• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media

    2024-01-25 07:13:30ZhiQiangZhao趙志強(qiáng)JinXiaLiu劉金霞JianYuLiu劉建宇andZhiWenCui崔志文
    Chinese Physics B 2024年1期
    關(guān)鍵詞:建宇志強(qiáng)

    Zhi-Qiang Zhao(趙志強(qiáng)), Jin-Xia Liu(劉金霞), Jian-Yu Liu(劉建宇), and Zhi-Wen Cui(崔志文)

    College of Physics,Jilin University,Changchun 130012,China

    Keywords: confining pressure,pore pressure,fluid-saturated porous media,multipole borehole acoustic field

    1.Introduction

    In actual oilfield wells, especially in the reservoir target layers, the medium is a porous medium saturated with fluids.Moreover,in the exploration and development of oil storage,in-situstress is commonly existent.Thein-situstress may arises from prolonged sedimentation or complex geological formations.It could also result from oilfield development activities such as drilling and water injection.[1]Thein-situstress in the reservoir is triggered off partly by the fluid in the pore of the reservoir, called the pore pressure, and partly by the rock skeleton of the reservoir,called the effective stress.[1]The stress in fluid-saturated porous media plays an important role in the realization of safe drilling and efficient reservoir exploitation.During drilling, higher pore pressure can lead to well control accidents, which is one of the major drilling hazards worldwide.And accurate pore pressure prediction is very important for successful drilling operations.[2]Furthermore, gaining an insight into the state ofin-situstress provides a more comprehensive understanding of gas exploration and development,[3–5]enhanced oil recovery techniques,[6,7]wellbore stability,[7,8]and reservoir management.[9,10]

    The elastic wave dynamic theory describing fluidsaturated porous media was initially established by Biot.[11–13]Biot[14]adopted the nonlinear continuum theory to first investigate the acoustoelastic theory for the fluid-saturated porous media and only presented the equations of motion for the fluidsaturated porous media under the initial stress.Grinfeld and Norris[15]proposed general theory of small dynamic motion superimposed upon large static deformation for isotropic fluidfilled poroelastic solids,extending the acoustic–elastic theory applicable to single-phase media to fluid-saturated porous media.Baet al.[16]improved the fluid-saturated porous media theory given by Grinfeld and Norris[15]by considering the nonlinear term of static strain.Wang and Tian[17]utilized the finite deformation theory of continuum and pore elastic theory to give the equation of motion of small disturbance wave field superimposed on nonlinear shape variants caused by static stress in fluid-saturated porous media.Maet al.[18]derived the equation of motion of fluid-saturated porous media,adapted to large static deformation and superimposed disturbance wave field.According to the Pade approximation,Fu B Y and Fu L Y[19]extended the acoustic–elastic theory to the case of higher effective stress,which was verified experiment.Fu B Y and Fu L Y[20]introduced the two-pore model into the traditional acoustic–elastic model of fluid-saturated porous media, and found that the experimental results are better in the case of low effective pore pressure.Quet al.[21]experimentally measured the third-order elastic modulus of fluidfilled porous rocks under uniaxial stress.Kanaun[22]investigated the effect of the pressure of fluid injected into porous media under quasi-static conditions.Liuet al.[23]studied the influence of the nonlinear parameters of fluid-structure coupling on acoustic field in porous media.Liuet al.[24]improved and modified the dynamic equation of static deformation with small perturbations of porous media,with the viscosity term and the dispersion taken into account.The study of acoustic wave propagation in fluid-saturated porous media is of great significance in evaluating reservoir properties by using acoustic logging.Utilizing the Biot theory,Rosenbaum[25]investigated the propagation of acoustic field in boreholes surrounded by porous media, named the Biot–Rosenbaum theory.Wang and Dong[26]rigorously used the theory of elastic waves in porous media to theoretically solve the radiated acoustic field surrounded by fluid-saturated porous media in an open borehole.Schmittet al.[27]and Schmitt[28]studied the formation of radially layered fluid-saturated porous media, where both the elasticity and permeability of the formations exhibit anisotropic characteristics.Zhanget al.[29]employed the Biot two-phase medium model to simulate oil reservoirs and systematically conducted theoretical derivation,mode decomposition analysis, and full-wave computation of the acoustic wavefield excited by multipole sources in the borehole.Zhang and Wang[30]introduced an analytical perturbation method to address the problem of multi-source acoustic well logging in transersely isotropic two-phase media.Building upon the BISQ model, Cuiet al.[31]studied the dispersion and attenuation of elastic waves in non-Newtonian fluidsaturated porous media.Guan and Hu[32]employed the timedomain finite difference algorithm to simulate acoustic well logging responses to horizontally layered porous formations.Heet al.[33,34]employed three-dimensional finite-difference simulations to model inclined layered porous formations and porous elastic formations with anisotropic magnetic permeability.Penget al.[35]analyzed the acoustic wave propagation and wellbore acoustic fields in non-uniform porous media saturated with viscous fluid.

    The above studies did not cover the simulation research of borehole acoustic fields in fluid-saturated porous media under the influence of stress,based on the theory of acoustoelasticity in fluid-saturated porous materials.Therefore, this work primary focuses on the refinement of the existing theory of acoustoelasticity in fluid-saturated porous media and the research of borehole acoustic field in fluid-saturated porous media under reservoir stress conditions.

