• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer

    2022-11-21 09:28:54KaiFengYin尹凱峰JiXiLu陸吉璽FeiLu逯斐BoLi李博BinQuanZhou周斌權(quán)andMaoYe葉茂
    Chinese Physics B 2022年11期
    關(guān)鍵詞:周斌葉茂李博

    Kai-Feng Yin(尹凱峰) Ji-Xi Lu(陸吉璽) Fei Lu(逯斐) Bo Li(李博)Bin-Quan Zhou(周斌權(quán)) and Mao Ye(葉茂)

    1School of Instrumentation Science and Optoelectronics Engineering,Beihang University,Beijing 100191,China

    2Research Institute for Frontier Science,Beihang University,Beijing 100191,China

    3Beihang Hangzhou Innovation Institute Yuhang,Xixi Octagon City,Hangzhou 310023,China

    Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently. In this study, we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error. Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations. An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method. The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%. Under the fluctuations of 5% for optical intensity and ±15 GHz detuning of frequency, the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%, respectively. Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.

    Keywords: atomic magnetometer,dynamic range,linearity error,response signal stability

    1. Introduction

    Optically-pumped magnetometers (OPMs) based on the detection of spin polarization of optically polarized atoms have raised widespread interest in recent years. Zero-field atomic magnetometers operated in the regime of spinexchange-relaxation-free(SERF)have reported extraordinary sensitivity of sub-femtotesla,[1,2]and are widely applied in testing of materials, fundamental physics including the measurement of the permanent electric dipole moment, and biomagnetic measurements.[3–6]To date, atomic magnetometers featured in miniaturization,high sensitivity and cryogenfree have become promising alternatives to superconductor quantum interference device (SQUID) magnetometers in bio-magnetic measurements such as magnetoencephalography(MEG)and magnetocardiography(MCG).[7,8]

    Atomic magnetometers operated in zero-field are implemented in many configurations to satisfy the various applications, including magnetometers based on crossed pumpprobe beams,[9–11]nearly parallel pump-probe beams,[12]single elliptically polarized light,[13,14]single circularly polarized light,[15,16]as well as schemes with multi-channel[17,18]and gradiometer.[19]Among these configurations,single-beam magnetometers have been widely applied in MEG and MCG with considerably less cost and reduction of volume.[20–22]The ambient magnetic field would induce the precession of the spin polarization, resulting in light absorption or polarization changes in alkali vapor, which forms the basis of the single-beam atomic magnetometer. In the single-beam configuration, it is a conventional practice that the magnetic field can be measured using the demodulated first harmonic signal by applying the transverse parametric modulation on the spin polarization.[23,24]The demodulated first harmonic dispersive signal limits the magnetometer’s dynamic range typically at 2 nT with 5% linearity error,[25]restricting the application scenarios of atomic magnetometers. Meanwhile,the instability of the response signal caused by linearity error decreases the accuracy in source imaging, which is critical for OPM-MEG.[26]Although atomic magnetometers with active closed-up operation show the dynamic range of 10 nT with 5%linearity error, the compensating magnetic field generated by the closed-up operation will introduce the cross-talk between adjacent magnetometers.[27]

    This study begins with investigating the response signal to the magnetic field in zero-field single-beam magnetometers and proposes a response modification method of the first harmonic response by introducing the second harmonic correction. Our method shows the capability to expand the dynamic range and reduce the linearity error. Furthermore, by suppressing the influence of optical intensity and frequency, the response signal remains stable under optical intensity and frequency fluctuations. Finally, the experiments are carried out to evaluate the proposed modification method’s performance in dynamic range,linearity and response signal stability.

    2. Methods

    Zero-field atomic magnetometer works with the polarized atoms created by optical pumping. The spin polarization evolved under the combined effects of optical pumping,spin relaxation,and magnetic field induced precession. In the SERF regime when the spin-exchange rate is much larger than the Larmor precession frequency,the evolution of spin polarization can be described with the Bloch equation

    wherePis the spin polarization vector,qis the slowing-down factor,γis the electron gyromagnetic ratio,sis the photon polarization of the pump beam,Ropis the optical pumping rate, andRrelis the relaxation rate mainly caused by spindestruction and wall-collisions. The circularly polarized light at D1 line propagates along thez-axis and the transmission obeys[28,29]

    whereIis the transmitted light intensity,I0is the incident intensity,Pzis thez-axis projection ofP, andνis the incident optical frequency.Equation(2)shows the basis of polarization measurement through light intensity detection. Optical depthκ(Pz,ν)that depends on spin polarizationPzand incident optical frequencyνcan be expressed as[30]

    wherenis the number density of the alkali atoms,Lis the light propagation length in the vapor cell,κ0is the absorption coefficient of alkali atoms at resonance,?(Δν) is the Lorentzian function related to frequency detuning Δν=ν-νD1, andΓD1is the pressure broadened optical width. The relationship between transmitted light intensityIand the spin polarizationPzcan be described by first-order approximation atP0(0<P0<1)

