[64]However, it is worth highlighting that the disorder effect on fractal systems remains an unexplored territory.

    Here, we investigate the disorder-induced topological phase transition on the Sierpi′nski lattice, which is one of the best-known examples of a fractal system.Depending on the topological mass,the fractal system supports a normal insulator(NI)phase with a zero topological index and a SOTI phase with a quantized quadrupole moment.We find that the SOTI on the Sierpi′nski lattice is robust against weak disorder.Surprisingly,we reveal that disorder can induce a phase transition from the NI phase to the SOTI phase,indicating the occurrence of the higher-order TAI phase in the fractal system.Moreover,the disorder-induced phase is further confirmed by calculating the energy spectrum and the corresponding probability distribution.

    This work is organized as follows.We give a brief description of the Sierpi′nski lattice in Subsection 2.1,introduce the tight-binding Hamiltonian in the fractal system in Subsection 2.2,and adopt the quadrupole moment to characterize the system in Subsection 2.3.Then we demonstrate that the topological nature of the system can be captured by the quadrupole moment in Section 3.1, discuss the disorder effects on the fractal system in Subsection 3.2, and show that the disorderinduced phase transitions can be further confirmed by calculating the energy spectrum and the probability distributions in Subsection 3.3.Finally, we make a summary and a brief discussion in Section 4.

    2.Model and method

    2.1.Sierpi′nski lattice

    The Sierpi′nski lattice can be regarded as the lattice obtained after the manufacture of defects following certain laws on a square lattice.[26,27]The initial unit contains eight sites(the green sites in Fig.1).This unit is replicated 8 times to obtain the structure of the next generation, which contains an inner hole without lattice site (the blue sites in Fig.1).This operation is repeated to obtain the red sites in Fig.1.Each iteration makes the number of lattice sites become eight times that of the previous generation by copying and moving.In this way, we can easily describe the fractal lattice of a Sierpi′nski carpet.For a certain generationf,the site numberN=8f.For the iterationsf ?1,we obtain an approximation of the Sierpi′nski carpet with fractional Hausdorff dimensiondH=ln8/ln3?1.89.

    Fig.1.Schematic illustration of the Sierpi′nski lattices.Here,the green,blue,and red sites make up the first,second,and third generations with the site numbers 8,64,and 512,respectively.

    2.2.Hamiltonian

    The tight-binding Hamiltonian of a quadrupole insulator on the Sierpi′nski lattice has the following form:[32,65]

    where

    describes a first-order topological insulator protected by timereversal symmetry.Here,the long-range hopping between two different sites is considered andl(rjk)= e1?rjk/r0corresponds to the spatial decay factor of hopping amplitudes, whererjkis the lattice spacing between sitesjandk, andr0is the decay length.φjkis the polar angle between sitesjandk.σ1,2,3andτ1,2,3are the Pauli matrices acting on the spin and orbital spaces,respectively.σ0andτ0are identity matrices.t1andt2denote the hopping amplitudes.is the creation operator at sitejdetermined by spin direction↑,↓and orbital indexα,β.The second part

    is the Wilson mass term,which breaks the time-reversal symmetry.The Wilson mass term hybridizes and then gaps out the counter-propagating gapless edge modes of the system.Moreover,H2causes the sign of the domain-wall mass to flip four times under 2πrotation,which breaks four-fold rotational symmetryC4.[66–68]In the clean limit,the HamiltonianHrespects the combined symmetryC4T,[32,65]whereT=s2τ0Kis the time-reversal symmetry andKis the complex conjugation.For the rest of the discussion,we setr0=1,t1=t2=1,g=1.The last term

    depicts the Anderson-type disorder.Ujis a set of uniform random numbers distributed within the range of [?W/2,W/2],withWbeing the disorder strength.

    2.3.Quadrupole

    We adopt the quadrupole moment to characterize the fractal system,which is given by[32,65]

    It should be noticed thatQxyis a gauge-dependent quantity for a finite-size fractal system and becomes gaugeinvariant in the thermodynamic limit.[32]In this sense,strictly speaking,Qxyis only available for an infinite system.However, we find that for a large-enough system withf=3,Qxyis able to capture the topology nature of the system(see Subsection 3.1 below).Therefore, in this work, we still employQxyto characterize the topological properties of the finite-size system.

