• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of monthly variability of thermocline in the South China Sea*

    2018-05-07 06:07:00PENGHanbang彭漢幫PANAijun潘愛軍ZHENGQuanan鄭全安HUJianyu胡建宇
    Journal of Oceanology and Limnology 2018年2期
    關(guān)鍵詞:建宇

    PENG Hanbang (彭漢幫) PAN Aijun (潘愛軍) ZHENG Quan’an (鄭全安) HU Jianyu (胡建宇)

    1 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China

    2 Ocean Dynamics Laboratory, the Third Institute of Oceanography, State Oceanic Administration (SOA), Xiamen 361005, China 3 Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA

    1 INTRODUCTION

    A thermocline is defined as a transition layer between the warmer mixed water of the upper ocean and the cooler subsurface water below. Its spatiotemporal variations can greatly influence climate change, marine fishery and underwater communication.As a semi-closed basin, the South China Sea (SCS)lies in the East Asian monsoon region (Fig.1) and the study area for this paper is deeper than 200 m.Previous investigators have carried out studies on the spatio-temporal variations of the thermocline, mainly focusing on seasonal variation of the thermocline depth. Liu et al. (2001) found that the thermocline in the central SCS becomes deeper and thinner in winter.Based on the global observational dataset MOODS(Master Observational Oceanographic Data Set) and the Generalized Digital Environmental Model(GDEM), Lan et al. (2006) investigated the thermocline depth in the SCS and found that, in January (winter), the thermocline in the northwestern SCS is deeper than that in the southeast, with two shallower centers located in the northwest of the Luzon Island and the Kalimantan Island, and in April(spring), the thermocline depth is about 30 m almost in the entire SCS. In July and October (summer and autumn), however, the thermocline depth in the northwestern SCS is shallower than that in the southeast. According to the Simple Ocean Data Assimilation (SODA) data in the SCS, Fang et al.(2013) obtained the similar seasonal variation results of the thermocline depth as Lan et al. (2006), indicating that the SODA data, though a global product, are suitable for studying the thermocline in the SCS.

    Fig.1 Topography of the South China Sea

    Regarding the mechanism for the seasonal variation of thermocline depth, Liu et al. (2000), and Zhou and Gao (2001) suggested that local wind stress can affect the thermocline through Ekman pumping. Liu et al.(2001) pointed out that the variation of the thermocline is mainly induced by the seasonal cycle of heat flux and wind stress. Besides, Lan et al. (2006) put forward that the ocean circulation and multi-eddy structure in the SCS have significant effects on the thermocline variability. Hao et al. (2012) regarded the surface buoyancy flux (caused by net heat flux and fresh water flux) and the wind stress as the main mechanisms for the seasonal variability of the thermocline.

    Although the thermocline depth in the SCS in some seasonal months (January, April, July and October)have been investigated, the thermocline depth in the other months remains unclear, which is our motivation to investigate the monthly evolution of the thermocline depth in the SCS. The lower boundary depth (Zlow),the thickness (ΔZ) and the intensity (Tz) of the thermocline in the SCS and the monthly variability of them have rarely been studied. In this study, we use 51-years (1960–2010) monthly seawater temperature data of SODA (Carton et al., 2000a, b, 2005) to calculate the upper boundary depth of thermocline(Zup),Zlow, ΔZandTzin the SCS, focusing on their monthly variability and the mechanisms of monthly variability ofZup. It is clear that this monthly variability study of thermocline in the SCS can be worthwhile,for example, for regional modellers who would like to benchmark their own results against those from a global product. However, in order to avoid too long a text, we only describe the odd-monthly means of the thermocline parameters and the mechanisms.

    The paper is organized as follows: Data and analysis methods are shown in Section 2. Monthly variability of the thermocline in the SCS is presented in Section 3. Mechanisms of the monthly variability ofZupare discussed in Section 4, and the conclusions and discussion are listed in Section 5.