    As shown in Eq. (4), the attenuation of the incident light in the vapor cell can provide information about the spin projection along thez-axis. In our single-beam configuration, a transverse modulation magnetic fieldBmodsin(ωmodt)was applied along they-axis.Therefore the components of total magnetic fieldBwereBx=Bx0,By=Bmodsin(ωmodt)+By0,andBz=Bz0, whereBx0,By0, andBz0are the residual environment magnetic field components. By solving Eq.(1),the spin polarization along thez-axis is[23,24]

    whereJn(n=0,1,2)is then-order Bessel function of the first kind, andu=γBmod/qωmodis the modulation index. Consequently,by combining Eqs.(4)–(6),we can get the demodulation voltage signals at the first and second harmonic

    whereG1andG2are the output voltage gain factors for different channels of the lock-in amplifier,K1is the current–voltage conversion coefficient of transimpedance amplifier,SPDis the photosensitivity of photodiodes,andK2is a conversion coefficient between transmitted light intensity and spin polarizationPz

    The conventional first harmonic response signal is affected by the incident optical intensityI0,frequencyνand the modulation indexuas indicated in Eq.(7). Based on Eqs.(7)and(8),we introduce the modification method with the correction of the second harmonic response and the corresponding response signal is

    As indicated in Eq. (10), response signalVMODshows the improved dynamic range and lower linearity error toBy0for eliminating the nonlinear termγ2B2y0inVω. Meanwhile,in contrast to the first harmonic signalVω, termsK1,SPD,K2(I0,ν)are removed inVMOD,which gives a more stable response signal by suppressing the influence of optical intensityI0and frequencyνfluctuations. In summary, the proposed modification method promises an accurate and stable response signal in a larger measurement range of magnetic fields.

    3. Experimental setup and procedures

    A potassium spherical glass vapor cell with a diameter of 10 mm was filled with 1.8 amg4He and 0.1 amg N2. The N2acted as the quenching gas to prevent the radiation trapping while the4He efficiently decreased the effect of wall collisions. The vapor cell was electrically heated to 170°C by a printed double-layer resistance wire, generating an atomic number density of 4.97×1013cm-3according to Ref. [31].The heating resistance wire was specially designed to make the current flow in opposite directions between adjacent wires to eliminate the heating-current-induced magnetic field. The vapor cell temperature was stabilized by a proportional-integralderivative (PID) controller at an accuracy of±0.02°C, and the accuracy was obtained by a non-magnetic Pt-1000 temperature sensor that closed to the vapor cell.

    The experiments were carried out on a single-beam atomic magnetometer,as shown in Fig.1. The optical pumping beam was generated from an external-cavity diode laser(ECDL, New Focus TLB-6813), and carried into the magnetometer through a single-mode polarization-maintaining fiber.The optical frequency was tuned and locked to the D1 line of potassium at 770.1033 nm (389.2886 THz) by the feedback of a wavelength meter(HighFinesse WS-7). An acousto-optic modulator(AOM,G&H 3080-125)was placed in front of the optical fiber to modulate the light and generate artificial intensity fluctuations. The light emitted from the fiber was expanded and collimated to a diameter of 4 mm, then passed through the polarizer and quarter-wave plate in sequence. The incident intensityI0=6.35 mW/cm2traversed through the vapor cell alongz-direction and was finally exposed to the photodiode.The photosensitivitySPDof the photodiode was about 0.55 A/W at 389.2886 THz.

    Fig. 1. Schematic of the experimental apparatus. ECDL: external-cavity diode laser, TIA: transimpedance amplifier, LIA: lock-in amplifier, PD:silicon photodiode,DAQ:data acquisition system,λ/4: quarter-wave plate,AOM:acousto-optic modulator,PMF:polarization-maintaining fiber.

    The atomic magnetometer was placed inside a four-layers μ-metal magnetic shield, and the internal residual magnetic field was below 2 nT.Before running the experiment,the magnetic field surrounding the vapor cell was compensated to near zero-field (typically below 1 pT) by triaxial magnetic field coils integrated inside the magnetometer driven by the waveform generators (Keysight 33522B). The response signalVω,V2ωto magnetic fieldBy0was extracted using the digital lockin amplifier (Zurich Instruments MFLI) following the process: the lock-in amplifier generated the modulation voltage signalVmodsin(ωmodt) and applied to they-axis coil through a series resistance to produce the modulation magnetic fieldBmodsin(ωmodt) whereBmod=110 nT,ωmod=900 Hz; the spin polarization evolved in the modulation magnetic field,yielding the variation of transmitted light intensityIas indicated in Eq. (4); the corresponding light intensity variations were detected by a silicon photodiode and converted to the voltage signal by the transimpedance amplifier (Thorlabs PDA200C) with conversion coefficientK1subsequently; this voltage signal was finally sent to the lock-in amplifier for demodulation at first and second harmonic, generating the corresponding voltage responseVωandV2ωwith gain factorG1andG2, respectively. In practice, we madeG1=G2in the subsequent experiments.