    3.Numerical investigation

    In this section,we first show that the quadrupole momentQxycan indeed capture the topology nature of the fractal system.Subsequently,we investigate disorder effects on the fractal system.Moreover, all the numerical calculations are performed on the third generation of the Sierpi′nski lattices.

    3.1.Clean limit

    We start with the case of clean limit, i.e.,W=0.Figures 2(a)–2(d) show the energy spectrum and the corresponding probability distribution of the fractal system on the Sierpi′nski lattices withm=0.The system hosts corner modes residing on both the outer corners[Fig.2(b)]and the inner corners[Fig.2(c)].Moreover,it is found that the system is characterized by a quantized quadrupole moment withQxy=0.5.The quantized topological index and the emergence of the corner models confirm that the system corresponds to a SOTI phase.

    Fig.2.(a) Energy spectrum of the fractal system constructed on the third generation of the Sierpi′nski lattice with m=0.Panels (b), (c),and(d)show the probability distributions of the red,yellow,and green energy modes labeled in(a),respectively.(e)The quadrupole moment Qxy and(f)the energy spectrum as functions of the parameter m.

    Moreover, the energy of the four outer corner modes is nearly zero[the red points in Fig.2(a)]and the four inner corner modes open a tiny energy gap in the spectrum[the yellow points in Fig.2(a)].In addition, there exist 32 energy modes inside the bulk gap [the green points in Fig.2(a)], with their probability distributions localized around a series of secondary inner boundaries[Fig.2(d)].

    Figures 2(a) and 2(b) show the quadrupole momentQxyand the corresponding energy spectrum as functions of the parametermon the fractal system,respectively.We find that the SOTI phase characterized byQxy=0.5 always hosts four zeroenergy inner corner modes.The other in-gap localized states are not that stable compared to the four outer corner modes.Therefore,we show that the quadrupole momentQxycan capture the topology nature of the fractal system.

    3.2.Disorder effects

    Now, we study the disorder effects on the fractal system.For the SOTI phase withQxy=0.5, the results are as expected [Fig.3(a)].With increasing disorder strengthW,Qxykeeps the quantized value untilWexceeds certain values.Therefore, similar to the previous studies on disordered topological systems,[40,41]the topological nature of the SOTI phase in the fractal system is also robust against weak disorder.Further increasing the disorder strength,the quantizedQxyis suppressed by disorder,then gradually decreases and finally collapses to zero.

    Fig.3.The quadrupole moment Qxy as a function of the disorder strength W for (b) m=?1, 0, 1, 2 and (c) m=2.2, 2.5, 3, respectively.The error bar represents the standard deviation of 500 samples.(c)The quadrupole moment Qxy calculated in the(W,m)plane.In(c),each data point is averaged on 50 independent disorder configurations.

    In the clean limit,the NI phase is characterized byQxy=0[Fig.3(a)].With increasing disorder strength, the disorderaveraged quadrupole momentQxyincreases and then forms a quantized plateau withQxy=0.5.The quantized plateau is observed for a certain range of disorder strength,and it decreases and finally disappears with increasing the disorder strength.The zero fluctuation of the quantized plateau indicates that it corresponds to a disorder-induced SOTI phase.Moreover,we plot the diagrams of the system as a function ofmandWin Fig.3(c).The disorder-induced topological phase transitions can be observed more clearly.

    3.3.Disorder-averaged energy spectrum and probability

    Here, we show that the above disorder-induced phenomenon can be further confirmed by checking the disorderaveraged spectrum and the corresponding probability distribution.

    Figure 4(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=0.In the clean limit (W=0), the system corresponds to a SOTI and hosts eight nearly-zero-energy modes with their probability distributions localized on the four outer corners and the four inner corners[Fig.4(b)].With the increasing disorder strength,the bulk gap diminishes and vanishes for aboutW=6.This is in accordance with the results shown in Fig.3(a), where the quantizedQxyalso starts to collapse whenW= 6.Further increasing the disorder strength, the four inner corner modes first disappear[Fig.4(c)],followed by the disappearance of all corner modes[Fig.4(d)].

    Fig.4.(a) The energy spectrum as a function of the disorder strength W for the SOTI phase with m=0.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 8, and 11, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    Figure 5(a)shows the disorder-averaged energy spectrum as a function of the disorder strengthWform=2.2.In the clean limit (W=0), the system corresponds to an NI and no corner modes appear[Fig.5(b)].With the increasing disorder strength,the bulk gap decreases and vanishes for aboutW=4.This is in accordance with the results shown in Fig.3(b),where the quantizedQxyemerges whenW=4.Further increasing the disorder strength, the eight corner modes appear [Fig.5(c)]and finally are suppressed by strong disorder[Fig.5(d)].

