• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media

    2024-01-25 07:13:30ZhiQiangZhao趙志強(qiáng)JinXiaLiu劉金霞JianYuLiu劉建宇andZhiWenCui崔志文
    Chinese Physics B 2024年1期
    關(guān)鍵詞:建宇志強(qiáng)

    Zhi-Qiang Zhao(趙志強(qiáng)), Jin-Xia Liu(劉金霞), Jian-Yu Liu(劉建宇), and Zhi-Wen Cui(崔志文)

    College of Physics,Jilin University,Changchun 130012,China

    Keywords: confining pressure,pore pressure,fluid-saturated porous media,multipole borehole acoustic field

    1.Introduction

    In actual oilfield wells, especially in the reservoir target layers, the medium is a porous medium saturated with fluids.Moreover,in the exploration and development of oil storage,in-situstress is commonly existent.Thein-situstress may arises from prolonged sedimentation or complex geological formations.It could also result from oilfield development activities such as drilling and water injection.[1]Thein-situstress in the reservoir is triggered off partly by the fluid in the pore of the reservoir, called the pore pressure, and partly by the rock skeleton of the reservoir,called the effective stress.[1]The stress in fluid-saturated porous media plays an important role in the realization of safe drilling and efficient reservoir exploitation.During drilling, higher pore pressure can lead to well control accidents, which is one of the major drilling hazards worldwide.And accurate pore pressure prediction is very important for successful drilling operations.[2]Furthermore, gaining an insight into the state ofin-situstress provides a more comprehensive understanding of gas exploration and development,[3–5]enhanced oil recovery techniques,[6,7]wellbore stability,[7,8]and reservoir management.[9,10]

    The elastic wave dynamic theory describing fluidsaturated porous media was initially established by Biot.[11–13]Biot[14]adopted the nonlinear continuum theory to first investigate the acoustoelastic theory for the fluid-saturated porous media and only presented the equations of motion for the fluidsaturated porous media under the initial stress.Grinfeld and Norris[15]proposed general theory of small dynamic motion superimposed upon large static deformation for isotropic fluidfilled poroelastic solids,extending the acoustic–elastic theory applicable to single-phase media to fluid-saturated porous media.Baet al.[16]improved the fluid-saturated porous media theory given by Grinfeld and Norris[15]by considering the nonlinear term of static strain.Wang and Tian[17]utilized the finite deformation theory of continuum and pore elastic theory to give the equation of motion of small disturbance wave field superimposed on nonlinear shape variants caused by static stress in fluid-saturated porous media.Maet al.[18]derived the equation of motion of fluid-saturated porous media,adapted to large static deformation and superimposed disturbance wave field.According to the Pade approximation,Fu B Y and Fu L Y[19]extended the acoustic–elastic theory to the case of higher effective stress,which was verified experiment.Fu B Y and Fu L Y[20]introduced the two-pore model into the traditional acoustic–elastic model of fluid-saturated porous media, and found that the experimental results are better in the case of low effective pore pressure.Quet al.[21]experimentally measured the third-order elastic modulus of fluidfilled porous rocks under uniaxial stress.Kanaun[22]investigated the effect of the pressure of fluid injected into porous media under quasi-static conditions.Liuet al.[23]studied the influence of the nonlinear parameters of fluid-structure coupling on acoustic field in porous media.Liuet al.[24]improved and modified the dynamic equation of static deformation with small perturbations of porous media,with the viscosity term and the dispersion taken into account.The study of acoustic wave propagation in fluid-saturated porous media is of great significance in evaluating reservoir properties by using acoustic logging.Utilizing the Biot theory,Rosenbaum[25]investigated the propagation of acoustic field in boreholes surrounded by porous media, named the Biot–Rosenbaum theory.Wang and Dong[26]rigorously used the theory of elastic waves in porous media to theoretically solve the radiated acoustic field surrounded by fluid-saturated porous media in an open borehole.Schmittet al.[27]and Schmitt[28]studied the formation of radially layered fluid-saturated porous media, where both the elasticity and permeability of the formations exhibit anisotropic characteristics.Zhanget al.[29]employed the Biot two-phase medium model to simulate oil reservoirs and systematically conducted theoretical derivation,mode decomposition analysis, and full-wave computation of the acoustic wavefield excited by multipole sources in the borehole.Zhang and Wang[30]introduced an analytical perturbation method to address the problem of multi-source acoustic well logging in transersely isotropic two-phase media.Building upon the BISQ model, Cuiet al.[31]studied the dispersion and attenuation of elastic waves in non-Newtonian fluidsaturated porous media.Guan and Hu[32]employed the timedomain finite difference algorithm to simulate acoustic well logging responses to horizontally layered porous formations.Heet al.[33,34]employed three-dimensional finite-difference simulations to model inclined layered porous formations and porous elastic formations with anisotropic magnetic permeability.Penget al.[35]analyzed the acoustic wave propagation and wellbore acoustic fields in non-uniform porous media saturated with viscous fluid.