    The queen then began to put the room in order and prepare food, so that when the man came home he found everything neat and tidy, and this seemed to give him some pleasure

    To investigate the magnetometer’s dynamic range and linearity, a sweep magnetic field ranging in±30 nT was applied to they-axis coil. The corresponding response voltagesVωandV2ωwere recorded simultaneously withBy0by the data acquisition system (NI PXIe-4464) at the sampling rate of 1 kHz. Furthermore, to estimate the stability of magnetometer’s response signal under optical intensity and frequency fluctuations,the artificial variations were applied to the incident light. For optical intensity fluctuations, a 40 mVpp triangular modulation at 1 Hz was applied to the AOM,generating a 5%variation of optical intensity,resulting inI0varying from 6.2 mW/cm2to 6.51 mW/cm2periodically. For optical frequency fluctuations, by controlling the piezoelectric transducer(PZT)voltage inside the ECDL,the incident optical frequency was varied atν389.2886 THz±15 GHz.Additionally,a 100 pT sinusoidal calibration magnetic field at 31 Hz was applied along they-axis, and the corresponding peak-to-peak amplitude in the response signal was extracted to evaluate the signal stability under optical intensity and frequency fluctuations.

    4. Results and discussion

    4.1. Dynamic range and linearity

    As shown in Fig.2,the first and second harmonic signalsVωandV2ωextracted from the lock-in amplifier were illustrated with black and blue lines. The modification response in Fig. 2 with the red line referred to the response signal calculated through our modification method as indicated in Eq.(10).By adjusting the voltage gain factorG1andG2,the modification response was made consistently with the first harmonic response to the same magnetic fieldBy0.

    Fig.2. The first harmonic(black line)and second harmonic(blue line)responses of the magnetic field By0 and the modification response(red line)calculated from Eq.(10). The shaded areas of the curves indicated multiple measurement errors.

    Referring to the study by Reaet al.,[26]the dynamic range of the atomic magnetometer was defined as the measurement range where the linearity error was less than 5%. As shown in Fig.3(a)with the shaded region,the calibrated first harmonic response showed the dynamic range of 2 nT,while the modification response remained a linear response over the range of 10 nT.

    Fig. 3. (a) Calibrated response of conventional first harmonic (black line) and modification response (red line); (b) linearity error of both conventional model(black line)and modification model(red line); inset: linearity error within 10 nT range with y-axis in logarithmic scale.

    Figure 3(b)demonstrated the linearity errorδLcomparison of the first harmonicVωand modification responseVMOD.It was apparent that the linearity error of the first harmonic response increased rapidly when the magnetic field exceeded its dynamic range of 2 nT, while the modification response maintained its linearity within 10 nT. Notably, the modification response showed a relatively small linearity error within the dynamic range of 10 nT,givingδL<1%as shown in the inset.

    4.2. Response signal stability

    The proposed modification responseVMODshowed the suppression of response instability induced by optical intensityI0and frequencyνfluctuations as indicated in Eq. (12).Firstly, the response signal stability was investigated by applying artificial fluctuations on optical intensity.As indicated in Fig. 4, the first harmonic and modification responses were recorded with black and red lines,against the variation of 5%in optical intensity with the blue line. It was seen from the figure that the instability of the first harmonic influenced by optical intensity fluctuations was suppressed in our modification method, which gave a stable response signal as shown with the red line.

    Fig.4. First harmonic(black line)and the modification response curves(red line)to 100 pT sinusoidal magnetic field at 31 Hz under the 5%optical intensity fluctuations(blue line).

    Fig.5.Linearity error of the first harmonic response(red line)and modification response(black line)induced by optical intensity fluctuations calculated by Eq.(13).

    Moreover, the linearity error was taken to quantify the suppression of optical intensity fluctuations. The peak-topeak amplitude of the response signal in a period was taken asSresponsefor both first harmonicVωand modification responseVMODandSsignalwas the averaged peak-to-peak amplitude ofVωandVMODduring the measurement time, respectively. As shown in Fig. 5, the first harmonic response suffered a 15%variation and showed a trend consistent with optical intensity fluctuations. As a comparison, the linearity error of modification response was maintained lower than 1%, independent from the influence of optical intensity fluctuations.

    Fig. 6. Modulation on the incident optical frequency with 1 Hz triangular wave(black line)and the accompanied optical intensity noise(red line).

    Fig.7. First harmonic response(black line)and the modification response(red line)to the 100 pT sinusoidal magnetic field at 31 Hz under the influence of the optical frequency fluctuations at±15 GHz(blue line).