    The rest of this paper is organized as follows.In Section 2,the equation of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure is derived.In Section 3,numerical results are presented to show the effects of confining pressure and pore pressure on multipole borehole acoustic field in a fluid-saturated porous media.Finally,some conclusions are drawn in Section 4.

    2.Theoretical formula

    In this section,based on the dynamic equations for static deformation of porous media with small perturbations, given by Liuet al.,[24]the motion equations of fluid-saturated porous media under pore pressure and confining pressure are derived and an expression for velocity and stress is given.In the cylindrical coordinate system,the field equations of open hole stimulated by multiple sources in fluid-saturated pore formation under confining pressure and pore pressure are derived.

    2.1.Field equation for fluid-saturated porous media under confining and pore pressure

    This subsection mainly derives the field equations of fluid-saturated porous media under confining pressure and pore pressure.The confining pressure and pore pressure in the media do not change the isotropic properties of the media.This subsection refers to the research work of Liuet al.[24]and gives the field equation under confining pressure and pore pressure as follows:

    whereuis the displacement of solid phase.w=?(uf?u)is the seepage displacement.ufis the average fluid displacement.?is the porosity.τis the stress tensor,Pis the pore fluid pressure,andIis a unit vector.Here,the equivalent elastic moduli are denoted byH',M',C', andG'.According to the work of Liuet al.,[24]one can obtain the equivalent elastic moduli related to stress as follows:

    whereH,M,C, andGare four independent elastic constants of fluid-saturated porous media.H,M,andCcan be expressed as solid bulk modulusKs, pore fluid bulk modulusKf, frame bulk modulusKb,frame shear modulusG,and porosity?.

    The symbols Δ in Eq.(2), respectively, represent the change of porous elastic modulusH,M,C,andG,caused by the confining pressure and pore pressure.

    whereλc=Kb?2/(3G)+α2Mis the parameter of Biot.v'1,v'2,andv'3are the third-order elastic constants of porous elastic media.When there is no fluid in the media, they correspond to the third-order elastic constants in the elastic mediav1,v2andv3.[36]γ2,γ3, andγare the nonlinear constants of the coupling between a fluid and a solid.γ1is a nonlinear constant associated with the fluid phase.es=(Pc+αPp)/Kb,ζs=(Pp+αMes)/Mare the static deformations caused by the confining pressure and pore pressure which satisfy the linear stress–strain relationship.[24]ThePcandPprepresent the confining pressure and pore pressure,respectively.

    The corresponding equation of motion can be written as

    where the superscript refers to the derivative with respect to time,ρis the density of porous media and expressed asρ= (1??)ρs+?ρfwithρsandρfbeing the solid density and pore fluid density,respectively,?being the porosity,?ρ=jη/(ωk(ω))andk(ω)=k0/(1?jωEρfk0/(η?)),withηbeing the dynamic viscosity of pore fluid,kthe permeability,ωthe angular frequency, andEthe tortuosity.Here, the displacementsuandware assumed to vary with time according to e?jωt.By substituting Eq.(1) into Eq.(5), the elastic dynamic equation withuandwas the basic quantities can be obtained as follows:

    Unlike Boit’s kinetic equation,[37]here the elastic moduliH',M',C', andG'depend on confining pressure, pore pressure,and the third-order elastic modulus.A displacement potential is introduced, which is similar to the solution of plane waves in Biot fluid-saturated media[38]

    whereΦandψare the compressional and shear wave displacement potentials, respectively,apandasare both the ratio of seepage displacement(complex)amplitude to solid displacement (complex) amplitude.The subscripts p and s represent P-waves and S-waves, respectively.Let plane solutionΦ=Apej(lx?ωt)andψ=Asej(lx?ωt)whereApandAsare amplitude of compressional wave and shear wave,respectively,ldenotes the wave number.Shear waves(ls=Ssω)and two types of compressional waves(lpf=Spfωandlps=Spsω)can be obtained by substituting Eq.(7)into Eq.(6).Si(i=pf,ps,and s)denotes slowness.

    whereb= (ρM'+ ?ρH'?2ρfC')/(H'M'?C'2).SpfandSpsdenote slowness of the fast and slow P-waves, respectively.Equation (8) is the relationship between the slowness of the fast and the slow P-wave and confining pressure and pore pressure.Shear waves slownessSscan be written as

    Equation (9) is the relationship between the slowness of the S-wave and confining pressure and pore pressure.At the same time,the ratio of seepage displacement amplitudes of the fast and slow P-waves to solid phase displacement amplitudes can be obtained to be

    whereSi(i=pf,ps)is slowness.