    Fig.5.(a) The energy spectrum as a function of the disorder strength W for the NI phase with m=2.2.(b)–(d)Disorder-averaged probability distribution of the middle eight energy modes with disorder strength W =0, 9, and 14, respectively.Here, each data is obtained after averaging on 500 random disorder configurations.

    4.Conclusion

    In this work, we study the disorder effects on a fractal system constructed on the Sierpi′nski lattice.We show that SOTI phase on the fractal system is robust against weak disorder.Moreover, we reveal a disorder-induced SOTI phase characterized by an emergent quantized quadrupole moment withQxy= 0.5.Finally, the disorder induced phenomena on the fractal system are further confirmed by checking the disorder-averaged energy spectra and the corresponding probability distributions.In crystals, disordered-induced higherorder topological phase manifests localized states at external corners.[57,58]However, in fractal lattices, the disorderinduced phases manifest localized states at both internal and external corners.This property represents a unique characteristic of the disorder-induced second-order topological phase in the fractal system.

    We expect that the disorder-induced SOTI phase in the fractal system can be experimentally realized in some metamaterials in the future.The SOTI phases in fractal systems have been experimentally observed in both the acoustic[34,38]and the photonic[24]systems.On the other hand, the disorder effects have been introduced in both the acoustic[69,70]and the photonic[60–62]systems.The above experiments offer the possibility of future experimental realization of our proposal.

    Acknowledgements

    R.C.acknowledges the support of the National Natural Science Foundation of China (Grant No.12304195) and the Chutian Scholars Program in Hubei Province.B.Z.was supported by the National Natural Science Foundation of China (Grant No.12074107), the program of outstanding young and middle-aged scientific and technological innovation team of colleges and universities in Hubei Province(Grant No.T2020001), and the innovation group project of the Natural Science Foundation of Hubei Province of China (Grant No.2022CFA012).Z.-R.L.was supported by the Postdoctoral Innovation Research Program in Hubei Province (Grant No.351342).