    2 DATA AND METHOD

    2.1 Data

    The monthly seawater temperature, sea surface salinity and wind stress products of SODA (Carton et al., 2000a, b, 2005) are used for calculations of the thermocline, the sea surface buoyancy flux and the wind stress curl, respectively. The ocean data assimilation model is based on observations including virtually all available hydrographic profile data, as well as ocean station data, mooring temperature and salinity time series, surface temperature and salinity observations of various types. The basic temperature and salinity observation sets consist of approximately 7×106profiles over the global ocean, of which two thirds have been obtained from the World Ocean Database 2009 (Giese and Ray, 2011). Output variables are averaged every five days, and then mapped onto a uniform global 0.5°×0.5° horizontal grid (a total of 720×330×40-level grid points),spanning the latitude range from 79.25°S to 89.25°N and the longitude range from 179.75°W to 179.75°E,using the horizontal grid spherical coordinate remapping and interpolation package (Carton and Giese, 2008). We download 50×50 profiles that bounded by 0.25°–24.75°N and 100.25°–124.75°E and use 470 profiles in which the depth in the SCS is deeper than 200 m (Fig.1), and we download the upper 25 vertical layers of the seawater temperature,i.e., 5, 15, 25, 35, 46, 57, 70, 82, 97, 112, 129, 149,171, 198, 229, 268, 317, 381, 465, 579, 729, 918,1 140, 1 378, and 1 625 m. The version of SODA used in our study is SODA v2.2.4 (Giese and Ray,2011) and the variables include ocean temperature(including sea surface temperature (SST)) (°C),salinity, horizontal and vertical ocean velocity (m/s),sea level (m) and wind stress (N/m2).

    Fig.2 Procedures for determining thermocline

    The monthly net long wave radiation, net short wave radiation, sensible heat flux and latent heat flux data (1960–2010, 1.875°×1.875°) used for the sea surface net heat flux calculation are downloaded from the National Centers for Environmental Prediction(NCEP) reanalysis (Kalnay et al., 1996) (ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.derived/surface_gauss/). Monthly precipitation (1960–2010,2.5°×2.5°) and evaporation data (1960–2010, 1°×1°)used for the sea surface buoyancy flux calculation are downloaded from the National Oceanic and Atmospheric Administration (NOAA)’s Precipitation Reconstruction (PREC) Dataset (Chen et al., 2002)(http://www.esrl.noaa.gov/psd/data/gridded/data.prec.html)and the Objectively Analyzed air-sea Fluxes (OAFlux)project (Yu et al., 2008) of Woods Hole Oceanographic Institution (WHOI) (ftp://ftp.whoi.edu/pub/science/oaflux/data_v3/monthly/evaporation/), respectively.The oceanic precipitation analysis (PREC/O) is produced by EOF (Empirical Orthogonal Function)reconstruction of historical gauge observations over islands and land areas and the OAFlux project uses the objective analysis to obtain optimal estimates of flux-related surface meteorology and then computes the global fluxes by using the state-of-the-art bulk flux parameterizations.

    2.2 Method

    There are several methods to determine the thermocline, such as using the quasi-step-function approximation (QFA) (Ge et al., 2003), the 20°C isotherm and the vertical temperature gradient criterion (GC) methods. However, the QFA method cannot be applied to the region off the shelf (Hao et al., 2008). The 20°C isotherm method takes the depth of the 20°C isotherm as the thermocline depth. On the other hand, the GC method defines the thermocline to be the layer with the vertical gradient of temperature continuously larger than a given value (Fig.2), which can not only determine the upper boundary depth but also the lower boundary depth of thermocline and is properly used off the shelf (Hao et al., 2012).Therefore, we use the GC method to determine thermocline in this study. The gradient criterion of thermocline is 0.05°C/m (CSBTS, 2008).

    We define thermocline intensityTzas

    whereTupandTloware the temperatures ofZupandZlow,respectively.

    The surface net heat flux is calculated by

    whereQis net heat flux and a positive value means absorption of heat by seawater,Q1,Q2,Q3andQ4are the net short wave radiation, net long wave radiation,latent heat flux and sensible heat flux, respectively.

    The buoyancy fluxB(kg/(m?s3)) is calculated by

    whereBqis the thermal buoyancy due to the net heat flux,Bpis the haline buoyancy due to the net fresh water flux, g is the gravitational acceleration (9.8 m/s2)and Δρis the variation of seawater density,Qis the net heat flux (downward positive; W/m2),ρis the reference water density (1 024 kg/m3) andCpis the specific heat of water (3 986.3 J/(kg?°C)) (Fofonoffand Millard, 1983), α is the thermal coefficient of expansion (1.7×10-4/°C) and β is the coefficient of unit haline contraction (7.5×10-4) (McDougall, 1987),S0,E, andPare surface salinity, evaporation and precipitation, respectively.

    The wind stress curlτc(N/m3) is defined as

    whereτxandτy(N/m2) are zonal and meridional wind stress, respectively.