    The ratio of seepage displacement amplitudes of the Swaves to solid phase displacement amplitudes can be obtained to be

    2.2.Equations of borehole acoustic field in fluid-saturated porous media under pore pressure and confining pressure

    Because the fluid-saturated porous media are still isotropic under the action of pore pressure and confining pressure, the acoustic field formula in the borehole under the action of confining pore pressure is similar to the classical fluidsaturated porous formation.[29]The acoustic field in the borehole fluid is expressed as

    wheren=0,1,2 represent monopole,dipole,and quadrupole source, respectively; Inand Knare then-th order modified Bessel function of the first kind and second kind,respectively;kr=(k2z ?k2f)1/2is the radial wave number of the fluid;kzis the axial wave number;kf=ω/Vfis the fluid wave number of borehole;ωis the angular frequency;Vfis the speed of sound in the borehole fluid;εnis the constant related to the sound source in the direct field.When the sound source is a monopole source (n=0),εn=1; when the sound source is multipole (n >0),εn=2.An1(kz,ω) is the reflection coefficient in the reflection field,which is determined by the boundary conditions.The displacement component and stress are expressed as

    In Eqs.(13) and (14), the factoris omitted.The shear wave vectorΨin Eq.(7)can be further written into two terms.The compressional wave potentialΦ, horizontal polarized shear wave (SH wave) potentialχand vertical polarized shear wave(SV wave)potentialΨare introduced for the displacement of fluid-saturated porous media under external confining pressure and pore pressure.

    whereΦpfandΦpsare the fast-wave potential and slow-wave potential,respectively;aps,apf,andasare the ratio of seepage displacement amplitudes in Eqs.(10) and (11).By substituting Eq.(15) into Eq.(6) and expanding it in the cylindrical coordinate system, the solution of displacement potential can be obtained to be

    wherei=pf,ps represent the fast wave and slow wave.vi=are the radial imaginary wave numbers of fast and slow P-waves and S-waves, respectively.Unlike classical Biot fluid-saturated media,[12]here the fast,slow, and shear waves depend on the confining pressure and pore pressure.According to the boundary condition atr=r0of borehole

    we obtain the matrix equation with unknown coefficients in the following form:

    wheremij(i,j=1, 2, 3, 4, 5)are the elements of the matrix,b1,b2,andb3are given in Appendix A.The dispersion equation of the guided waves can be obtained by setting the determinant of the coefficient matrix in Eq.(18)to zero and the excitation intensity can be obtained from the pole residue.The reflection coefficientAn1can be obtained by solving Eq.(18),and the full wave field under confinement and pore pressure can be obtained from Eq.(14) by using the real axis integral and Fourier transform.

    3.Numerical simulation

    In this section, the effect of pore pressure and confining pressure on the multipole borehole acoustic field in a fluid-saturated porous media are analyzed numerically.The model is shown in Fig.1, and the borehole radius is 0.1 m.The parameters of fluid-saturated porous formation used in numerical simulation are listed in Table 1, where the parameters are selected from Fuet al.’s work.[20]The density and speed of the fluid in the borehole are 1000 kg/m3and 1500 m/s, respectively.At the same time, in the selection of stress, considering the experiments conducted by Fu B Y and Fu L Y[20]and Saroutet al.,[39]the confining pressure and pore pressure applied to the fluid-saturated porous media should meet the conditions:the confining pressure is large and the pore pressure difference between the confining pressure and the fluid in the porous media is greater than 30 MPa, so that the numerical simulation of the classical theoretical model can be consistent with the existing experimental results.

    Fig.1.Open hole model,where large grey arrows denote the direction of applied confining pressure and the little red arrow refers to the direction of the applied pore pressure.And in this paper, the confining pressure that compresses into the borehole is defined as negative pressure, and the pore pressure that expands outward in the pore fluid is defined as positive pressure.

    Table 1.Parameters of porous media.

    3.1.Dispersion curve

    In this subsection,the dispersion curve and excitation intensity of the Stoneley wave, pseudo-Rayleigh wave, flexural wave,and screw wave are calculated from Eq.(18),and the response of the dispersion curve and excitation intensity to pore pressure and confining pressure are analyzed.

    Figure 2 shows the curves of (a) dispersion and (b) excitation (b) of Stoneley waves with different confining pressures and pore pressures.In order to show more clearly the response of phase velocity and excitation intensity to pore pressure,the changes in phase velocity and excitation intensity for two different pore pressures at the given confining pressure are shown in Fig.1(c).When the pore pressure and confining pressure are applied with the pressure difference being greater than 30 MPa,the dispersion curve and excitation intensity increase significantly.The group velocity is greater than the phase velocity in the frequency range from 0 kHz to 20 kHz.Under a given confining pressure, the phase velocity, group velocity and excitation intensity decrease as the pore pressure increases.The reason for this phenomenon is that when the pore pressure increases,the strong strain around the compliant pores in porous media greatly reduces the stiffness of the solid phase of porous media.This change induces the nonlinear elastic deformation of the solid phase, which greatly reduces the elastic wave velocity in the solid phase, and leads to the decrease of the guided waves velocity in the porous media.[20]

    Fig.2.(a) Dispersion, (b) excitation intensity, and (c) changes caused by different pore pressure responses of Stoneley waves; CP and PP denote the confining pressure and pore pressure,respectively.Vph and Vg represent the phase velocity and group velocity,respectively.ΔVph and ΔEI refer to the change of phase velocity (Vph) and excitation intensity (EI), caused by different pore pressures (PP=5 MPa and PP=30 MPa) at the given confining pressure(CP=?65 MPa).

    Fig.3.(a)Dispersion,(b)excitation intensity and(c)changes caused by different pore pressure responses of pseudo-Rayleigh waves.The notations in the figure are the same as in Fig.1.