    The above studies did not cover the simulation research of borehole acoustic fields in fluid-saturated porous media under the influence of stress,based on the theory of acoustoelasticity in fluid-saturated porous materials.Therefore, this work primary focuses on the refinement of the existing theory of acoustoelasticity in fluid-saturated porous media and the research of borehole acoustic field in fluid-saturated porous media under reservoir stress conditions.

    The rest of this paper is organized as follows.In Section 2,the equation of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure is derived.In Section 3,numerical results are presented to show the effects of confining pressure and pore pressure on multipole borehole acoustic field in a fluid-saturated porous media.Finally,some conclusions are drawn in Section 4.

    2.Theoretical formula

    In this section,based on the dynamic equations for static deformation of porous media with small perturbations, given by Liuet al.,[24]the motion equations of fluid-saturated porous media under pore pressure and confining pressure are derived and an expression for velocity and stress is given.In the cylindrical coordinate system,the field equations of open hole stimulated by multiple sources in fluid-saturated pore formation under confining pressure and pore pressure are derived.

    2.1.Field equation for fluid-saturated porous media under confining and pore pressure

    This subsection mainly derives the field equations of fluid-saturated porous media under confining pressure and pore pressure.The confining pressure and pore pressure in the media do not change the isotropic properties of the media.This subsection refers to the research work of Liuet al.[24]and gives the field equation under confining pressure and pore pressure as follows:

    whereuis the displacement of solid phase.w=?(uf?u)is the seepage displacement.ufis the average fluid displacement.?is the porosity.τis the stress tensor,Pis the pore fluid pressure,andIis a unit vector.Here,the equivalent elastic moduli are denoted byH',M',C', andG'.According to the work of Liuet al.,[24]one can obtain the equivalent elastic moduli related to stress as follows:

    whereH,M,C, andGare four independent elastic constants of fluid-saturated porous media.H,M,andCcan be expressed as solid bulk modulusKs, pore fluid bulk modulusKf, frame bulk modulusKb,frame shear modulusG,and porosity?.

    The symbols Δ in Eq.(2), respectively, represent the change of porous elastic modulusH,M,C,andG,caused by the confining pressure and pore pressure.

    whereλc=Kb?2/(3G)+α2Mis the parameter of Biot.v'1,v'2,andv'3are the third-order elastic constants of porous elastic media.When there is no fluid in the media, they correspond to the third-order elastic constants in the elastic mediav1,v2andv3.[36]γ2,γ3, andγare the nonlinear constants of the coupling between a fluid and a solid.γ1is a nonlinear constant associated with the fluid phase.es=(Pc+αPp)/Kb,ζs=(Pp+αMes)/Mare the static deformations caused by the confining pressure and pore pressure which satisfy the linear stress–strain relationship.[24]ThePcandPprepresent the confining pressure and pore pressure,respectively.

    The corresponding equation of motion can be written as

    where the superscript refers to the derivative with respect to time,ρis the density of porous media and expressed asρ= (1??)ρs+?ρfwithρsandρfbeing the solid density and pore fluid density,respectively,?being the porosity,?ρ=jη/(ωk(ω))andk(ω)=k0/(1?jωEρfk0/(η?)),withηbeing the dynamic viscosity of pore fluid,kthe permeability,ωthe angular frequency, andEthe tortuosity.Here, the displacementsuandware assumed to vary with time according to e?jωt.By substituting Eq.(1) into Eq.(5), the elastic dynamic equation withuandwas the basic quantities can be obtained as follows:

    Unlike Boit’s kinetic equation,[37]here the elastic moduliH',M',C', andG'depend on confining pressure, pore pressure,and the third-order elastic modulus.A displacement potential is introduced, which is similar to the solution of plane waves in Biot fluid-saturated media[38]

    whereΦandψare the compressional and shear wave displacement potentials, respectively,apandasare both the ratio of seepage displacement(complex)amplitude to solid displacement (complex) amplitude.The subscripts p and s represent P-waves and S-waves, respectively.Let plane solutionΦ=Apej(lx?ωt)andψ=Asej(lx?ωt)whereApandAsare amplitude of compressional wave and shear wave,respectively,ldenotes the wave number.Shear waves(ls=Ssω)and two types of compressional waves(lpf=Spfωandlps=Spsω)can be obtained by substituting Eq.(7)into Eq.(6).Si(i=pf,ps,and s)denotes slowness.

    whereb= (ρM'+ ?ρH'?2ρfC')/(H'M'?C'2).SpfandSpsdenote slowness of the fast and slow P-waves, respectively.Equation (8) is the relationship between the slowness of the fast and the slow P-wave and confining pressure and pore pressure.Shear waves slownessSscan be written as

    Equation (9) is the relationship between the slowness of the S-wave and confining pressure and pore pressure.At the same time,the ratio of seepage displacement amplitudes of the fast and slow P-waves to solid phase displacement amplitudes can be obtained to be

    whereSi(i=pf,ps)is slowness.