    3 MONTHLY VARIABILITY OF THE THERMOCLINE

    3.1 Spatial distribution of thermocline parameters

    3.1.1 Upper boundary depth

    The odd-monthly distribution of upper boundary depthZupin the SCS is shown in Fig.3a–f. One can see that in January,Zupin the northwestern SCS is 50–120 m, which is deeper than that in southeast (30–50 m), with two shallower centers (<40 m) located in the northwest of the Luzon Island and the Kalimantan Island, respectively. In March (Fig.3b),Zupbecomes shallower than that in January and continues to shoal in most regions in May (Fig.3c). On the contrary to January,Zupstarts to deepen in July (Fig.3d). It becomes deeper in the southeastern SCS (30–50 m)than that in the northwestern SCS (10–30 m), and continues to deepen in September (Fig.3e). The distribution patterns are the same as that in July with a shallower center (<20 m) located in the east of the Indo-China Peninsula. In November (Fig.3f),Zupbecomes deeper than that in September in the northwestern SCS, but shallower in the southwestern SCS.

    3.1.2 Lower boundary depth

    The odd-monthly distribution of lower boundary depthZlowin the SCS is shown in Fig.3g–l. In January(Fig.3g),Zlowis about 150–190 m in the northwestern SCS and about 150–180 m in the southeastern SCS.In March (Fig.3h),Zlowin western SCS is 160–180 m,which is deeper than that in east (140–160 m). In May(Fig.3i),Zlowis between 150 and 170 m in most areas,showing a homogeneous distribution. In July (Fig.3j),Zlowin the northwestern SCS is 130–160 m, which is shallower than that in the southeastern SCS (160–190 m). In September (Fig.3k),Zlowin the northwestern SCS with a shallower center (120–150 m) east of the Indo-China Peninsula is shallower than that in the southeastern SCS. In November (Fig.3l),Zlowin northwestern SCS becomes deeper than that in September.

    3.1.3 Thickness

    The odd-monthly distribution of thickness ΔZin the SCS is shown in Fig.3m–r. In January (Fig.3m),ΔZis from 120 m to 150 m in the east of the Indo-China Peninsula, while ΔZis smaller than 110 m in most regions. In March (Fig.3n), ΔZincreases about 20 m in the areas between the Indo-China Peninsula and the Luzon Island, and about 10 m in the southern SCS in comparison with that in January. In May(Fig.3o), ΔZis between 140 m and 160 m in most regions, exhibiting a homogeneous distribution feature. In July (Fig.3p), ΔZin the northeastern SCS is 140–160 m, which is a little thicker than that in the southwestern SCS (120–140 m) with a small thinner center (<120 m) west of the Palawan Island. In September (Fig.3q) and November (Fig.3r), ΔZis generally thinner than that in July.

    3.1.4 Intensity

    The odd-monthly distribution of intensityTzin the SCS is shown in Fig.3s–x. In January (Fig.3s), from the continental shelf break of the northern SCS to the central SCS,Tzgradually increases from 0.06 to 0.10°C/m. In comparison to January,Tzgenerally becomes weaker than that in January. In May (Fig.3u),Tzin the northwestern SCS is between 0.08 and 0.09°C/m, which is weaker than that in the southeastern SCS (0.09–0.11°C/m). In July (Fig.3v),Tzis between 0.08 and 0.10°C/m in most regions. In September (Fig.3w),Tzis generally stronger than that in July, especially east of the Indo-China Peninsula.In November (Fig.3x), the values ofTzare widely smaller than that in September.

    3.2 Spatial means of thermocline parameters

    In order to analyze the monthly variability ofZup,Zlow, ΔZandTz, we calculate their spatial means and the standard deviations as shown in Fig.4. One can see thatZupis the deepest in January (about 54 m) and the shallowest in May (about 17 m) (Fig.4a, blue bars). It increases gradually by approximately 5.4 m from May to the January of the following year, and decreases by about 12 m from February to May. On the other hand,Zlowremains 162 m (±2 m) throughout the whole year (Fig.4a, green bars). Monthly variability of ΔZ, shown as light purple bars in Fig.4b,is in antiphase withZup. It is thickest in May (about 148 m) and thinnest in January (about 110 m).

    The spatial mean and the standard deviation of monthlyTzvalues are shown as orange bars in Fig.4b. One can see thatTzis weakest in March(0.07–0.08°C/m) but strongest in September (0.09–0.10°C/m).Tzgradually strengthens from March to September, but weakens from September to the following March.