    Figure 3 shows the responses of pseudo-Rayleigh waves with different confining pressures and pore pressures.Under the condition of no stress, the shear wave velocity in the fluid-saturated porous media is 1542 m/s, which is close to the acoustic velocity of 1500 m/s in the borehole fluid.After the pore pressure and confining pressure are applied, the properties of the porous media become the harder formation than before.The pseudo-Rayleigh waves can be excited at low frequencies.The phase velocity and excitation intensity also increase significantly.Under a given confining pressure,the phase velocity decreases with pore pressure increasing.The excitation intensity initially increases in a very small frequency range and then decreases at high frequency.In addition,the phase velocity is more sensitive to pore pressure than the group velocity.

    Figure 4 shows the responses of flexural waves with different confining pressures and pore pressures.Under the condition of no stress,the flexural wave velocity at very low frequency is close to the shear wave velocity.In the range from 2 kHz to 20 kHz,the phase velocity is greater than the group velocity.When confining pressure and pore pressure are applied, the phase velocity is higher than without stress state,and the maximum value of the excitation intensity becomes bigger and moves towards high frequencies.Under a given confining pressure, the phase velocity and group velocity decrease clearly at low frequency with pore pressure increasing.The excitation intensity of the flexural wave increases at low frequency and then decreases at high frequency with pore pressure increasing at a constant confining pressure.

    Figure 5 shows the responses of screw waves with different confining pressures and pore pressures.It can be seen that the response of the dispersion and excitation intensity of the screw waves to the pore pressure are similar to that of the flexural wave.

    Fig.4.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of flexural waves.The notations in the figure are the same as in Fig.1.

    Fig.5.(a)Dispersion,(b)excitation intensity,and(c)changes caused by different pore pressure responses of screw waves.The notations in the figure are the same as in Fig.1.

    3.2.Full waveforms

    This subsection numerically simulates the full waveforms in the borehole with a sound source at the origin of the cylindrical coordinate system(0,0,0).The receiver is located on the shaft and the distance between the receiver and the source is 5.5 m.The real-axis integration is used to evaluate the waveforms.The different excitation modes of the monopole,dipole and quadrupole source are simulated.And the source pulse functions(t)used in this work is

    wheref0andTcare the center frequency and the pulse width,respectively.

    Figure 6 shows the full waveforms of the borehole excited by a monopole source with a center frequency of 6 kHz.In the absence of stress,the components of full waves include compressional waves,shear waves and Stoneley waves.After confining pressure and pore pressure are applied,the pseudo-Rayleigh waves appear in the whole wave components.In this case,the arrival times of these waves are significantly reduced.The amplitude of the compressional wave decreases and the amplitude of the guided wave increases with confining pressure increasing.When the confining pressure is given,the amplitudes of these waves do not change significantly and the arrival times of these waves increase as the pore pressure increases.Moreover,we find that the arrival times of the pseudo-Rayleigh waves change much more than those of the Stoneley waves with pore pressure increasing.This is consistent with the dispersion curve responses of Stoneley waves and pseudo-Rayleigh waves.

    Fig.6.Full waveform response of monopole source,with inset showing linear amplification of the gray area.The amplified part is the waveform of the compressional waves,where the blue dashed line,red dashed line,and black dashed line are the arrival time of the compressional waves at different confining pressures and pore pressures,respectively.

    Fig.7.Full waveform response of dipole source, normalized by that without stress.

    Fig.8.Full waveform response of quadrupole source, normalized by that without stress.

    Figure 7 shows the full waveform of the borehole excited by a dipole source.The center frequency of the sound source is 2 kHz.There is the flexural wave components in the full wave.After applying the confining pressure and pore pressure,flexural wave amplitude increases and arrival time decreases.With given confining pressure,the arrival time of flexural waves increases as the pore pressure increases.

    Figure 8 shows the full waveform of the borehole excited by a quadrupole source, where the center frequency of the sound source is 6 kHz.It can be seen that the response of the screw waves is similar to that of the flexural waves.

    4.Conclusions

    In this work, the effects of confining pressure and pore pressure on the multipole borehole acoustic field in a fluidsaturated porous media are investigated.Firstly, the acoustic field equations of fluid-saturated porous media under confining pressure and pore pressure are derived,and the expressions of velocity and stress in the porous media are given.Combined with the borehole boundary conditions,the acoustic field equations of the borehole in fluid-saturated porous media are derived.The responses of dispersion curves and excitation intensities of guided waves (Stoneley, pseudo-Rayleigh, flexural,and screw waves)to confining pressure and pore pressure are analyzed by numerical simulations.The responses of the full waveforms to the confining pressure and pore pressure by the monopole,dipole,and quadrupole sources are also investigated.The numerical results show that the phase velocity,excitation intensity,and full wave amplitude of the guided waves increase significantly under the confining pressure.The amplitude of the compressional waves decreases rapidly as the confining pressure increases.Furthermore,the arrival time of the full waveforms obviously decreases.For a given confining pressure,increasing pore pressure causes the phase velocity of guided waves to decrease.The excitation intensity of Stoneley waves decreases in the whole frequency range,while other guided waves, except Stoneley waves, increases at low frequency and decreases at high frequency.The response of Stoneley waves to pore pressure is smaller than those of other guided waves.The arrival time of the full waveforms slightly increases with pore pressure increasing.The reason is that pore pressure reduces the equivalent elastic modulus of the saturated porous media with constant confining pressure, which reduces the body wave velocity and thus affects the change of the guided waves velocity.The results show that both confining pressure and pore pressure will have an effect on the propagation of elastic waves.In the actual oil and gas exploration, the reservoir formation is generally porous formation,which leads to the necessity of considering confining pressure and pore pressure in exploration.This work may provide some theoretical guidance for evaluating the reservoir properties by acoustic logging in the future.The relationship between the pressure and the guided wave features (velocity and excitation) is revealed.The physical analysis results would help inversions of pressure by the sonic logging responses.This work only considers the case of fluid-saturated porous media subjected to uniform stress, but the actual formation is very complex and subjected to non-uniform stress.Therefore, the response of multipole borehole acoustic field in fluid-saturated porous media under non-uniform stress needs studying further in the future.