    Moreover,the influence of optical frequency fluctuations on the response signal was studied. By controlling the PZT voltage inside the ECDL,a linear optical frequency variation of 389.2886 THz±15 GHz was obtained, accompanied by undesired optical intensity noise,as shown in Fig.6. The unexpected optical intensity fluctuations were caused by the limitation of the ECDL,but they would not have fatal impacts on subsequent analysis.

    As shown in Fig. 7, with the combined influence of optical frequency and intensity fluctuations, the first harmonic responseVωchanged significantly while the modification responseVMODshowed slight variations. The linearity errorδLof the first harmonic response varied 38% under the optical frequency fluctuations,as demonstrated in Fig.8. On the contrary,the modification response maintained a level of 8%under the combined effects of optical intensity and frequency variations. In addition, the asymmetry of the linearity error between±15 GHz frequency detuning in Fig.8 was because the magnetometer worked with the slight frequency detuning(about 7 GHz redshift in our experiment)for the optimal performance.

    Fig.8. First harmonic(red line)and modification(black line)linearity error caused by optical frequency variation.

    Finally,the noise spectral density averaged for 2 minutes of both the first harmonicVω(in red line) and the modification responseVMOD(in red dashed line)was shown in Fig.9.As seen, the noise spectral density of the proposed modification response was 8 fT/Hz1/2, which may be limited by the magnetic noise of the magnetic shield,[35]consistently with the first harmonic response signal.

    Fig.9.Noise spectral densities of the conventional response and our modification method.The peak at 31 Hz was the calibration signal we applied,the peak at 50 Hz Hz was the power frequency of the environment, and the blue line was a fit to the atomic magnetometer noise floor.

    5. Conclusion

    In this study, we develop a comprehensive response model for magnetic field measurement in zero-field singlebeam atomic magnetometer. Then the modification method for magnetometer’s response that introduces the second harmonic correction is proposed, which is advantageous in dynamic range expansion,linearity error reduction,and response signal stability. The experiments showed that the dynamic range was expanded to 10 nT, 5-fold larger than 2 nT in the conventional method. Furthermore, the linearity error of the proposed method was maintained at 1%in the dynamic range,five times lower than the first harmonic response. In addition,when optical intensity fluctuated at 5%and frequency detuned between±15 GHz, the response signal was maintained at intensity-related bias less than 1%and frequency-related bias less than 8%, whereas the conventional method suffers instability of 15%and 38%,respectively.

    Additionally,the modified response is as sensitive as the first harmonic signal, ensuring high-sensitive and accurate magnetic field measurement. Furthermore, our modification method operated in real-time without introducing extra interferences to the environment,which is advantageous for the applications of MEG and MCG,where sensor arrays are utilized.

    Acknowledgements

    The authors would like to give special thanks to Feifan Tan for her encouragement.

    Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)and the National Natural Science Foundation of China(Grant No.61903013).