    Fig.3 Climatologically odd-monthly mean Z up (a to f), Z low (g to l), Δ Z (m to r) and T z (s to x) from January to November To be continued

    Fig.3 Climatologically odd-monthly mean Z up (a to f), Z low (g to l), Δ Z (m to r) and T z (s to x) from January to November

    4 MECHANISMS OF MONTHLY VARIABILITY OF Z up

    4.1 Factors influencing monthly variability of Z up

    In this section, we investigate the physical processes responsible for the monthly variability ofZup. Previous studies have revealed that surface net heat flux and wind stress play important roles in seasonal variation of the thermocline depth. Heat and fresh water flux at the sea surface may change the stability of upper layer stratification, thus aff ectingZup. The sea surface buoyancy consists of the thermal buoyancy (caused by the net heat flux) and the haline buoyancy flux (caused by the fresh water flux). The buoyancy flux, a comprehensive index of thermodynamics, reflects the coherent role of air-sea heat and haline exchanges (Gill, 1982; Schmitt et al.,1989). Wind stress curl also affects the thermocline depth through Ekman pumping. Besides,Zupis inseparable from the lower boundary of mixed layer.Lozovatsky et al. (2005) suggested that the sea surface buoyancy and the wind stress are the main driving mechanisms leading to the mixed layer variation in the North Atlantic Ocean. Based on this analysis we examine connections ofZupto the buoyancy flux and the wind stress curl over the SCS.

    Fig.4 Monthly distributions of spatial means

    Table 1 Correlation coefficients of Z up to B and τ c of monthly spatial mean

    4.2 Relationships of Z up with buoyancy flux and wind stress curl

    According to Eq.3, the variation of the sea surface buoyancy flux (B) depends on the variability of seawater density (Δρ). IfBis positive, i.e., the loss of buoyancy for surface seawater, then the seawater density increases and the seawater will decline, so thatZupwill deepen without regarding to the other outside forces. IfBis negative, the seawater density decreases andZupshoals. In the case ofB=0, the buoyancy flux does not affect the thermocline. On the other hand, the wind stress also drives the movement of seawater. The positive wind stress curl (τc, Eq.4) can generate the cyclonic vorticity on the sea surface and then the upwelling, which can lift the thermocline. On the contrary, the negative wind stress curl can generate the anticyclonic vorticity on the sea surface and then the down welling, which can sink the thermocline. To sum up,Zupdeepens whileBis positive orτcis negative,and shoals whileBis negative orτcis positive.

    4.3 Interpretation of monthly variability of Z up

    4.3.1 Qualitative analysis

    Based on the relationships ofZupwithBandτc, we examine the correlation ofZuptoBandτc. The results indicate thatZuphas positive correlation withBand negative correlation withτc.Zuppresents the best correlation with one-month-advancedBand twomonth-advancedτc, with the correlation coefficient being 0.90 and -0.73 (Table 1), respectively.Accordingly, we conduct a comparative analysis of odd-monthlyZup(January to November, Fig.3a–f)with even-monthlyB(December to the following October, Fig.5a–f) and odd-monthlyτc(November to the following September, Fig.5g–l).

    On the continental shelf break of the northern SCS,Breaches a positive maximum in December (Fig.5a)andτcdemonstrates a larger negative value in November (Fig.5g), causing the deepestZupin January(Fig.3a). As for the two shallower centers northwest of the Luzon Island and the Kalimantan Island, they are mainly resulted from the largest positiveτcand both the negativeBand positiveτc, respectively.

    Fig.5 Climatologically monthly means of the buoyancy flux in even months (a to f is December to the following October) and τ c in odd months (g to l is November to the following September)

    In February (Fig.5b),Bis smaller than that in December, with a negative value in most areas, so thatZupin March (Fig.3b) is shallower than that in January.Meanwhile, the two shallower centers ofZupbecome shallower due to the positiveτc(Fig.5h).

    In May,Zup(Fig.3c) is the shallowest throughout the whole year, mainly owing to the larger negativeBin April (Fig.5c), which plays a dominant role in comparison withτcbecause of the small |τc| (Fig.5i).

    In July and September,Zup(Fig.3d, e) in the northwestern SCS is shallower than that in the southeastern SCS. This is becauseBin the northeastern SCS is smaller than that in the southeastern SCS in June and August (Fig.5d, e), whileτcis positive in the northwestern SCS and larger negative in the southeastern SCS in May and July (Fig.5j, k).

    In October, positiveB(Fig.5f) in the northernmost study region results in the deeperZupin November(Fig.3f). In the region between the northwest of the Kalimantan Island and the west of the Luzon Island,τcis positive and a little less than zero (Fig.5l) on either side of that region. All of these values lead to the fact thatZupin the northern and southeastern SCS is deeper than that in the other areas (Fig.3f).