    Appendix A

    The expressions for the matrix elements in Eq.(17)are as follows:

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.42074139) and the Natural Science Foundation of Jilin Province, China (Grant No.20210101140JC).

    猜你喜歡
    建宇志強(qiáng)
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    學(xué)習(xí)“集合”,學(xué)什么
    李志強(qiáng)·書法作品稱賞
    盧志強(qiáng) 用心于畫外
    海峽姐妹(2019年4期)2019-06-18 10:39:00
    A study of response of thermocline in the South China Sea to ENSO events*
    Analysis of monthly variability of thermocline in the South China Sea*
    糾紛的根源
    跳高比賽中的意外
    為榮譽(yù)而戰(zhàn)
    Analysis of Tibetan Plateau Vortex Activities Using ERA-Interim Data for the Period 1979-2013
    最近最新免费中文字幕在线| 天天一区二区日本电影三级| 无人区码免费观看不卡| 国产精品香港三级国产av潘金莲| 久久久久免费精品人妻一区二区| 最后的刺客免费高清国语| 热99re8久久精品国产| 久久久久亚洲av毛片大全| 亚洲人成网站高清观看| 18美女黄网站色大片免费观看| 搡女人真爽免费视频火全软件 | 我的老师免费观看完整版| 亚洲精品乱码久久久v下载方式 | 国产高清videossex| 久久天躁狠狠躁夜夜2o2o| av天堂在线播放| 99久久99久久久精品蜜桃| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 男人舔奶头视频| 99在线人妻在线中文字幕| 色综合婷婷激情| 亚洲欧美日韩高清专用| 九色成人免费人妻av| 亚洲一区二区三区色噜噜| 国产aⅴ精品一区二区三区波| 九九热线精品视视频播放| 在线观看免费视频日本深夜| 亚洲国产精品久久男人天堂| 欧美激情在线99| 美女免费视频网站| 啦啦啦韩国在线观看视频| x7x7x7水蜜桃| 欧美性感艳星| 亚洲成人精品中文字幕电影| 成人永久免费在线观看视频| 亚洲欧美激情综合另类| 欧美性猛交黑人性爽| 久久国产乱子伦精品免费另类| 人人妻人人看人人澡| 在线看三级毛片| 亚洲精品国产精品久久久不卡| 国产三级中文精品| 久久久久免费精品人妻一区二区| 天堂影院成人在线观看| 国产 一区 欧美 日韩| 国产淫片久久久久久久久 | 亚洲精品乱码久久久v下载方式 | 啦啦啦观看免费观看视频高清| 亚洲av第一区精品v没综合| 国产精品影院久久| 欧美日韩综合久久久久久 | 日韩大尺度精品在线看网址| 国产麻豆成人av免费视频| 叶爱在线成人免费视频播放| 久久精品国产自在天天线| 一区二区三区激情视频| 免费av观看视频| 校园春色视频在线观看| 国产欧美日韩一区二区精品| 亚洲欧美日韩卡通动漫| 麻豆国产97在线/欧美| 国产午夜精品久久久久久一区二区三区 | 在线看三级毛片| а√天堂www在线а√下载| 亚洲精品国产精品久久久不卡| 欧美黑人欧美精品刺激| av国产免费在线观看| 在线a可以看的网站| 人妻丰满熟妇av一区二区三区| 黄色片一级片一级黄色片| 亚洲欧美日韩卡通动漫| 十八禁网站免费在线| 日韩 欧美 亚洲 中文字幕| 免费观看的影片在线观看| 九色成人免费人妻av| 日韩 欧美 亚洲 中文字幕| 国产免费一级a男人的天堂| 99国产精品一区二区三区| 国产精品野战在线观看| 内地一区二区视频在线| 亚洲av免费高清在线观看| 天美传媒精品一区二区| 美女黄网站色视频| 精品国产三级普通话版| 人妻夜夜爽99麻豆av| 中文字幕av在线有码专区| 国产69精品久久久久777片| 一本久久中文字幕| 成人午夜高清在线视频| 在线免费观看的www视频| 中文字幕人成人乱码亚洲影| 精品一区二区三区视频在线观看免费| 国产成+人综合+亚洲专区| 人妻丰满熟妇av一区二区三区| 精品午夜福利视频在线观看一区| 国产亚洲av嫩草精品影院| av在线天堂中文字幕| 哪里可以看免费的av片| 91麻豆精品激情在线观看国产| 亚洲精品在线观看二区| 亚洲色图av天堂| 欧美极品一区二区三区四区| 久久九九热精品免费| 偷拍熟女少妇极品色| 久久精品国产清高在天天线| 久久久久亚洲av毛片大全| 手机成人av网站| 久久久久精品国产欧美久久久| 免费观看的影片在线观看| 久久久久久久午夜电影| 精品国产三级普通话版| 动漫黄色视频在线观看| 