    猜你喜歡
    周斌葉茂李博
    Higher-order topological Anderson insulator on the Sierpi′nski lattice
    BIFURCATION CONTROL FOR A FRACTIONAL-ORDER DELAYED SEIR RUMOR SPREADING MODEL WITH INCOMMENSURATE ORDERS?
    楊國珍
    周斌書法作品欣賞
    LabVIEW下通信原理實驗教改探討
    根深才會葉茂源遠(yuǎn)方能流長
    尋根(2020年1期)2020-04-07 03:44:34
    Dynamic Modeling of Variable Stiffness and Damping for Spatial Linkage Weft Insertion Mechanism with Clearance
    遼寧法庫葉茂臺七號遼墓的年代及墓主身份
    Muelleria pseudogibbula, a new species from a newly recorded genus (Bacillariophyceae) in China*
    Harry Potter 哈利·波特
    精品少妇一区二区三区视频日本电影| 久久久久久免费高清国产稀缺| 久久国产精品影院| 老司机亚洲免费影院| 青青草视频在线视频观看| 欧美少妇被猛烈插入视频| 国产精品免费大片| 国产成人免费观看mmmm| 俄罗斯特黄特色一大片| 欧美日本中文国产一区发布| www.av在线官网国产| 一二三四社区在线视频社区8| 高清视频免费观看一区二区| 久久毛片免费看一区二区三区| 国产主播在线观看一区二区| 国产无遮挡羞羞视频在线观看| 水蜜桃什么品种好| 黑人巨大精品欧美一区二区mp4| 国产亚洲av高清不卡| 国产视频一区二区在线看| 制服人妻中文乱码| 精品欧美一区二区三区在线| 性高湖久久久久久久久免费观看| 女人高潮潮喷娇喘18禁视频| 久久精品亚洲熟妇少妇任你| 亚洲国产精品一区二区三区在线| 成年人黄色毛片网站| 老熟妇乱子伦视频在线观看 | 久久久欧美国产精品| 嫩草影视91久久| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩人妻精品一区2区三区| 最近最新中文字幕大全免费视频| 亚洲黑人精品在线| 亚洲天堂av无毛| 亚洲第一欧美日韩一区二区三区 | 一本一本久久a久久精品综合妖精| 午夜福利,免费看| 色94色欧美一区二区| 99精品欧美一区二区三区四区| 亚洲欧美色中文字幕在线| 国产亚洲av片在线观看秒播厂| 亚洲精品一区蜜桃| 精品人妻在线不人妻| 久久久精品免费免费高清| 国产免费av片在线观看野外av| 男人添女人高潮全过程视频| 国产真人三级小视频在线观看| 午夜免费成人在线视频| av在线老鸭窝| 国产欧美日韩一区二区三 | 欧美日韩福利视频一区二区| 最黄视频免费看| 少妇的丰满在线观看| 欧美日韩成人在线一区二区| 成年人黄色毛片网站| 麻豆国产av国片精品| 欧美日韩福利视频一区二区| 爱豆传媒免费全集在线观看| 欧美一级毛片孕妇| 日本av手机在线免费观看| 亚洲av成人一区二区三| 亚洲欧美清纯卡通| 欧美 亚洲 国产 日韩一| 中文字幕精品免费在线观看视频| 9色porny在线观看| 9色porny在线观看| 成人国语在线视频| 亚洲人成电影观看| 免费观看人在逋| 90打野战视频偷拍视频| 久久毛片免费看一区二区三区| 国产亚洲精品第一综合不卡| 一区二区日韩欧美中文字幕| 最近中文字幕2019免费版| 别揉我奶头~嗯~啊~动态视频 | 成年动漫av网址| 51午夜福利影视在线观看| 精品人妻一区二区三区麻豆| 亚洲久久久国产精品| 中文字幕人妻丝袜制服| 日韩一卡2卡3卡4卡2021年| 美女扒开内裤让男人捅视频| 看免费av毛片| 欧美日韩av久久| 亚洲精品成人av观看孕妇| 欧美av亚洲av综合av国产av| 国产一卡二卡三卡精品| 国产免费现黄频在线看| 19禁男女啪啪无遮挡网站| 成人免费观看视频高清| 99国产精品一区二区蜜桃av | 50天的宝宝边吃奶边哭怎么回事| 国产精品 欧美亚洲| 欧美大码av| 秋霞在线观看毛片| 国产一区有黄有色的免费视频| 久久狼人影院| 老鸭窝网址在线观看| 欧美成狂野欧美在线观看| 国产成人一区二区三区免费视频网站| 9191精品国产免费久久| 我要看黄色一级片免费的| a 毛片基地| 亚洲三区欧美一区| 欧美av亚洲av综合av国产av| 在线永久观看黄色视频| 在线观看免费视频网站a站| 岛国毛片在线播放| 一级,二级,三级黄色视频| 十八禁人妻一区二区| 十分钟在线观看高清视频www| 午夜成年电影在线免费观看| 日日摸夜夜添夜夜添小说| 啦啦啦啦在线视频资源| 欧美日韩精品网址| www.