    4.3.2 Quantitative interpretation

    From the above qualitative analyses, the buoyancy flux and the wind stress curl can well account for the monthly variability ofZup. In order to analyze the influence level of the buoyancy flux and the wind stress curl onZup, we explore the relationships ofZupto the buoyancy flux or the wind stress curl without considering the wind stress curl (|τc|<1×10-9N/m3,close to zero) or the buoyancy flux (|B|<1×10-7kg/(m·s3),close to zero), respectively. From the linear regression of their results (Fig.6), it is evident thatZupshows direct proportion to the increasingB, but inverse proportion to the increasingτc. Their empirical relations are given by Eqs.5 and 6, whereZup_BandZup_τcdenote the variations ofZuponly resulted fromBandτc, respectively. From Eq.5,Zupdeepens from 4.2 m to 5.0 m (mean 4.6 m), ifBincreases by 1×10-5kg/(m·s3) without regardingτc. From Eq.6,however,Zupshoals from 1.9 m to 3.1 m (mean 2.5 m),ifτcincreases by 1×10-7N/m3without takingBinto account. In addition,Zupis 45 m without considering eitherBorτcaccording to Eqs.5 and 6, resulting in the linear relationship ofZuptoBandτcas expressed in Eq.7. Figure 7 describes the odd-monthly mean ofZupresulted from Eq.7. The patterns and values (Fig.7a–f)are very similar and close to theZupas shown in Fig.3a–f, expect in May whenZupresulted from Eq.7 is about 25–30 m (Fig.7c), which is larger thanZupresulted from SODA (10–15 m) (Fig.3c) in the northwestern SCS.

    Fig.6 Linear regression of the buoyancy flux ( B) and Z up (a), the wind stress curl ( τ c) and Z up (b)

    Fig.7 The odd-monthly means (January to November) of Z up resulted from Eq.7

    As mentioned above, the factors influencingZupare the buoyancy flux (B) and the wind stress curl (τc). To further explore the relative importance ofBandτconZup, we calculate the contribution ofBandτctoZupusing Eq.8, wherepmeans the contribution from the buoyancy flux and 100% minusprepresents the contribution from the wind stress curl.

    As shown in Fig.8, most of theZupvalues are influenced by both the buoyancy flux and the wind stress curl from December to the following February when the wind stress curl dominates the SCS deep basin. The buoyancy flux controlsZupin most regions from April to November (Fig.8d–k), among whichZupis mainly affected by the buoyancy flux in May and June, while from July to September,Zupin the north of 12°N is mainly influenced by the buoyancy flux with the southern part being dominated by both the buoyancy flux and the wind stress curl.

    5 CONCLUSION AND DISCUSSION

    This study examines variability of the upper and lower boundaries of thermocline (ZupandZlow), its thickness (ΔZ) and intensity (Tz) in the SCS, and explores the mechanisms responsible for the monthly variability ofZup. The major results are summarized as follows.

    Fig.8 Distributions of p, Z up is primarily influenced by the wind stress curl when p <25%, by the buoyancy flux when p >75%,and by both when p >25% and p <75%, (a) to (l) is January to December

    The climatological monthly meanZup,Zlow, ΔZandTzof the SCS are directly or indirectly determined by the vertical temperature GC method from monthly seawater temperature data (1960–2010). The results show that the spatial mean ofZupgradually shoals from February to May and deepens from May to the following January, ΔZis out of phase withZupbecauseZlowremains unchanged all year round.

    This study reveals that both the surface buoyancy flux and the wind stress curl play dominant roles in monthly variability ofZup. The variability of surface buoyancy flux (B) resulting from net heat and fresh water flux variations can lead to mix the surface water and change the thickness of the mixed layer, so as to affect the depth of thermocline. The wind stress curl(τc) has the ability to influenceZupthrough generating upwelling or downwelling. In order to explore howBandτcquantitatively affectZup, we investigate the monthlyBbased on the heat flux and precipitation data from NCEP, the evaporation data provided by the Woods Hole Oceanographic Institution, and theτcaccording to wind stress data from SODA. The results reveal thatZupshows the best correlation to onemonth-advancedBand two-month-advancedτc.

    We have analyzed the effects ofBandτconZupand obtained the regression equation:Zup=4.6(± 0.4)×105B–2.5(± 0.6)×107τc+45, which means thatZuphas positive correlation withBand negative correlation withτc.Zupdeepens from 4.2 m to 5.0 m (mean 4.6 m) whenBincreases by 1×10-5kg/(m·s3) without consideringτc,and shoals from 1.9 m to 3.1 m (mean 2.5 m) whenτcincreases by 1×10-7N/m3regardless ofB. The relative importance of the buoyancy flux and the wind stress curl toZupis also examined, indicating thatZupis mainly controlled by the buoyancy flux throughout the whole year.