亚洲成av人片在线播放无| 色av中文字幕| 在线免费观看不下载黄p国产 | 99热这里只有精品一区| 91在线精品国自产拍蜜月 | 成熟少妇高潮喷水视频| 18禁黄网站禁片午夜丰满| 欧美成人一区二区免费高清观看| 日韩av在线大香蕉| 久久精品综合一区二区三区| 欧美黑人欧美精品刺激| 美女高潮喷水抽搐中文字幕| 久久国产乱子伦精品免费另类| 免费av不卡在线播放| 久久精品亚洲精品国产色婷小说| 精品久久久久久久久久久久久| 国产亚洲av嫩草精品影院| 69av精品久久久久久| 国产主播在线观看一区二区| 午夜两性在线视频| 淫妇啪啪啪对白视频| 18美女黄网站色大片免费观看| 综合色av麻豆| 一进一出好大好爽视频| 波多野结衣高清无吗| 国产99白浆流出| 手机成人av网站| 亚洲人成网站高清观看| 99热6这里只有精品| 天美传媒精品一区二区| 19禁男女啪啪无遮挡网站| 亚洲av成人不卡在线观看播放网| 国产成+人综合+亚洲专区| 男女那种视频在线观看| 精品日产1卡2卡| 非洲黑人性xxxx精品又粗又长| 中亚洲国语对白在线视频| 国产精品免费一区二区三区在线| 91av网一区二区| 亚洲中文字幕日韩| 麻豆一二三区av精品| 亚洲成av人片免费观看| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕人成人乱码亚洲影| 国产极品精品免费视频能看的| 久久久久国产精品人妻aⅴ院| 亚洲中文日韩欧美视频| 99热这里只有精品一区| 女生性感内裤真人,穿戴方法视频| 18禁国产床啪视频网站| 亚洲 国产 在线| 精品人妻偷拍中文字幕| 国产视频一区二区在线看| 一级毛片高清免费大全| 欧美一级a爱片免费观看看| 国产av一区在线观看免费| 国产视频内射| 精品一区二区三区视频在线 | 成人精品一区二区免费| av专区在线播放| 国产色婷婷99| 国产精品 欧美亚洲| 欧美中文综合在线视频| 两人在一起打扑克的视频| 精品熟女少妇八av免费久了| 亚洲成av人片免费观看| 18美女黄网站色大片免费观看| 欧美性感艳星| 久久精品国产清高在天天线| 久久亚洲精品不卡| 午夜a级毛片| 欧美av亚洲av综合av国产av| 久久久久亚洲av毛片大全| 不卡一级毛片| 日本黄色视频三级网站网址| 亚洲电影在线观看av| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av二区三区四区| 国语自产精品视频在线第100页| 91在线观看av| 丁香六月欧美| 国产精品99久久久久久久久| 又黄又粗又硬又大视频| 免费av不卡在线播放| 在线a可以看的网站| 国产精品久久久久久久电影 | 搡老妇女老女人老熟妇| 免费大片18禁| 天天添夜夜摸| 香蕉丝袜av| 深爱激情五月婷婷| 我要搜黄色片| 一区二区三区免费毛片| 母亲3免费完整高清在线观看| 国产精品女同一区二区软件 | 午夜激情福利司机影院| 国内精品久久久久久久电影| 一进一出抽搐动态| 成人性生交大片免费视频hd| 日韩亚洲欧美综合| 黄色片一级片一级黄色片| x7x7x7水蜜桃| 99久久成人亚洲精品观看| 九色国产91popny在线| 久久久久精品国产欧美久久久| 成人午夜高清在线视频| 少妇人妻一区二区三区视频| 亚洲激情在线av| 亚洲国产精品成人综合色| 欧美黑人欧美精品刺激| 99久久精品热视频| 色吧在线观看| 亚洲国产欧洲综合997久久,| 久久久精品欧美日韩精品| 成人午夜高清在线视频| 丝袜美腿在线中文| 色播亚洲综合网| 一区二区三区免费毛片| 日韩欧美精品免费久久 | 久久中文看片网| 欧美av亚洲av综合av国产av| 亚洲精品亚洲一区二区| 欧美日本亚洲视频在线播放| 搡女人真爽免费视频火全软件 | 在线观看免费视频日本深夜| 悠悠久久av| 一级a爱片免费观看的视频| 丰满人妻一区二区三区视频av | 国产精品久久视频播放| 男女视频在线观看网站免费| 精品欧美国产一区二区三| 99热这里只有精品一区| 99热这里只有精品一区| 亚洲在线自拍视频| 人人妻人人看人人澡| 色综合婷婷激情| 日日干狠狠操夜夜爽| 18禁美女被吸乳视频| 亚洲av熟女| 欧美成人一区二区免费高清观看| 久久久久九九精品影院| 夜夜爽天天搞| 在线观看午夜福利视频| 国产精品美女特级片免费视频播放器| 成人鲁丝片一二三区免费| 免费看日本二区| 内地一区二区视频在线| 九色国产91popny在线| 天堂av国产一区二区熟女人妻| 国产伦一二天堂av在线观看| 欧美区成人在线视频| 久久精品91蜜桃| 成人国产一区最新在线观看| 欧美av亚洲av综合av国产av| 日韩欧美一区二区三区在线观看| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 欧美性猛交╳xxx乱大交人| 亚洲五月婷婷丁香| 美女高潮的动态| 亚洲在线自拍视频| 香蕉久久夜色| av在线蜜桃| 亚洲成人中文字幕在线播放| 黄片小视频在线播放| 制服丝袜大香蕉在线| 亚洲成av人片免费观看| 国产亚洲欧美98| 一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 