    The ratio of seepage displacement amplitudes of the Swaves to solid phase displacement amplitudes can be obtained to be

    2.2.Equations of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure

    Because the fluid-saturated porous media are still isotropic under the action of pore pressure and confining pressure, the acoustic field formula in the borehole under the action of confining pore pressure is similar to the classical fluidsaturated porous formation.[29]The acoustic field in the borehole fluid is expressed as

    wheren=0,1,2 represent monopole,dipole,and quadrupole source, respectively; Inand Knare then-th order modified Bessel function of the first kind and second kind,respectively;kr=(k2z ?k2f)1/2is the radial wave number of the fluid;kzis the axial wave number;kf=ω/Vfis the fluid wave number of borehole;ωis the angular frequency;Vfis the speed of sound in the borehole fluid;εnis the constant related to the sound source in the direct field.When the sound source is a monopole source (n=0),εn=1; when the sound source is multipole (n >0),εn=2.An1(kz,ω) is the reflection coefficient in the reflection field,which is determined by the boundary conditions.The displacement component and stress are expressed as

    In Eqs.(13) and (14), the factoris omitted.The shear wave vectorΨin Eq.(7)can be further written into two terms.The compressional wave potentialΦ, horizontal polarized shear wave (SH wave) potentialχand vertical polarized shear wave(SV wave)potentialΨare introduced for the displacement of fluid-saturated porous media under external confining pressure and pore pressure.

    whereΦpfandΦpsare the fast-wave potential and slow-wave potential,respectively;aps,apf,andasare the ratio of seepage displacement amplitudes in Eqs.(10) and (11).By substituting Eq.(15) into Eq.(6) and expanding it in the cylindrical coordinate system, the solution of displacement potential can be obtained to be

    wherei=pf,ps represent the fast wave and slow wave.vi=are the radial imaginary wave numbers of fast and slow P-waves and S-waves, respectively.Unlike classical Biot fluid-saturated media,[12]here the fast,slow, and shear waves depend on the confining pressure and pore pressure.According to the boundary condition atr=r0of borehole

    we obtain the matrix equation with unknown coefficients in the following form:

    wheremij(i,j=1, 2, 3, 4, 5)are the elements of the matrix,b1,b2,andb3are given in Appendix A.The dispersion equation of the guided waves can be obtained by setting the determinant of the coefficient matrix in Eq.(18)to zero and the excitation intensity can be obtained from the pole residue.The reflection coefficientAn1can be obtained by solving Eq.(18),and the full wave field under confinement and pore pressure can be obtained from Eq.(14) by using the real axis integral and Fourier transform.

    3.Numerical simulation

    In this section, the effect of pore pressure and confining pressure on the multipole borehole acoustic field in a fluid-saturated porous media are analyzed numerically.The model is shown in Fig.1, and the borehole radius is 0.1 m.The parameters of fluid-saturated porous formation used in numerical simulation are listed in Table 1, where the parameters are selected from Fuet al.’s work.[20]The density and speed of the fluid in the borehole are 1000 kg/m3and 1500 m/s, respectively.At the same time, in the selection of stress, considering the experiments conducted by Fu B Y and Fu L Y[20]and Saroutet al.,[39]the confining pressure and pore pressure applied to the fluid-saturated porous media should meet the conditions:the confining pressure is large and the pore pressure difference between the confining pressure and the fluid in the porous media is greater than 30 MPa, so that the numerical simulation of the classical theoretical model can be consistent with the existing experimental results.

    Fig.1.Open hole model,where large grey arrows denote the direction of applied confining pressure and the little red arrow refers to the direction of the applied pore pressure.And in this paper, the confining pressure that compresses into the borehole is defined as negative pressure, and the pore pressure that expands outward in the pore fluid is defined as positive pressure.

    Table 1.Parameters of porous media.

    3.1.Dispersion curve

    In this subsection,the dispersion curve and excitation intensity of the Stoneley wave, pseudo-Rayleigh wave, flexural wave,and screw wave are calculated from Eq.(18),and the response of the dispersion curve and excitation intensity to pore pressure and confining pressure are analyzed.

    Figure 2 shows the curves of (a) dispersion and (b) excitation (b) of Stoneley waves with different confining pressures and pore pressures.In order to show more clearly the response of phase velocity and excitation intensity to pore pressure,the changes in phase velocity and excitation intensity for two different pore pressures at the given confining pressure are shown in Fig.1(c).When the pore pressure and confining pressure are applied with the pressure difference being greater than 30 MPa,the dispersion curve and excitation intensity increase significantly.The group velocity is greater than the phase velocity in the frequency range from 0 kHz to 20 kHz.Under a given confining pressure, the phase velocity, group velocity and excitation intensity decrease as the pore pressure increases.The reason for this phenomenon is that when the pore pressure increases,the strong strain around the compliant pores in porous media greatly reduces the stiffness of the solid phase of porous media.This change induces the nonlinear elastic deformation of the solid phase, which greatly reduces the elastic wave velocity in the solid phase, and leads to the decrease of the guided waves velocity in the porous media.[20]

    Fig.2.(a) Dispersion, (b) excitation intensity, and (c) changes caused by different pore pressure responses of Stoneley waves; CP and PP denote the confining pressure and pore pressure,respectively.Vph and Vg represent the phase velocity and group velocity,respectively.ΔVph and ΔEI refer to the change of phase velocity (Vph) and excitation intensity (EI), caused by different pore pressures (PP=5 MPa and PP=30 MPa) at the given confining pressure(CP=?65 MPa).