    Although the Eq.7, resulting from a linear method,can quantitatively account for the influence ofBandτconZup, there are still some points remaining for discussion. Before using a linear method, the grid points ofZupandB,Zupandτcin the SCS must be the same.Zupandτcwhich are calculated from SODA products with a 0.5°×0.5° horizontal resolution have the same grid points, butBwhich is calculated from NCEP (1.875°×1.875°), NOAA (2.5°×2.5°) and WHOI (1°×1°) products has a much fewer grid points thanZup. Therefore, we use the 2-D interpolation method to makeBa 0.5°×0.5° horizontal resolution before analyzing the relationship betweenBandZup.This may have distorted the Eq.7 somewhat because some grid points ofBare from interpolation which could not represent the observations. Moreover, the wind stress (not the wind stress curl) on the sea surface can generate and maintain turbulence to the upper ocean, which would also influence the depth of mixed layer and thermocline. We will take into account the influence of wind stress onZupin our next step.

    6 ACKNOWLEDGEMENT

    We thank professor John Hodgkiss of the University of Hong Kong for his help with English.

    Carton J A, Chepurin G, Cao X H, Giese B. 2000a. A simple ocean data assimilation analysis of the global upper ocean 1950-95. Part I: methodology.J.Phys.Oceanogr.,30(2):294-309.

    Carton J A, Chepurin G, Cao X H. 2000b. A simple ocean data assimilation analysis of the global upper ocean 1950-95.Part II: results.J.Phys.Oceanogr.,30(2): 311-326.

    Carton J A, Giese B S, Grodsky S A. 2005. Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis.J.Geophys.Res.,110(C9): C09006, https://doi.org/10.1029/2004JC002817.

    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA).Mon.Wea.Rev.,136(8): 2 999-3 017.

    Chen M Y, Xie P P, Janowiak J E, Arkin P A. 2002. Global land precipitation: a 50-yr monthly analysis based on gauge observations.J.Hydrometeorol.,3(3): 249-266.

    China State Bureau of Technical Supervision (CSBTS). 2008.GB/T 12763.7-2007 The specifications for oceanographic survey—Part 7: exchange of oceanographic survey data.China Standards Press, Beijing. (in Chinese)

    Fang X J, Wang C X, Xu J J. 2013. Seasenal and interannual variations of the thermocline depth in the South China Sea.Trans.Oceanol.Limnol., (3): 45-55. (in Chinese with English abstract)

    Fofonoff P, Millard Jr R C. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech.Papers in Marine Science 44, UNESCO. 53p.

    Ge R F, Qiao F L, Yu F, Jiang Z X, Guo J S. 2003. A method for calculating thermocline characteristic elements in shelf sea area—Quasi-step function approximation method.Adv.Mar.Sci.,21(4): 393-400. (in Chinese with English abstract)

    Giese B S, Ray S. 2011. El Ni?o variability in simple ocean data assimilation (SODA), 1871-2008.J.Geophys.Res.,116(C2): C02024, https://doi.org/10.1029/2010JC006695.

    Gill A E. 1982. Atmosphere-Ocean Dynamics. Academic Press, San Diego, USA.

    Hao J J, Chen Y L, Wang F, Lin P F. 2012. Seasonal thermocline in the China Seas and northwestern Pacific Ocean.J.Geophys.Res,117(C2): C02022, https://doi.org/10.1029/2011JC007246.

    Hao J J, Chen Y L, Wang F. 2008. A study of thermocline calculations in the China Sea.Mar.Sci.,32(12): 17-24. (in Chinese with English abstract)

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D,Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y,Leetmaa A, Reynolds B, Chelliah M, Ebisuzaki W,Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J,Jenne R, Joseph D. 1996. The NCEP/NCAR 40-year reanalysis project.Bull.Amer.Meteor. Soc.,77(3): 437-472.

    Lan J, Bao Y, Yu F, Sun S W. 2006. Seasonal variabilities of the circulation and thermocline depth in the South China Sea deep water basin.Adv.Mar.Sci.,24(4): 436-445. (in Chinese with English abstract)

    Liu Q Y, Jia Y L, Liu P H, Wang Q, Chu P C. 2001. Seasonal and intraseasonal thermocline variability in the central South China Sea.Geophys.Res.Lett.,28(23): 4 467-4 470.

    Liu Q Y, Yang H J, Wang Q. 2000. Dynamic characteristics of seasonal thermocline in the deep sea region of the South China Sea.Chin.J.Oceanol.Limnol.,18(2): 104-109.

    Lozovatsky I, Figueroa M, Roget E, Fernando H J S,Shapovalov S. 2005. Observations and scaling of the upper mixed layer in the North Atlantic.J.Geophys.Res.,110(C5): C05013, https://doi.org/10.1029/2004JC002708.

    McDougall T J. 1987. Neutral surfaces.J.Phys.Oceanogr.,17(11): 1 950-1 964.