精华液| 亚洲欧美成人综合另类久久久| 亚洲七黄色美女视频| 国产成人精品无人区| 亚洲五月婷婷丁香| 一本色道久久久久久精品综合| 国产精品一区二区在线不卡| 欧美成狂野欧美在线观看| 精品一区二区三区av网在线观看 | 中文欧美无线码| 欧美一级毛片孕妇| 欧美精品亚洲一区二区| 男人添女人高潮全过程视频| 成人免费观看视频高清| 国产成人精品无人区| 一区二区av电影网| 天堂8中文在线网| 欧美 日韩 精品 国产| 亚洲国产精品999| 免费女性裸体啪啪无遮挡网站| 国产成人一区二区三区免费视频网站| 精品久久久精品久久久| 久久国产精品影院| 国产一区二区三区综合在线观看| 午夜精品久久久久久毛片777| 亚洲精品久久午夜乱码| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 亚洲七黄色美女视频| av片东京热男人的天堂| 两个人看的免费小视频| 咕卡用的链子| 国产主播在线观看一区二区| 一级,二级,三级黄色视频| 久久ye,这里只有精品| 久久国产精品影院| 亚洲精品国产精品久久久不卡| 亚洲人成电影免费在线| 窝窝影院91人妻| 妹子高潮喷水视频| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| 亚洲国产av新网站| 久久99热这里只频精品6学生| 在线亚洲精品国产二区图片欧美| 日韩,欧美,国产一区二区三区| 波多野结衣一区麻豆| 免费在线观看日本一区| 建设人人有责人人尽责人人享有的| 另类亚洲欧美激情| 麻豆国产av国片精品| 啦啦啦在线免费观看视频4| 亚洲精品国产区一区二| 国产在线视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 老司机深夜福利视频在线观看 | e午夜精品久久久久久久| 一本久久精品| 人妻 亚洲 视频| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| 成人av一区二区三区在线看 | 成年人午夜在线观看视频| 亚洲全国av大片| 国内毛片毛片毛片毛片毛片| 一本—道久久a久久精品蜜桃钙片| 久久综合国产亚洲精品| 啦啦啦中文免费视频观看日本| 日日摸夜夜添夜夜添小说| 国产精品国产三级国产专区5o| 黄网站色视频无遮挡免费观看| 成年动漫av网址| a在线观看视频网站| 国产麻豆69| 美国免费a级毛片| 黑人巨大精品欧美一区二区蜜桃| 国产精品九九99| 老司机影院毛片| 成人国产av品久久久| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡| 777久久人妻少妇嫩草av网站| 好男人电影高清在线观看| 在线永久观看黄色视频| 最近最新免费中文字幕在线| 欧美日韩福利视频一区二区| 亚洲精品久久久久久婷婷小说| e午夜精品久久久久久久| 熟女少妇亚洲综合色aaa.| 99国产精品99久久久久| 女人爽到高潮嗷嗷叫在线视频| 天堂俺去俺来也www色官网| 午夜91福利影院| 男人操女人黄网站| 亚洲av电影在线观看一区二区三区| 岛国在线观看网站| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美国产一区二区入口| 久久久久久久大尺度免费视频| 亚洲专区中文字幕在线| 亚洲精品久久成人aⅴ小说| 国产黄色免费在线视频| 欧美日韩成人在线一区二区| 美女主播在线视频| 色视频在线一区二区三区| 水蜜桃什么品种好| 亚洲第一青青草原| 十八禁网站免费在线| av有码第一页| 久久精品国产亚洲av香蕉五月 | 国产一区二区三区在线臀色熟女 | 久久国产精品大桥未久av| 亚洲欧美一区二区三区黑人| 欧美在线一区亚洲| 国产成人精品在线电影| 精品人妻熟女毛片av久久网站| 悠悠久久av| 涩涩av久久男人的天堂| 老司机亚洲免费影院| 黑人操中国人逼视频| 少妇的丰满在线观看| 久久久国产一区二区| 欧美日韩亚洲国产一区二区在线观看 | 精品卡一卡二卡四卡免费| 国产精品一区二区免费欧美 | 亚洲精品中文字幕在线视频| 午夜精品国产一区二区电影| 老熟妇仑乱视频hdxx| 欧美 日韩 精品 国产| 午夜日韩欧美国产| 夜夜骑夜夜射夜夜干| 国产一区二区 视频在线| 亚洲情色 制服丝袜| 熟女少妇亚洲综合色aaa.| 国产免费一区二区三区四区乱码| 久久99热这里只频精品6学生| 亚洲色图 男人天堂 中文字幕| 国产伦人伦偷精品视频| 美女脱内裤让男人舔精品视频| 亚洲欧美精品自产自拍| 99国产精品一区二区蜜桃av | 精品国内亚洲2022精品成人 | 国产精品亚洲av一区麻豆| e午夜精品久久久久久久| 我的亚洲天堂| 热re99久久国产66热| 精品国产乱子伦一区二区三区 | 女人高潮潮喷娇喘18禁视频| 婷婷色av中文字幕| 欧美黑人精品巨大| 在线亚洲精品国产二区图片欧美| 一级a爱视频在线免费观看| 热re99久久国产66热| 色视频在线一区二区三区| 各种免费的搞黄视频| 一本—道久久a久久精品蜜桃钙片| 91大片在线观看| 亚洲欧洲日产国产| 日本wwww免费看| 久久综合国产亚洲精品| 欧美乱码精品一区二区三区| 人妻人人澡人人爽人人| 中亚洲国语对白在线视频| kizo精华| 搡老岳熟女国产| 青春草视频在线免费观看| 久久久欧美国产精品| 欧美午夜高清在线| 国产伦理片在线播放av一区| 日韩欧美一区二区三区在线观看 | 