    Fig.3.(a)Dispersion,(b)excitation intensity and(c)changes caused by different pore pressure responses of pseudo-Rayleigh waves.The notations in the figure are the same as in Fig.1.

    Figure 3 shows the responses of pseudo-Rayleigh waves with different confining pressures and pore pressures.Under the condition of no stress, the shear wave velocity in the fluid-saturated porous media is 1542 m/s, which is close to the acoustic velocity of 1500 m/s in the borehole fluid.After the pore pressure and confining pressure are applied, the properties of the porous media become the harder formation than before.The pseudo-Rayleigh waves can be excited at low frequencies.The phase velocity and excitation intensity also increase significantly.Under a given confining pressure,the phase velocity decreases with pore pressure increasing.The excitation intensity initially increases in a very small frequency range and then decreases at high frequency.In addition,the phase velocity is more sensitive to pore pressure than the group velocity.

    Figure 4 shows the responses of flexural waves with different confining pressures and pore pressures.Under the condition of no stress,the flexural wave velocity at very low frequency is close to the shear wave velocity.In the range from 2 kHz to 20 kHz,the phase velocity is greater than the group velocity.When confining pressure and pore pressure are applied, the phase velocity is higher than without stress state,and the maximum value of the excitation intensity becomes bigger and moves towards high frequencies.Under a given confining pressure, the phase velocity and group velocity decrease clearly at low frequency with pore pressure increasing.The excitation intensity of the flexural wave increases at low frequency and then decreases at high frequency with pore pressure increasing at a constant confining pressure.

    Figure 5 shows the responses of screw waves with different confining pressures and pore pressures.It can be seen that the response of the dispersion and excitation intensity of the screw waves to the pore pressure are similar to that of the flexural wave.

    Fig.4.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of flexural waves.The notations in the figure are the same as in Fig.1.

    Fig.5.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of screw waves.The notations in the figure are the same as in Fig.1.

    3.2.Full waveforms

    This subsection numerically simulates the full waveforms in the borehole with a sound source at the origin of the cylindrical coordinate system(0,0,0).The receiver is located on the shaft and the distance between the receiver and the source is 5.5 m.The real-axis integration is used to evaluate the waveforms.The different excitation modes of the monopole,dipole and quadrupole source are simulated.And the source pulse functions(t)used in this work is

    wheref0andTcare the center frequency and the pulse width,respectively.

    Figure 6 shows the full waveforms of the borehole excited by a monopole source with a center frequency of 6 kHz.In the absence of stress,the components of full waves include compressional waves,shear waves and Stoneley waves.After confining pressure and pore pressure are applied,the pseudo-Rayleigh waves appear in the whole wave components.In this case,the arrival times of these waves are significantly reduced.The amplitude of the compressional wave decreases and the amplitude of the guided wave increases with confining pressure increasing.When the confining pressure is given,the amplitudes of these waves do not change significantly and the arrival times of these waves increase as the pore pressure increases.Moreover,we find that the arrival times of the pseudo-Rayleigh waves change much more than those of the Stoneley waves with pore pressure increasing.This is consistent with the dispersion curve responses of Stoneley waves and pseudo-Rayleigh waves.

    Fig.6.Full waveform response of monopole source,with inset showing linear amplification of the gray area.The amplified part is the waveform of the compressional waves,where the blue dashed line,red dashed line,and black dashed line are the arrival time of the compressional waves at different confining pressures and pore pressures,respectively.

    Fig.7.Full waveform response of dipole source, normalized by that without stress.

    Fig.8.Full waveform response of quadrupole source, normalized by that without stress.

    Figure 7 shows the full waveform of the borehole excited by a dipole source.The center frequency of the sound source is 2 kHz.There is the flexural wave components in the full wave.After applying the confining pressure and pore pressure,flexural wave amplitude increases and arrival time decreases.With given confining pressure,the arrival time of flexural waves increases as the pore pressure increases.

    Figure 8 shows the full waveform of the borehole excited by a quadrupole source, where the center frequency of the sound source is 6 kHz.It can be seen that the response of the screw waves is similar to that of the flexural waves.