    猜你喜歡
    周斌
    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
    周斌書法作品欣賞
    用“秘密”換來“停車自由”,泄露隱私不可取
    分憂(2021年7期)2021-07-22 19:19:46
    你若不離不棄 我必生死相依
    古怪的嫁妝
    古怪的嫁妝
    釘尖球拍
    金山(2017年4期)2017-06-08 13:43:46
    沉重的“十字架”
    A Brief Introduction of Newspaper from the Cultural Aspect
    沉重的“十字架”
    湖北教育(2016年31期)2016-03-16 00:40:17
    久久久久视频综合| 久久99一区二区三区| 欧美日韩黄片免| 老司机深夜福利视频在线观看 | 亚洲欧美中文字幕日韩二区| 国产一区亚洲一区在线观看| 午夜老司机福利片| 一区二区日韩欧美中文字幕| 国产精品亚洲av一区麻豆| 国产一区二区三区av在线| 香蕉丝袜av| 亚洲成人国产一区在线观看 | 欧美日韩av久久| 在线观看免费高清a一片| 国产亚洲欧美精品永久| 大香蕉久久网| 国产视频一区二区在线看| 日韩大片免费观看网站| 国产熟女午夜一区二区三区| 日韩,欧美,国产一区二区三区| 国产一区二区在线观看av| 在线天堂中文资源库| 国产成人免费观看mmmm| 免费在线观看完整版高清| 国产在线一区二区三区精| 在现免费观看毛片| 黑人猛操日本美女一级片| 少妇人妻 视频| 国产成人精品久久二区二区91| 午夜免费成人在线视频| 亚洲伊人久久精品综合| 国产色视频综合| 一级片免费观看大全| 最近中文字幕2019免费版| 亚洲人成网站在线观看播放| 美女中出高潮动态图| 欧美成人精品欧美一级黄| 亚洲精品在线美女| 午夜视频精品福利| 亚洲国产欧美日韩在线播放| a级毛片黄视频| 国产老妇伦熟女老妇高清| 50天的宝宝边吃奶边哭怎么回事| 电影成人av| 国产三级黄色录像| 亚洲精品在线观看二区| 在线观看www视频免费| 国产精品亚洲美女久久久| 久99久视频精品免费| 99在线人妻在线中文字幕| 久久精品夜夜夜夜夜久久蜜豆 | 中文资源天堂在线| 久久精品国产99精品国产亚洲性色| 69av精品久久久久久| or卡值多少钱| 在线免费观看的www视频| 久久精品人妻少妇| 在线观看免费视频日本深夜| 脱女人内裤的视频| www国产在线视频色| www.www免费av| 成在线人永久免费视频| 欧美激情 高清一区二区三区| 国产又爽黄色视频| 国内少妇人妻偷人精品xxx网站 | 性色av乱码一区二区三区2| 成年免费大片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 一级黄色大片毛片| av电影中文网址| 国产精品久久电影中文字幕| 草草在线视频免费看| 成人av一区二区三区在线看| 国产亚洲精品一区二区www| 亚洲在线自拍视频| 色综合欧美亚洲国产小说| 欧美日韩一级在线毛片| 日韩精品免费视频一区二区三区| 免费看a级黄色片| 一本精品99久久精品77| 久久这里只有精品19| 欧美性猛交╳xxx乱大交人| 国产99白浆流出| 欧美最黄视频在线播放免费| 黄片播放在线免费| 成人18禁高潮啪啪吃奶动态图| 日韩欧美国产在线观看| 中文在线观看免费www的网站 | 99久久99久久久精品蜜桃| 曰老女人黄片| 一级a爱片免费观看的视频| 两个人免费观看高清视频| 国产黄a三级三级三级人| 1024视频免费在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲第一欧美日韩一区二区三区| 午夜日韩欧美国产| 91在线观看av| 久久狼人影院| 亚洲精品中文字幕一二三四区| 午夜精品在线福利| 国产精品 欧美亚洲| av免费在线观看网站| 午夜免费成人在线视频| 国产精品精品国产色婷婷| 两性夫妻黄色片| 最新在线观看一区二区三区| 国产精品99久久99久久久不卡| 日韩欧美国产一区二区入口| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 精品久久蜜臀av无| 看片在线看免费视频| 啦啦啦韩国在线观看视频| 亚洲国产高清在线一区二区三 | 午夜精品在线福利| 观看免费一级毛片| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| 欧美成人一区二区免费高清观看 | 亚洲久久久国产精品| 国产黄色小视频在线观看| 在线观看免费午夜福利视频| 久久热在线av| 日韩欧美国产一区二区入口| 99国产综合亚洲精品| 后天国语完整版免费观看| 日本在线视频免费播放| 日本成人三级电影网站| 男女做爰动态图高潮gif福利片| 日韩成人在线观看一区二区三区| 亚洲成人免费电影在线观看| 日韩欧美一区二区三区在线观看| 国产一级毛片七仙女欲春2 | 国产亚洲精品av在线| 99在线视频只有这里精品首页| 天天添夜夜摸| 免费高清在线观看日韩| 亚洲中文av在线| 