老熟女久久久| 啦啦啦视频在线资源免费观看| 视频在线观看一区二区三区| 69精品国产乱码久久久| 天天操日日干夜夜撸| 国产成人精品无人区| 纵有疾风起免费观看全集完整版| 国产淫语在线视频| www.999成人在线观看| 狠狠精品人妻久久久久久综合| 日本欧美视频一区| 亚洲精品一卡2卡三卡4卡5卡 | 美女国产高潮福利片在线看| 久久99热这里只频精品6学生| 久久国产亚洲av麻豆专区| 99热国产这里只有精品6| 国产区一区二久久| 青青草视频在线视频观看| 中文字幕精品免费在线观看视频| 亚洲精品第二区| 国产成人系列免费观看| 中文字幕人妻丝袜一区二区| 精品福利永久在线观看| 人妻久久中文字幕网| 大码成人一级视频| 人妻人人澡人人爽人人| 黄色毛片三级朝国网站| 国产精品亚洲av一区麻豆| 久久综合国产亚洲精品| 成人影院久久| 一级毛片精品| 美国免费a级毛片| av在线播放精品| av不卡在线播放| 不卡一级毛片| av线在线观看网站| 久热这里只有精品99| 国产在线观看jvid| 中文字幕人妻丝袜制服| 精品免费久久久久久久清纯 | 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影免费在线| 日本一区二区免费在线视频| 国产亚洲欧美精品永久| 日韩 欧美 亚洲 中文字幕| 国产精品1区2区在线观看. | 亚洲avbb在线观看| 日本撒尿小便嘘嘘汇集6| 欧美大码av| 老司机亚洲免费影院| 99国产精品一区二区三区| 国产成+人综合+亚洲专区| 狠狠精品人妻久久久久久综合| 国产淫语在线视频| 国产又色又爽无遮挡免| 十八禁网站免费在线| 人人妻人人澡人人爽人人夜夜| 亚洲精品中文字幕一二三四区 | 蜜桃国产av成人99| h视频一区二区三区| 日韩视频一区二区在线观看| 1024视频免费在线观看| 色婷婷av一区二区三区视频| 国产99久久九九免费精品| 男人爽女人下面视频在线观看| 精品亚洲乱码少妇综合久久| 午夜福利,免费看| 亚洲五月婷婷丁香| 亚洲avbb在线观看| 18禁观看日本| 亚洲男人天堂网一区| 亚洲黑人精品在线| 国产高清国产精品国产三级| 成人国产一区最新在线观看| 国产精品 国内视频| 婷婷丁香在线五月| 亚洲专区字幕在线| 精品人妻在线不人妻| 日本一区二区免费在线视频| 9191精品国产免费久久| 日本欧美视频一区| 欧美在线一区亚洲| 可以免费在线观看a视频的电影网站| av国产精品久久久久影院| 亚洲专区国产一区二区| 亚洲精品久久成人aⅴ小说| 亚洲人成电影观看| xxxhd国产人妻xxx| 婷婷成人精品国产| 亚洲精品粉嫩美女一区| 国产成人影院久久av| 日本wwww免费看| 真人做人爱边吃奶动态| 午夜福利视频在线观看免费| 成在线人永久免费视频| 亚洲激情五月婷婷啪啪| 久久久久精品国产欧美久久久 | 日韩中文字幕欧美一区二区| 身体一侧抽搐| 久久久久久国产a免费观看| 天天添夜夜摸| 久久精品成人免费网站| 老司机午夜十八禁免费视频| 精品午夜福利视频在线观看一区| 国产熟女xx| 精品人妻1区二区| 90打野战视频偷拍视频| 91国产中文字幕| 色尼玛亚洲综合影院| 欧美另类亚洲清纯唯美| 国产伦一二天堂av在线观看| 亚洲欧美精品综合一区二区三区| 老司机深夜福利视频在线观看| 熟女电影av网| 久久国产乱子伦精品免费另类| 久久精品aⅴ一区二区三区四区| 露出奶头的视频| 桃色一区二区三区在线观看| 国产亚洲精品av在线| 久久久久久久久中文| 婷婷精品国产亚洲av| 色在线成人网| 性色av乱码一区二区三区2| 日本a在线网址| 欧美极品一区二区三区四区| 又紧又爽又黄一区二区| 2021天堂中文幕一二区在线观| 久久精品国产清高在天天线| 欧美日韩乱码在线| 一个人免费在线观看电影 | 午夜免费成人在线视频| 国产av一区二区精品久久| 欧美一区二区国产精品久久精品 | 久久久久久国产a免费观看| 手机成人av网站| 不卡一级毛片| 美女黄网站色视频| 欧美成人一区二区免费高清观看 | 久热爱精品视频在线9| 欧美三级亚洲精品| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| av国产免费在线观看| 欧美黑人巨大hd| 精品国产乱子伦一区二区三区| 啦啦啦免费观看视频1| 欧美zozozo另类| 一级毛片高清免费大全| 免费av毛片视频| 高潮久久久久久久久久久不卡| 男人舔奶头视频| tocl精华| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 亚洲人成伊人成综合网2020| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 国产高清videossex| 亚洲全国av大片| 午夜福利视频1000在线观看| 色老头精品视频在线观看| aaaaa片日本免费| 成人av一区二区三区在线看| 美女黄网站色视频| 精品高清国产在线一区| 久久久国产精品麻豆| 中文字幕高清在线视频| 亚洲精品久久成人aⅴ小说| 性欧美人与动物交配| 中文亚洲av片在线观看爽| 18禁国产床啪视频网站| 熟女少妇亚洲综合色aaa.