    4.Conclusions

    In this work, the effects of confining pressure and pore pressure on the multipole borehole acoustic field in a fluidsaturated porous media are investigated.Firstly, the acoustic field equations of fluid-saturated porous media under confining pressure and pore pressure are derived,and the expressions of velocity and stress in the porous media are given.Combined with the borehole boundary conditions,the acoustic field equations of the borehole in fluid-saturated porous media are derived.The responses of dispersion curves and excitation intensities of guided waves (Stoneley, pseudo-Rayleigh, flexural,and screw waves)to confining pressure and pore pressure are analyzed by numerical simulations.The responses of the full waveforms to the confining pressure and pore pressure by the monopole,dipole,and quadrupole sources are also investigated.The numerical results show that the phase velocity,excitation intensity,and full wave amplitude of the guided waves increase significantly under the confining pressure.The amplitude of the compressional waves decreases rapidly as the confining pressure increases.Furthermore,the arrival time of the full waveforms obviously decreases.For a given confining pressure,increasing pore pressure causes the phase velocity of guided waves to decrease.The excitation intensity of Stoneley waves decreases in the whole frequency range,while other guided waves, except Stoneley waves, increases at low frequency and decreases at high frequency.The response of Stoneley waves to pore pressure is smaller than those of other guided waves.The arrival time of the full waveforms slightly increases with pore pressure increasing.The reason is that pore pressure reduces the equivalent elastic modulus of the saturated porous media with constant confining pressure, which reduces the body wave velocity and thus affects the change of the guided waves velocity.The results show that both confining pressure and pore pressure will have an effect on the propagation of elastic waves.In the actual oil and gas exploration, the reservoir formation is generally porous formation,which leads to the necessity of considering confining pressure and pore pressure in exploration.This work may provide some theoretical guidance for evaluating the reservoir properties by acoustic logging in the future.The relationship between the pressure and the guided wave features (velocity and excitation) is revealed.The physical analysis results would help inversions of pressure by the sonic logging responses.This work only considers the case of fluid-saturated porous media subjected to uniform stress, but the actual formation is very complex and subjected to non-uniform stress.Therefore, the response of multipole borehole acoustic field in fluid-saturated porous media under non-uniform stress needs studying further in the future.

    Appendix A

    The expressions for the matrix elements in Eq.(17)are as follows:

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.42074139) and the Natural Science Foundation of Jilin Province, China (Grant No.20210101140JC).