亚洲精品国产精品久久久不卡| 欧美午夜高清在线| 18禁黄网站禁片免费观看直播| 精品久久久久久,| 亚洲美女黄片视频| 99国产极品粉嫩在线观看| 成人国产一区最新在线观看| 人人妻人人澡欧美一区二区| 一进一出好大好爽视频| 满18在线观看网站| 欧美另类亚洲清纯唯美| 免费无遮挡裸体视频| 一区福利在线观看| 午夜福利在线观看吧| 少妇的丰满在线观看| 国产黄片美女视频| 日本 av在线| 午夜亚洲福利在线播放| xxxwww97欧美| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 亚洲黑人精品在线| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| 国产一区二区在线av高清观看| 91国产中文字幕| 国内精品久久久久精免费| 成人特级黄色片久久久久久久| 一a级毛片在线观看| 99国产综合亚洲精品| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 亚洲熟女毛片儿| 久久狼人影院| 国产成人精品无人区| 国产精品 国内视频| 午夜免费鲁丝| 亚洲 欧美 日韩 在线 免费| АⅤ资源中文在线天堂| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 美女免费视频网站| 日本免费a在线| 午夜精品在线福利| 我的亚洲天堂| 免费在线观看影片大全网站| 国产一区二区激情短视频| 69av精品久久久久久| 国产精品一区二区免费欧美| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站 | 午夜福利成人在线免费观看| 激情在线观看视频在线高清| 国产免费av片在线观看野外av| a级毛片在线看网站| 一进一出抽搐动态| 黄色a级毛片大全视频| 久久香蕉精品热| 88av欧美| 欧美日韩福利视频一区二区| 脱女人内裤的视频| www日本黄色视频网| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 美女国产高潮福利片在线看| 亚洲国产看品久久| 欧美zozozo另类| 老司机福利观看| 正在播放国产对白刺激| 757午夜福利合集在线观看| 精品久久久久久,| 国产亚洲精品久久久久5区| 无人区码免费观看不卡| 一级黄色大片毛片| 国产精品九九99| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 白带黄色成豆腐渣| 91成年电影在线观看| 国产日本99.免费观看| 色综合婷婷激情| 麻豆成人av在线观看| 欧美性猛交黑人性爽| 99热6这里只有精品| 午夜日韩欧美国产| av在线播放免费不卡| 亚洲第一青青草原| 亚洲第一欧美日韩一区二区三区| 日本成人三级电影网站| 久久中文看片网| 69av精品久久久久久| 麻豆一二三区av精品| 嫩草影视91久久| 黄频高清免费视频| 欧美成人免费av一区二区三区| 精品高清国产在线一区| av中文乱码字幕在线| 国产精品精品国产色婷婷| 狂野欧美激情性xxxx| 一本大道久久a久久精品| ponron亚洲| 久久精品国产亚洲av香蕉五月| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 激情在线观看视频在线高清| 国产一区二区激情短视频| 两人在一起打扑克的视频| 国产亚洲精品一区二区www| 精品国产一区二区三区四区第35| 夜夜爽天天搞| 一级毛片高清免费大全| 欧美日本亚洲视频在线播放| 国产精品 国内视频| 亚洲第一电影网av| 曰老女人黄片| 成在线人永久免费视频| 校园春色视频在线观看| 在线观看免费视频日本深夜| 哪里可以看免费的av片| 国产亚洲精品久久久久5区| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区高清视频在线| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久久久久 | 黄片小视频在线播放| 夜夜爽天天搞| 成人18禁高潮啪啪吃奶动态图| 美国免费a级毛片| 日本黄色视频三级网站网址| 日韩中文字幕欧美一区二区| 国产野战对白在线观看| 免费av毛片视频| 黑丝袜美女国产一区| 精品久久久久久久末码| 1024手机看黄色片| 欧美日韩福利视频一区二区| 三级毛片av免费| 日韩欧美国产在线观看| 99国产精品99久久久久| 国产精品一区二区精品视频观看| 黄片播放在线免费| 国产乱人伦免费视频| 国产精品综合久久久久久久免费| 亚洲 国产 在线| 精华霜和精华液先用哪个| 久久天堂一区二区三区四区| 香蕉丝袜av| av福利片在线| 最新在线观看一区二区三区| 免费一级毛片在线播放高清视频| 99国产极品粉嫩在线观看| 男女视频在线观看网站免费 | a级毛片a级免费在线| 亚洲欧洲精品一区二区精品久久久| 国产午夜福利久久久久久| av有码第一页| 国产亚洲欧美精品永久| 一进一出抽搐gif免费好疼| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 