    Schmitt R W, Bogden P S, Dorman C E. 1989. Evaporation minus precipitation and density fluxes for the North Atlantic.J.Phys.Oceanogr.,19(9): 1 208-1 221.

    Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the objectively analyzed air-sea fluxes(OAFlux) project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables.Woods Hole Oceanographic Institution, OAFlux Project Technical Report. OA-2008-01, Woods Hole,Massachusetts, USA. 64p.

    Zhou F X, Gao R Z. 2001. Intraseasonal variability of the subsurface temperature observed in the South China Sea(SCS).Chin.Sci.Bull.,47(4): 337-342.

    猜你喜歡
    建宇
    Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
    Square grid pattern with direction-selective surface discharges in dielectric barrier discharge
    Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge
    A study of response of thermocline in the South China Sea to ENSO events*
    含 虛(一石二座)
    寶藏(2018年4期)2018-05-07 01:58:24
    酷蟲學(xué)校
    糾紛的根源
    多悉善感的鹿角蟲
    必勝嗎,狼蛛班長(zhǎng)?
    跳高比賽中的意外
    欧美丝袜亚洲另类 | 韩国av一区二区三区四区| 成人手机av| 91精品国产国语对白视频| 欧美日韩成人在线一区二区| 日日爽夜夜爽网站| 久久亚洲真实| 超碰成人久久| 日本撒尿小便嘘嘘汇集6| 国产精品久久久久久精品古装| 久久精品成人免费网站| 亚洲av成人一区二区三| 大香蕉久久网| 妹子高潮喷水视频| 亚洲欧洲精品一区二区精品久久久| 精品国产一区二区三区久久久樱花| 自线自在国产av| 久久久久久久久免费视频了| 久久香蕉激情| 色94色欧美一区二区| 亚洲伊人色综图| 这个男人来自地球电影免费观看| 精品国产美女av久久久久小说| 欧美日韩黄片免| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| 免费少妇av软件| 又黄又爽又免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 高清视频免费观看一区二区| 国产精品综合久久久久久久免费 | 99精品在免费线老司机午夜| 久久这里只有精品19| 国内毛片毛片毛片毛片毛片| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 日本欧美视频一区| 亚洲色图综合在线观看| 亚洲少妇的诱惑av| 国产精品永久免费网站| 69av精品久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲 欧美一区二区三区| 久久久国产成人免费| 1024香蕉在线观看| 天堂动漫精品| 成年人免费黄色播放视频| 久久精品亚洲精品国产色婷小说| 国产欧美日韩一区二区精品| 亚洲成av片中文字幕在线观看| 亚洲专区中文字幕在线| 精品久久久精品久久久| 狂野欧美激情性xxxx| 国产精华一区二区三区| 老汉色av国产亚洲站长工具| 婷婷精品国产亚洲av在线 | 免费看a级黄色片| 欧美不卡视频在线免费观看 | 97人妻天天添夜夜摸| 成人影院久久| 国产97色在线日韩免费| 精品免费久久久久久久清纯 | 一区在线观看完整版| 欧美日韩中文字幕国产精品一区二区三区 | 村上凉子中文字幕在线| 窝窝影院91人妻| 欧美亚洲 丝袜 人妻 在线| 亚洲男人天堂网一区| 老熟女久久久| 亚洲一区二区三区不卡视频| 黑人猛操日本美女一级片| 欧美成狂野欧美在线观看| 国产亚洲欧美在线一区二区| 午夜福利乱码中文字幕| 久久香蕉精品热| 丰满迷人的少妇在线观看| 18禁裸乳无遮挡动漫免费视频| 欧美黄色淫秽网站| 无人区码免费观看不卡| 另类亚洲欧美激情| 欧美精品高潮呻吟av久久| 久久九九热精品免费| 三级毛片av免费| 婷婷精品国产亚洲av在线 | 宅男免费午夜| 成人国语在线视频| 欧美黑人欧美精品刺激| 久久精品国产亚洲av高清一级| 两个人免费观看高清视频| www.