    猜你喜歡
    建宇志強(qiáng)
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    A study of response of thermocline in the South China Sea to ENSO events*
    Analysis of monthly variability of thermocline in the South China Sea*
    糾紛的根源
    跳高比賽中的意外
    為榮譽(yù)而戰(zhàn)
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    亚洲最大成人手机在线| 色视频www国产| 免费黄网站久久成人精品 | 久久婷婷人人爽人人干人人爱| 亚洲国产欧洲综合997久久,| 亚洲精品影视一区二区三区av| 非洲黑人性xxxx精品又粗又长| 国产精品永久免费网站| 国产真实乱freesex| 免费看美女性在线毛片视频| 丝袜美腿在线中文| 综合色av麻豆| 亚洲熟妇熟女久久| 亚洲精品色激情综合| 一二三四社区在线视频社区8| 黄色视频,在线免费观看| 亚洲黑人精品在线| 午夜精品在线福利| 午夜激情欧美在线| 亚洲欧美精品综合久久99| 观看免费一级毛片| 国产伦精品一区二区三区四那| 特级一级黄色大片| 全区人妻精品视频| 亚洲 国产 在线| 久久精品影院6| 亚洲欧美清纯卡通| 亚洲天堂国产精品一区在线| 日韩中文字幕欧美一区二区| 亚洲自偷自拍三级| 简卡轻食公司| av黄色大香蕉| 国产伦精品一区二区三区四那| 国产亚洲精品综合一区在线观看| 亚洲人成网站高清观看| 午夜免费男女啪啪视频观看 | 欧美xxxx黑人xx丫x性爽| 青草久久国产| 欧美色欧美亚洲另类二区| 欧美成人免费av一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美区成人在线视频| av欧美777| 岛国在线免费视频观看| 日本在线视频免费播放| 久久香蕉精品热| 黄色女人牲交| 国产成人影院久久av| 亚洲天堂国产精品一区在线| 不卡一级毛片| 最近最新免费中文字幕在线| 99久国产av精品| 国产午夜精品论理片| 婷婷精品国产亚洲av在线| 一个人免费在线观看的高清视频| 成人鲁丝片一二三区免费| 91狼人影院| 2021天堂中文幕一二区在线观| 久久久精品欧美日韩精品| 国产中年淑女户外野战色| 午夜免费男女啪啪视频观看 | 亚洲第一区二区三区不卡| 国产主播在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 丰满人妻熟妇乱又伦精品不卡| 黄色日韩在线| 长腿黑丝高跟| 简卡轻食公司| 内射极品少妇av片p| 无遮挡黄片免费观看| 国内毛片毛片毛片毛片毛片| 成熟少妇高潮喷水视频| 婷婷精品国产亚洲av| 两个人的视频大全免费| 亚洲一区二区三区色噜噜| 久久欧美精品欧美久久欧美| 国产精品av视频在线免费观看| 亚洲内射少妇av| 一区二区三区四区激情视频 | 亚洲三级黄色毛片| 国产探花极品一区二区| 欧美日韩黄片免| 午夜影院日韩av| 我要看日韩黄色一级片| 亚洲成a人片在线一区二区| 欧美日韩国产亚洲二区| 久久这里只有精品中国| 亚洲精品久久国产高清桃花| 国产探花在线观看一区二区| 国产男靠女视频免费网站| 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 久久国产精品影院| 国产三级黄色录像| 免费看日本二区| 国产白丝娇喘喷水9色精品| 国产伦精品一区二区三区视频9| 国模一区二区三区四区视频| 又爽又黄a免费视频| 在线天堂最新版资源| www.999成人在线观看| 国产真实乱freesex| 日韩欧美在线乱码| 热99在线观看视频| 久久久色成人| 国产精品不卡视频一区二区 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 日本 欧美在线| 一本精品99久久精品77| 大型黄色视频在线免费观看| 男女之事视频高清在线观看| 乱码一卡2卡4卡精品| 精品国产亚洲在线| 亚洲国产欧美人成| 99久国产av精品| 亚洲经典国产精华液单 | 看黄色毛片网站| 自拍偷自拍亚洲精品老妇| 51午夜福利影视在线观看| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| 88av欧美| 国产单亲对白刺激| 亚洲第一区二区三区不卡| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美三级三区| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 亚洲精品成人久久久久久| 老鸭窝网址在线观看| 国产综合懂色| 国产乱人视频| 久久亚洲真实| 国产欧美日韩精品一区二区| www日本黄色视频网| 久久6这里有精品| 精品久久久久久久久久久久久| 999久久久精品免费观看国产| 国产精品日韩av在线免费观看| 欧美丝袜亚洲另类 | av在线观看视频网站免费| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 性色av乱码一区二区三区2| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 欧美成人性av电影在线观看| 中文字幕久久专区| 久久精品国产自在天天线| 一本久久中文字幕| 国产探花极品一区二区| АⅤ资源中文在线天堂| xxxwww97欧美| 动漫黄色视频在线观看| 极品教师在线免费播放| 国产久久久一区二区三区| av在线蜜桃| 国产精品自产拍在线观看55亚洲| 午夜久久久久精精品| 每晚都被弄得嗷嗷叫到高潮| 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| 亚洲,欧美精品.| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 免费av不卡在线播放| 久久久久免费精品人妻一区二区| 极品教师在线视频| 中文资源天堂在线| 永久网站在线| 亚洲18禁久久av| 午夜老司机福利剧场| 中文字幕久久专区| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 免费看日本二区| 国产一区二区在线av高清观看| 午夜精品在线福利| 国产成人a区在线观看| 午夜两性在线视频| 亚洲熟妇熟女久久| 国产成人aa在线观看| 国产伦一二天堂av在线观看| 亚洲国产精品999在线| 欧美日韩乱码在线| 国产单亲对白刺激| 免费看光身美女| 久久国产乱子免费精品| 91在线精品国自产拍蜜月| 成熟少妇高潮喷水视频| 少妇高潮的动态图| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 又爽又黄a免费视频| 亚洲中文字幕日韩| 日韩欧美三级三区| 国产精品嫩草影院av在线观看 | 欧美黑人巨大hd| 日韩欧美在线二视频| .国产精品久久| 国产免费av片在线观看野外av| 久久天躁狠狠躁夜夜2o2o| 国产大屁股一区二区在线视频| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 男人和女人高潮做爰伦理| 国产激情偷乱视频一区二区| 男人舔奶头视频| 精品免费久久久久久久清纯| 深夜精品福利| 国产国拍精品亚洲av在线观看| 岛国在线免费视频观看| 亚洲一区高清亚洲精品| 91在线观看av| av天堂在线播放| 午夜福利免费观看在线| 国产成人av教育| 真人做人爱边吃奶动态| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 久久久久性生活片| 亚洲国产日韩欧美精品在线观看| 亚洲精品在线观看二区| av在线天堂中文字幕| 日本撒尿小便嘘嘘汇集6| netflix在线观看网站| 国产乱人视频| 欧美成人a在线观看| 少妇的逼水好多| 99久久精品热视频| 亚洲欧美激情综合另类| 国产免费一级a男人的天堂| 日韩av在线大香蕉| 欧美绝顶高潮抽搐喷水| 琪琪午夜伦伦电影理论片6080| 欧洲精品卡2卡3卡4卡5卡区| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 在线十欧美十亚洲十日本专区| 天堂√8在线中文| 精品99又大又爽又粗少妇毛片 | 看黄色毛片网站| 美女高潮的动态| 搞女人的毛片| 亚洲,欧美精品.| 老司机午夜十八禁免费视频| 伦理电影大哥的女人| av欧美777| 亚洲av熟女| 国产精品久久电影中文字幕| 国产熟女xx| 国产三级在线视频| 观看美女的网站| 十八禁人妻一区二区| 午夜久久久久精精品| 99视频精品全部免费 在线| 99热只有精品国产| 1024手机看黄色片| 赤兔流量卡办理| 亚洲精品成人久久久久久| 熟女人妻精品中文字幕| 日本黄大片高清| 夜夜爽天天搞| 伊人久久精品亚洲午夜| 我要搜黄色片| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 欧美一级a爱片免费观看看| 热99在线观看视频| 欧美3d第一页| 国产乱人视频| 国产精华一区二区三区| 国产精品国产高清国产av| 亚洲无线在线观看| 看片在线看免费视频| 宅男免费午夜| 亚洲天堂国产精品一区在线| 99久久精品热视频| 久久精品国产亚洲av天美| 最好的美女福利视频网| 在线免费观看不下载黄p国产 | 搡老岳熟女国产| 午夜激情欧美在线| 日韩欧美 国产精品| 97热精品久久久久久| 国产伦一二天堂av在线观看| 极品教师在线免费播放| 91在线观看av| 舔av片在线| av专区在线播放| 高清日韩中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 日韩成人在线观看一区二区三区| 国内精品久久久久久久电影| 国产乱人视频| 麻豆国产av国片精品| 久久国产精品影院| 18美女黄网站色大片免费观看| 伊人久久精品亚洲午夜| 一夜夜www| 国产亚洲精品综合一区在线观看| 90打野战视频偷拍视频| 看片在线看免费视频| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 国产精品一及| 日本在线视频免费播放| 国产蜜桃级精品一区二区三区| 91麻豆av在线| 99国产极品粉嫩在线观看| 麻豆国产av国片精品| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 在线十欧美十亚洲十日本专区| 听说在线观看完整版免费高清| 69av精品久久久久久| 中文资源天堂在线| 国产精品女同一区二区软件 | 国产精品影院久久| 亚洲人成伊人成综合网2020| 婷婷精品国产亚洲av在线| 能在线免费观看的黄片| 国产乱人视频| 国产中年淑女户外野战色| 一区二区三区高清视频在线| 久久久国产成人免费| 一区二区三区激情视频| 亚洲成av人片免费观看| 国产极品精品免费视频能看的| 亚洲精品久久国产高清桃花| 亚洲成人免费电影在线观看| 亚洲五月天丁香| 欧美不卡视频在线免费观看| 丝袜美腿在线中文| .国产精品久久| 老鸭窝网址在线观看| 欧美激情久久久久久爽电影| 日韩av在线大香蕉| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 91狼人影院| 国产精品自产拍在线观看55亚洲| 91狼人影院| 黄色视频,在线免费观看| 在线国产一区二区在线| 欧美性感艳星| 欧美+日韩+精品| 亚洲性夜色夜夜综合| 波多野结衣巨乳人妻| 国产成人福利小说| 色综合婷婷激情| 欧美性猛交黑人性爽| 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址| 国产一区二区激情短视频| 99精品在免费线老司机午夜| 久久久久久久午夜电影| a级一级毛片免费在线观看| 九色成人免费人妻av| 精品国内亚洲2022精品成人| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添小说| 天堂√8在线中文| 99精品在免费线老司机午夜| 久久久久久大精品| 小蜜桃在线观看免费完整版高清| av在线天堂中文字幕| 国产熟女xx| 日韩欧美免费精品| 人妻制服诱惑在线中文字幕| 欧美黑人巨大hd| 国产黄片美女视频| 日韩高清综合在线| 三级国产精品欧美在线观看| 亚洲人与动物交配视频| 国产精品影院久久| 国产精品伦人一区二区| 精品国产三级普通话版| 最近最新中文字幕大全电影3| 美女黄网站色视频| 99精品在免费线老司机午夜| 亚洲最大成人av| 国产精品人妻久久久久久| 90打野战视频偷拍视频| 特级一级黄色大片| 久久亚洲真实| 亚洲 欧美 日韩 在线 免费| 简卡轻食公司| 免费看a级黄色片| 久久久国产成人精品二区| 