熟妇人妻久久中文字幕3abv| 18禁国产床啪视频网站| www国产在线视频色| 婷婷亚洲欧美| 精品国产美女av久久久久小说| 国产精华一区二区三区| 欧美日本视频| 在线十欧美十亚洲十日本专区| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 亚洲av五月六月丁香网| 亚洲熟妇熟女久久| 色综合欧美亚洲国产小说| 此物有八面人人有两片| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 国产精品综合久久久久久久免费| 少妇裸体淫交视频免费看高清 | 一二三四社区在线视频社区8| 午夜精品在线福利| 亚洲av成人一区二区三| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片 | 国产精品亚洲美女久久久| 国产精品香港三级国产av潘金莲| 久9热在线精品视频| 无限看片的www在线观看| 午夜福利一区二区在线看| 1024视频免费在线观看| 成人国产综合亚洲| 亚洲无线在线观看| 黄色丝袜av网址大全| 久久久久久人人人人人| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清在线视频| 亚洲国产看品久久| 一级片免费观看大全| 不卡av一区二区三区| 国产成年人精品一区二区| 非洲黑人性xxxx精品又粗又长| 美女国产高潮福利片在线看| 亚洲男人天堂网一区| 最新在线观看一区二区三区| 亚洲精品国产区一区二| 黄色视频,在线免费观看| 丁香六月欧美| 国内揄拍国产精品人妻在线 | 一级毛片女人18水好多| 国产精品综合久久久久久久免费| 欧美人与性动交α欧美精品济南到| 熟妇人妻久久中文字幕3abv| 哪里可以看免费的av片| 国产区一区二久久| 此物有八面人人有两片| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| av欧美777| 精品免费久久久久久久清纯| 日韩大尺度精品在线看网址| 免费看a级黄色片| 欧美色欧美亚洲另类二区| 欧美 亚洲 国产 日韩一| 美女高潮喷水抽搐中文字幕| 久久久精品国产亚洲av高清涩受| 日韩欧美国产一区二区入口| tocl精华| 曰老女人黄片| 免费高清在线观看日韩| 国产激情偷乱视频一区二区| 久久精品国产亚洲av香蕉五月| 国产成人一区二区三区免费视频网站| 亚洲av五月六月丁香网| 色综合站精品国产| 正在播放国产对白刺激| 亚洲中文字幕一区二区三区有码在线看 | 国产成年人精品一区二区| 欧美中文日本在线观看视频| 国产精品亚洲一级av第二区| 51午夜福利影视在线观看| 午夜免费鲁丝| 欧美黄色片欧美黄色片| 成人欧美大片| 女性生殖器流出的白浆| 在线观看舔阴道视频| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 国产精品爽爽va在线观看网站 | 亚洲激情在线av| 久久午夜综合久久蜜桃| 久久亚洲精品不卡| 亚洲国产精品久久男人天堂| 黄片小视频在线播放| 91老司机精品| 欧美日韩中文字幕国产精品一区二区三区| 热re99久久国产66热| 女性生殖器流出的白浆| 国产精品亚洲美女久久久| 一夜夜www| 亚洲午夜精品一区,二区,三区| 男女视频在线观看网站免费 | 国产成人av激情在线播放| 深夜精品福利| 级片在线观看| 日韩精品青青久久久久久| 99热6这里只有精品| 亚洲中文字幕日韩| 国产精品日韩av在线免费观看| 人人妻人人看人人澡| 丰满的人妻完整版| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 久久久久国内视频| 无限看片的www在线观看| 国产精品,欧美在线| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| 美女高潮到喷水免费观看| 香蕉国产在线看| 好看av亚洲va欧美ⅴa在| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 亚洲五月色婷婷综合| 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| avwww免费| 国产欧美日韩一区二区精品| www.自偷自拍.com| 好男人在线观看高清免费视频 | 国产蜜桃级精品一区二区三区| 免费看日本二区| 老熟妇仑乱视频hdxx| 啪啪无遮挡十八禁网站| 亚洲中文字幕日韩| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 亚洲黑人精品在线| 日韩精品中文字幕看吧| 免费观看人在逋| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费| 亚洲成国产人片在线观看| 在线观看66精品国产| 成在线人永久免费视频| 免费无遮挡裸体视频| 欧美黑人欧美精品刺激| 亚洲av成人一区二区三| 亚洲熟妇中文字幕五十中出| 最新在线观看一区二区三区| 婷婷六月久久综合丁香| 国产单亲对白刺激| 