欧美绝顶高潮抽搐喷水| 亚洲中文字幕一区二区三区有码在线看| 亚洲av成人不卡在线观看播放网| 亚洲美女黄片视频| 国产成人福利小说| 岛国在线免费视频观看| 国产亚洲欧美98| 人妻丰满熟妇av一区二区三区| 老司机深夜福利视频在线观看| 一区二区三区激情视频| 日韩人妻高清精品专区| 国产精品,欧美在线| 香蕉丝袜av| av女优亚洲男人天堂| 国产久久久一区二区三区| 国产亚洲精品综合一区在线观看| 日本熟妇午夜| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 欧美性猛交╳xxx乱大交人| 男女之事视频高清在线观看| 别揉我奶头~嗯~啊~动态视频| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 欧美绝顶高潮抽搐喷水| 欧美+亚洲+日韩+国产| 18禁国产床啪视频网站| 国产精品女同一区二区软件 | 变态另类成人亚洲欧美熟女| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 亚洲激情在线av| 亚洲性夜色夜夜综合| 美女cb高潮喷水在线观看| 国产97色在线日韩免费| 日日夜夜操网爽| 三级国产精品欧美在线观看| 少妇丰满av| 欧美日韩乱码在线| 久久久久性生活片| 日本一本二区三区精品| 又紧又爽又黄一区二区| 久久婷婷人人爽人人干人人爱| 香蕉丝袜av| 可以在线观看的亚洲视频| 人妻丰满熟妇av一区二区三区| 精品一区二区三区视频在线观看免费| 免费av毛片视频| 欧美成人a在线观看| 成人鲁丝片一二三区免费| 亚洲va日本ⅴa欧美va伊人久久| 日本五十路高清| 国产精品爽爽va在线观看网站| 别揉我奶头~嗯~啊~动态视频| 中文在线观看免费www的网站| 国产老妇女一区| 99久久精品热视频| 中国美女看黄片| 婷婷丁香在线五月| 亚洲国产精品合色在线| 无遮挡黄片免费观看| 中文字幕熟女人妻在线| 亚洲最大成人手机在线| 尤物成人国产欧美一区二区三区| 欧美日韩精品网址| 日韩 欧美 亚洲 中文字幕| 舔av片在线| 最近在线观看免费完整版| 99久久精品国产亚洲精品| 欧美高清成人免费视频www| 一区二区三区高清视频在线| 99精品欧美一区二区三区四区| 最近最新中文字幕大全免费视频| av片东京热男人的天堂| 波多野结衣巨乳人妻| 国产三级中文精品| 国产私拍福利视频在线观看| 欧美黑人巨大hd| 精品久久久久久久久久久久久| 国产亚洲精品久久久久久毛片| 亚洲国产精品sss在线观看| 精品人妻1区二区| 九九久久精品国产亚洲av麻豆| 超碰av人人做人人爽久久 | 亚洲在线观看片| 欧美一区二区精品小视频在线| 国产国拍精品亚洲av在线观看 | www.熟女人妻精品国产| 99久久九九国产精品国产免费| 国产一区二区在线观看日韩 | 久久久久久久精品吃奶| x7x7x7水蜜桃| 日日摸夜夜添夜夜添小说| ponron亚洲| 国产一区二区在线av高清观看| 亚洲欧美日韩高清专用| 最近最新中文字幕大全电影3| 一个人看的www免费观看视频| 身体一侧抽搐| 日本 av在线| 亚洲国产精品成人综合色| 亚洲avbb在线观看| 免费看光身美女| 亚洲美女黄片视频| a级毛片a级免费在线| 国产欧美日韩一区二区精品| 国产成人av激情在线播放| 国产午夜福利久久久久久| 免费高清视频大片| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 麻豆国产97在线/欧美| 免费在线观看亚洲国产| 国内精品一区二区在线观看| 国产精品香港三级国产av潘金莲| 岛国在线免费视频观看| 色尼玛亚洲综合影院| 在线十欧美十亚洲十日本专区| 亚洲精品一区av在线观看| 床上黄色一级片| 在线观看日韩欧美| 一级毛片女人18水好多| 亚洲精品在线美女| 啦啦啦免费观看视频1| 乱人视频在线观看| 欧美乱妇无乱码| 日本一本二区三区精品| 757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 中文字幕高清在线视频| 亚洲一区二区三区色噜噜| 欧美黑人欧美精品刺激| 亚洲aⅴ乱码一区二区在线播放| 别揉我奶头~嗯~啊~动态视频| 尤物成人国产欧美一区二区三区| 亚洲av五月六月丁香网| 久久这里只有精品中国| 岛国在线免费视频观看| 日本黄色片子视频| 亚洲欧美日韩东京热| 热99在线观看视频| 久久精品91无色码中文字幕| 亚洲国产中文字幕在线视频| 国产精品乱码一区二三区的特点| 亚洲精品一区av在线观看| 亚洲性夜色夜夜综合| 国产亚洲欧美98| 婷婷精品国产亚洲av| 天堂av国产一区二区熟女人妻| 国产熟女xx| 婷婷六月久久综合丁香| 久久久色成人| 9191精品国产免费久久| 久久精品夜夜夜夜夜久久蜜豆| 国产欧美日韩一区二区精品| 好看av亚洲va欧美ⅴa在| 亚洲美女视频黄频| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 日韩欧美一区二区三区在线观看| 国产麻豆成人av免费视频| 