丁香欧美五月| 亚洲不卡免费看| 丰满的人妻完整版| 十八禁国产超污无遮挡网站| 国产一区二区在线av高清观看| a级一级毛片免费在线观看| 午夜福利免费观看在线| 老司机深夜福利视频在线观看| 国产高清有码在线观看视频| 三级男女做爰猛烈吃奶摸视频| 中国美女看黄片| 国产精品亚洲一级av第二区| 男人和女人高潮做爰伦理| 老熟妇仑乱视频hdxx| 在线免费观看不下载黄p国产 | 男女之事视频高清在线观看| 黄色日韩在线| 久久午夜亚洲精品久久| 精品人妻偷拍中文字幕| 欧美色欧美亚洲另类二区| 国产真实伦视频高清在线观看 | 国产黄片美女视频| 国产亚洲精品久久久com| av在线蜜桃| 51国产日韩欧美| 99国产极品粉嫩在线观看| 久久精品国产99精品国产亚洲性色| 18禁黄网站禁片免费观看直播| 日韩欧美在线二视频| 久久久久久久久大av| 成人美女网站在线观看视频| 亚洲av电影在线进入| 欧美激情国产日韩精品一区| 亚洲五月天丁香| 亚洲电影在线观看av| 最近在线观看免费完整版| 91字幕亚洲| 色视频www国产| 色噜噜av男人的天堂激情| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久久黄片| 久久久久久久久中文| av在线天堂中文字幕| 黄色配什么色好看| 美女cb高潮喷水在线观看| 成人毛片a级毛片在线播放| 久久久久性生活片| avwww免费| 国产又黄又爽又无遮挡在线| 哪里可以看免费的av片| 欧美日本视频| 精品免费久久久久久久清纯| 国产亚洲精品久久久久久毛片| 亚洲av免费高清在线观看| 久久久久久九九精品二区国产| 日本撒尿小便嘘嘘汇集6| 五月伊人婷婷丁香| 级片在线观看| 亚洲av日韩精品久久久久久密| 欧美乱色亚洲激情| 久久久久国内视频| 亚洲 国产 在线| 男人狂女人下面高潮的视频| 国产精品一及| 赤兔流量卡办理| 亚洲av第一区精品v没综合| 黄色日韩在线| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看| 欧美高清性xxxxhd video| 深夜精品福利| 搡老熟女国产l中国老女人| 99国产精品一区二区蜜桃av| 亚洲中文字幕一区二区三区有码在线看| 国产精品日韩av在线免费观看| 嫩草影院入口| 精品一区二区三区人妻视频| 欧美丝袜亚洲另类 | 狠狠狠狠99中文字幕| 九九在线视频观看精品| 中文字幕精品亚洲无线码一区| 美女免费视频网站| 真实男女啪啪啪动态图| 午夜福利免费观看在线| 看十八女毛片水多多多| 国产真实乱freesex| 久久国产乱子伦精品免费另类| 亚洲avbb在线观看| 在线免费观看的www视频| 日韩欧美在线乱码| 亚洲五月天丁香| 国产高清视频在线播放一区| 中出人妻视频一区二区| 国产精品免费一区二区三区在线| 在线国产一区二区在线| 嫩草影院入口| 中文字幕av成人在线电影| 婷婷丁香在线五月| 亚洲av免费在线观看| 欧美日本视频| 国模一区二区三区四区视频| 97碰自拍视频| 久久精品国产亚洲av天美| 九色成人免费人妻av| 日韩国内少妇激情av| 亚洲欧美清纯卡通| 自拍偷自拍亚洲精品老妇| 在线播放国产精品三级| 久久久久久大精品| 波野结衣二区三区在线| 无人区码免费观看不卡| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| av视频在线观看入口| 亚洲中文字幕一区二区三区有码在线看| 日韩 亚洲 欧美在线| 国产不卡一卡二| 国内精品久久久久精免费| 成人特级av手机在线观看| 成人国产综合亚洲| 能在线免费观看的黄片| 男女下面进入的视频免费午夜| 免费观看精品视频网站| 成人午夜高清在线视频| 国内精品美女久久久久久| 女人被狂操c到高潮| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添av毛片 | 又黄又爽又刺激的免费视频.| 黄色视频,在线免费观看| 中文字幕免费在线视频6| 深夜精品福利| 两性午夜刺激爽爽歪歪视频在线观看| 一本一本综合久久| 亚洲精品成人久久久久久| 亚洲在线观看片| 免费观看人在逋| 亚洲第一区二区三区不卡| 亚洲一区高清亚洲精品| 深夜精品福利| 亚洲最大成人中文| 成人性生交大片免费视频hd| av欧美777| 精品久久久久久久人妻蜜臀av| 欧美激情在线99| ponron亚洲| 很黄的视频免费| 少妇人妻一区二区三区视频| 成熟少妇高潮喷水视频| 国产蜜桃级精品一区二区三区| 国产综合懂色| 一二三四社区在线视频社区8| 免费人成在线观看视频色| 欧美一区二区国产精品久久精品| 久久久久久久久中文| 国内毛片毛片毛片毛片毛片| 免费看光身美女| 久久亚洲真实| 国产精品久久久久久久电影| 精品欧美国产一区二区三| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 日本与韩国留学比较| 一级av片app| 热99在线观看视频| 久久人妻av系列| 波多野结衣高清作品| 波多野结衣巨乳人妻| 免费大片18禁| 亚洲av五月六月丁香网| 国产成人影院久久av| 两个人的视频大全免费| 国产中年淑女户外野战色| 亚洲自拍偷在线| 亚洲avbb在线观看| 国产私拍福利视频在线观看| 搡老熟女国产l中国老女人| 毛片女人毛片| 五月伊人婷婷丁香| 看片在线看免费视频| 97热精品久久久久久| 久久人人精品亚洲av| 中文字幕久久专区| 性插视频无遮挡在线免费观看| 亚洲精品在线观看二区| 亚洲人成网站高清观看| 久久6这里有精品| 亚洲精品亚洲一区二区| 老女人水多毛片| 日日干狠狠操夜夜爽| 亚洲 国产 在线| 国产aⅴ精品一区二区三区波| 男女之事视频高清在线观看| 日韩免费av在线播放| 级片在线观看| 嫩草影院新地址| 国产乱人视频| 乱码一卡2卡4卡精品| а√天堂www在线а√下载| 大型黄色视频在线免费观看| 如何舔出高潮| 美女黄网站色视频| 午夜激情福利司机影院| 色综合婷婷激情| 欧美性猛交黑人性爽| 黄色配什么色好看| 国产亚洲精品久久久com| 国产爱豆传媒在线观看| xxxwww97欧美| 成人三级黄色视频| 亚洲男人的天堂狠狠| 亚洲av.av天堂| 久久久精品大字幕| 女生性感内裤真人,穿戴方法视频| 亚洲成av人片在线播放无| 99国产精品一区二区蜜桃av| 日韩中文字幕欧美一区二区| 日韩有码中文字幕| 欧美日本亚洲视频在线播放| 久久精品国产亚洲av天美| 床上黄色一级片| 国产探花极品一区二区| 俺也久久电影网|