午夜免费观看网址| 国产激情久久老熟女| 久久久国产欧美日韩av| 黄色片一级片一级黄色片| 精品不卡国产一区二区三区| 两个人视频免费观看高清| 亚洲午夜理论影院| 搡老妇女老女人老熟妇| 脱女人内裤的视频| 国产精品av久久久久免费| 国产在线精品亚洲第一网站| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 男人舔女人的私密视频| 午夜福利视频1000在线观看| 国产精品一区二区精品视频观看| 亚洲av熟女| 亚洲国产日韩欧美精品在线观看 | 国内揄拍国产精品人妻在线 | 亚洲avbb在线观看| 欧美又色又爽又黄视频| 19禁男女啪啪无遮挡网站| 一级毛片精品| 欧美在线黄色| 99国产精品一区二区蜜桃av| 色尼玛亚洲综合影院| 国产精品野战在线观看| 亚洲成人精品中文字幕电影| 一级片免费观看大全| 欧美成人免费av一区二区三区| 国产精品99久久99久久久不卡| 一进一出好大好爽视频| 亚洲五月天丁香| 日韩大尺度精品在线看网址| 日韩欧美国产一区二区入口| 老鸭窝网址在线观看| 制服人妻中文乱码| 精品国产亚洲在线| 欧美性猛交╳xxx乱大交人| 俺也久久电影网| 看免费av毛片| ponron亚洲| 男人操女人黄网站| 亚洲午夜理论影院| 两个人免费观看高清视频| 一进一出抽搐动态| 不卡av一区二区三区| 少妇被粗大的猛进出69影院| 久久午夜亚洲精品久久| 精品国产国语对白av| 欧美黑人精品巨大| 午夜激情福利司机影院| 国产一区二区三区视频了| 中文字幕另类日韩欧美亚洲嫩草| 波多野结衣巨乳人妻| 99热只有精品国产| 午夜福利成人在线免费观看| 亚洲久久久国产精品| 久久久久久久久免费视频了| 午夜福利18| 91麻豆av在线| 在线视频色国产色| 精品一区二区三区四区五区乱码| www日本黄色视频网| 欧美黄色淫秽网站| 最好的美女福利视频网| 国产精品久久电影中文字幕| 欧美av亚洲av综合av国产av| 亚洲天堂国产精品一区在线| 欧美黑人欧美精品刺激| 高潮久久久久久久久久久不卡| 久久精品影院6| 一级毛片女人18水好多| 黄色视频不卡| 欧美一级a爱片免费观看看 | 欧美乱码精品一区二区三区| 成人午夜高清在线视频 | 婷婷六月久久综合丁香| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜一区二区| 怎么达到女性高潮| 亚洲精品国产精品久久久不卡| 天天一区二区日本电影三级| 一个人观看的视频www高清免费观看 | 一本精品99久久精品77| 88av欧美| 亚洲精品av麻豆狂野| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 色在线成人网| 日韩一卡2卡3卡4卡2021年| 男女做爰动态图高潮gif福利片| 亚洲欧洲精品一区二区精品久久久| 他把我摸到了高潮在线观看| 可以在线观看的亚洲视频| 精品国产超薄肉色丝袜足j| x7x7x7水蜜桃| 最好的美女福利视频网| 日韩有码中文字幕| avwww免费| 国内久久婷婷六月综合欲色啪| 精品国产一区二区三区四区第35| 亚洲 欧美一区二区三区| 国产欧美日韩精品亚洲av| 老司机深夜福利视频在线观看| 欧美在线一区亚洲| 不卡av一区二区三区| 午夜精品在线福利| 亚洲全国av大片| 成人手机av| 白带黄色成豆腐渣| 久久久久国内视频| 老熟妇乱子伦视频在线观看| 国产麻豆成人av免费视频| 伊人久久大香线蕉亚洲五| 黄色片一级片一级黄色片| 精品国产美女av久久久久小说| 精品第一国产精品| 国产欧美日韩一区二区三| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 一进一出抽搐动态| 黄色成人免费大全| 国产欧美日韩精品亚洲av| 狂野欧美激情性xxxx| 国产精品综合久久久久久久免费| av视频在线观看入口| 啦啦啦韩国在线观看视频| 日韩成人在线观看一区二区三区| 国产成人影院久久av| 淫妇啪啪啪对白视频| av在线播放免费不卡| 久久这里只有精品19| 午夜两性在线视频| 国产午夜精品久久久久久| 亚洲avbb在线观看| 男女午夜视频在线观看| 最近在线观看免费完整版| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 99热这里只有精品一区 | 啦啦啦韩国在线观看视频| 久久精品夜夜夜夜夜久久蜜豆 | 免费高清在线观看日韩| 50天的宝宝边吃奶边哭怎么回事| 神马国产精品三级电影在线观看 | 中文亚洲av片在线观看爽| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看 | 亚洲九九香蕉| 在线观看www视频免费| 欧美另类亚洲清纯唯美| 日韩视频一区二区在线观看| 变态另类丝袜制服| 亚洲av电影不卡..在线观看| 婷婷六月久久综合丁香| 色尼玛亚洲综合影院| 国产欧美日韩精品亚洲av| 国产熟女xx| 久久亚洲真实| 丝袜在线中文字幕| 非洲黑人性xxxx精品又粗又长| 国产一区在线观看成人免费| 国产av一区在线观看免费| 国产av不卡久久|