婷婷亚洲欧美| 亚洲熟妇中文字幕五十中出| 国产97色在线日韩免费| 国产视频一区二区在线看| 亚洲精品粉嫩美女一区| 91麻豆av在线| 国产午夜福利久久久久久| 亚洲av电影在线进入| 色尼玛亚洲综合影院| 精品电影一区二区在线| 最近最新中文字幕大全免费视频| 国产色婷婷99| 亚洲自拍偷在线| 在线观看午夜福利视频| 99久久99久久久精品蜜桃| 亚洲片人在线观看| 久99久视频精品免费| 国产伦在线观看视频一区| 欧美av亚洲av综合av国产av| av视频在线观看入口| 午夜激情欧美在线| 精品一区二区三区av网在线观看| 国产69精品久久久久777片| 校园春色视频在线观看| 99久国产av精品| 国产精品电影一区二区三区| 2021天堂中文幕一二区在线观| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 内射极品少妇av片p| 亚洲成人精品中文字幕电影| 欧美成人一区二区免费高清观看| 午夜日韩欧美国产| 久久久成人免费电影| 国产视频内射| 国产99白浆流出| 91在线精品国自产拍蜜月 | 一区二区三区激情视频| 嫩草影院精品99| 国产成人av激情在线播放| 一a级毛片在线观看| 久99久视频精品免费| 精品不卡国产一区二区三区| 日本免费a在线| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 国产免费一级a男人的天堂| а√天堂www在线а√下载| av专区在线播放| 香蕉av资源在线| 国产69精品久久久久777片| 99久久久亚洲精品蜜臀av| 中亚洲国语对白在线视频| 熟妇人妻久久中文字幕3abv| 亚洲精品粉嫩美女一区| 丰满人妻熟妇乱又伦精品不卡| 国产三级中文精品| 禁无遮挡网站| 欧美日韩精品网址| 90打野战视频偷拍视频| 国产在线精品亚洲第一网站| 亚洲精品日韩av片在线观看 | 黄色丝袜av网址大全| 国内少妇人妻偷人精品xxx网站| 亚洲狠狠婷婷综合久久图片| 色视频www国产| 在线观看av片永久免费下载| 欧美成人一区二区免费高清观看| 国产伦一二天堂av在线观看| 久久中文看片网| 熟女人妻精品中文字幕| 亚洲欧美日韩东京热| 国产国拍精品亚洲av在线观看 | 欧美一级毛片孕妇| 欧美又色又爽又黄视频| 禁无遮挡网站| 国产精品1区2区在线观看.| 俄罗斯特黄特色一大片| 国产av麻豆久久久久久久| 丰满人妻一区二区三区视频av | 91九色精品人成在线观看| 亚洲熟妇熟女久久| 观看免费一级毛片| 国产主播在线观看一区二区| 国产精品亚洲av一区麻豆| 国产高潮美女av| 国产精华一区二区三区| 手机成人av网站| 男女之事视频高清在线观看| 午夜视频国产福利| 中文字幕人妻丝袜一区二区| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 国产精品美女特级片免费视频播放器| 99视频精品全部免费 在线| 老鸭窝网址在线观看| 老司机深夜福利视频在线观看| 国产精品日韩av在线免费观看| xxx96com| 国产欧美日韩一区二区三| 欧美中文日本在线观看视频| 国产精品久久久久久亚洲av鲁大| 国产淫片久久久久久久久 | 欧美极品一区二区三区四区| 美女大奶头视频| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 精品无人区乱码1区二区| 色哟哟哟哟哟哟| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 日本 欧美在线| 国产精品国产高清国产av| 亚洲欧美一区二区三区黑人| 搞女人的毛片| 免费大片18禁| 欧美乱码精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 真实男女啪啪啪动态图| 午夜免费观看网址| 国产在视频线在精品| 他把我摸到了高潮在线观看| 欧美中文综合在线视频| 国产免费av片在线观看野外av| 国产在视频线在精品| 午夜a级毛片| 老司机午夜福利在线观看视频| 男女午夜视频在线观看| 国产日本99.免费观看| 神马国产精品三级电影在线观看| 热99re8久久精品国产| 久久精品人妻少妇| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 精品熟女少妇八av免费久了| 日韩欧美 国产精品| 国产真实乱freesex| 国产爱豆传媒在线观看| 国产成人aa在线观看| 嫩草影视91久久| 熟女人妻精品中文字幕| 国产爱豆传媒在线观看| 51国产日韩欧美| 久久久久亚洲av毛片大全| xxxwww97欧美| 日韩成人在线观看一区二区三区| 成人鲁丝片一二三区免费| 亚洲国产精品sss在线观看| 国产单亲对白刺激| 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 少妇丰满av| 丰满人妻熟妇乱又伦精品不卡| 久久久久久久久大av| 一本精品99久久精品77| 天堂动漫精品| av专区在线播放| 国产精品爽爽va在线观看网站| 国产亚洲精品一区二区www| 一夜夜www|