| 欧美日韩黄片免| 一级片免费观看大全| 免费无遮挡裸体视频| 性色av乱码一区二区三区2| xxx96com| 精品久久久久久,| 一进一出抽搐动态| 91在线观看av| 亚洲黑人精品在线| 色老头精品视频在线观看| 日韩av在线大香蕉| 欧美激情久久久久久爽电影| 日韩欧美三级三区| 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 国产成人一区二区三区免费视频网站| 美女免费视频网站| 一边摸一边抽搐一进一小说| 中文资源天堂在线| 嫩草影视91久久| 午夜福利视频1000在线观看| 日本黄大片高清| 亚洲五月婷婷丁香| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 欧美 亚洲 国产 日韩一| 国产私拍福利视频在线观看| 少妇的丰满在线观看| 午夜福利在线在线| 少妇的丰满在线观看| 午夜免费成人在线视频| 色播亚洲综合网| 中文亚洲av片在线观看爽| 一夜夜www| 色尼玛亚洲综合影院| 一a级毛片在线观看| 亚洲色图 男人天堂 中文字幕| 欧美精品啪啪一区二区三区| 国产精品久久久久久精品电影| 免费在线观看亚洲国产| 国产午夜福利久久久久久| 欧美午夜高清在线| 国产成人精品久久二区二区免费| 他把我摸到了高潮在线观看| x7x7x7水蜜桃| ponron亚洲| 一夜夜www| 757午夜福利合集在线观看| 精品国产美女av久久久久小说| 国产av又大| 国产激情偷乱视频一区二区| 香蕉丝袜av| 一本综合久久免费| 亚洲五月婷婷丁香| 国产99白浆流出| 狂野欧美激情性xxxx| 久久精品人妻少妇| 男插女下体视频免费在线播放| 999久久久国产精品视频| 亚洲aⅴ乱码一区二区在线播放 | 精品久久久久久久毛片微露脸| 最近最新中文字幕大全电影3| 久久国产乱子伦精品免费另类| 国产精品 欧美亚洲| 午夜影院日韩av| 国产单亲对白刺激| 日本免费一区二区三区高清不卡| 亚洲成人中文字幕在线播放| 久久精品aⅴ一区二区三区四区| 淫秽高清视频在线观看| 在线观看午夜福利视频| 久久热在线av| 亚洲乱码一区二区免费版| 一进一出抽搐动态| 在线十欧美十亚洲十日本专区| 亚洲av电影在线进入| 国产麻豆成人av免费视频| 男男h啪啪无遮挡| 国产精品,欧美在线| 99热6这里只有精品| 欧美一区二区精品小视频在线| 毛片女人毛片| 三级国产精品欧美在线观看 | 欧美日韩中文字幕国产精品一区二区三区| 亚洲 欧美一区二区三区| 波多野结衣高清作品| 日本在线视频免费播放| 搞女人的毛片| cao死你这个sao货| 黑人巨大精品欧美一区二区mp4| 色播亚洲综合网| 国产精品一区二区三区四区免费观看 | 午夜久久久久精精品| 男人舔女人下体高潮全视频| 99久久综合精品五月天人人| 国产精品久久久av美女十八| 美女 人体艺术 gogo| 神马国产精品三级电影在线观看 | 99久久久亚洲精品蜜臀av| 成年人黄色毛片网站| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 欧美成人午夜精品| 欧美色视频一区免费| 精品电影一区二区在线| 亚洲人与动物交配视频| 成人特级黄色片久久久久久久| 午夜亚洲福利在线播放| 久久 成人 亚洲| a级毛片a级免费在线| 国产成人精品久久二区二区免费| 视频区欧美日本亚洲| 欧美最黄视频在线播放免费| 免费在线观看完整版高清| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 一本一本综合久久| 天堂av国产一区二区熟女人妻 | 此物有八面人人有两片| 精品熟女少妇八av免费久了| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 黄片大片在线免费观看| 一区二区三区激情视频| 午夜福利免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 又粗又爽又猛毛片免费看| 18禁美女被吸乳视频| 91老司机精品| 亚洲精品国产精品久久久不卡| 久久久久精品国产欧美久久久| 亚洲精品久久成人aⅴ小说| 亚洲精品av麻豆狂野| 他把我摸到了高潮在线观看| 黑人欧美特级aaaaaa片| 日韩欧美一区二区三区在线观看| 午夜精品一区二区三区免费看| 草草在线视频免费看| 国产日本99.免费观看| 午夜a级毛片| 国产69精品久久久久777片 | 国产精品乱码一区二三区的特点| 香蕉av资源在线| 一本综合久久免费| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美av亚洲av综合av国产av| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 777久久人妻少妇嫩草av网站| 精品久久久久久久末码| 亚洲va日本ⅴa欧美va伊人久久| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 丝袜美腿诱惑在线| 国语自产精品视频在线第100页| 成年人黄色毛片网站|