自偷自拍.com| 欧美日韩亚洲高清精品| 99国产精品一区二区三区| 亚洲人成伊人成综合网2020| 黄频高清免费视频| 国产三级黄色录像| 日韩三级视频一区二区三区| 久久精品aⅴ一区二区三区四区| 一级a爱片免费观看的视频| 久久久久久人人人人人| 丰满饥渴人妻一区二区三| 变态另类成人亚洲欧美熟女 | 水蜜桃什么品种好| 午夜福利影视在线免费观看| 免费久久久久久久精品成人欧美视频| 国产精品成人在线| 视频区欧美日本亚洲| 国产xxxxx性猛交| 女人高潮潮喷娇喘18禁视频| 少妇 在线观看| 黑人欧美特级aaaaaa片| 老司机影院毛片| 久久 成人 亚洲| 国产国语露脸激情在线看| 满18在线观看网站| 亚洲熟妇中文字幕五十中出 | 国产免费av片在线观看野外av| 中文字幕另类日韩欧美亚洲嫩草| 国产蜜桃级精品一区二区三区 | 精品免费久久久久久久清纯 | 操出白浆在线播放| 亚洲熟女毛片儿| 久久精品国产99精品国产亚洲性色 | 亚洲成人手机| 国产精品欧美亚洲77777| 99久久国产精品久久久| 亚洲av日韩在线播放| 黑人巨大精品欧美一区二区蜜桃| 脱女人内裤的视频| 欧美激情高清一区二区三区| 麻豆乱淫一区二区| 国产免费男女视频| 久久久久久久久免费视频了| 狂野欧美激情性xxxx| 免费高清在线观看日韩| 亚洲视频免费观看视频| 久久久久久久午夜电影 | 免费少妇av软件| 日韩欧美一区二区三区在线观看 | 亚洲色图 男人天堂 中文字幕| 精品熟女少妇八av免费久了| 女人精品久久久久毛片| 丰满迷人的少妇在线观看| 窝窝影院91人妻| 亚洲自偷自拍图片 自拍| 国产精品国产高清国产av | 宅男免费午夜| 亚洲精品粉嫩美女一区| 日本a在线网址| 午夜福利在线观看吧| 久久香蕉激情| av网站在线播放免费| 黄片播放在线免费| 国产精品99久久99久久久不卡| 丰满的人妻完整版| 亚洲熟女精品中文字幕| 91九色精品人成在线观看| 无遮挡黄片免费观看| 亚洲av日韩在线播放| 国产片内射在线| 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 日韩大码丰满熟妇| 午夜免费鲁丝| 亚洲伊人色综图| 国产一区二区三区在线臀色熟女 | 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 这个男人来自地球电影免费观看| 日日爽夜夜爽网站| 天天影视国产精品| 日韩大码丰满熟妇| 丁香六月欧美| 日韩 欧美 亚洲 中文字幕| a在线观看视频网站| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲高清精品| 狠狠婷婷综合久久久久久88av| 欧美日韩亚洲国产一区二区在线观看 | 自线自在国产av| 国产精品一区二区在线观看99| 操美女的视频在线观看| 在线观看66精品国产| www.999成人在线观看| 三级毛片av免费| 又黄又爽又免费观看的视频| 黄片小视频在线播放| 精品熟女少妇八av免费久了| 岛国在线观看网站| 亚洲成人国产一区在线观看| 午夜老司机福利片| 亚洲欧美精品综合一区二区三区| 久久久水蜜桃国产精品网| 亚洲欧美激情综合另类| 又紧又爽又黄一区二区| 国产精品九九99| 精品久久蜜臀av无| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 自拍欧美九色日韩亚洲蝌蚪91| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| 亚洲免费av在线视频| 亚洲国产精品合色在线| 日本精品一区二区三区蜜桃| 欧美日韩成人在线一区二区| 午夜久久久在线观看| 91九色精品人成在线观看| 欧美日韩亚洲高清精品| 91精品三级在线观看| 免费看十八禁软件| 欧美另类亚洲清纯唯美| 又黄又粗又硬又大视频| 午夜免费成人在线视频| 精品人妻熟女毛片av久久网站| 国产精品 国内视频| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 欧美成人午夜精品| 国产高清激情床上av| а√天堂www在线а√下载 | 搡老岳熟女国产| 美女高潮到喷水免费观看| 日韩大码丰满熟妇| 欧美精品av麻豆av| 亚洲精品成人av观看孕妇| 新久久久久国产一级毛片| 亚洲av成人av| 国产精品偷伦视频观看了| 校园春色视频在线观看| 久久精品亚洲精品国产色婷小说| av中文乱码字幕在线| 亚洲国产精品合色在线| 国产成人精品无人区| 一本一本久久a久久精品综合妖精| 欧美日韩av久久| 又紧又爽又黄一区二区| 精品一区二区三卡| 亚洲av熟女| 色综合欧美亚洲国产小说| 91九色精品人成在线观看| av中文乱码字幕在线| 丝袜美腿诱惑在线| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 午夜福利欧美成人| 久久久久久久精品吃奶| 首页视频小说图片口味搜索| 国产精品久久久久成人av| 久久精品熟女亚洲av麻豆精品| 黄频高清免费视频| 国产亚洲欧美精品永久| 亚洲色图av天堂| 国产精品久久久人人做人人爽| 麻豆av在线久日| 黄片播放在线免费| 成年动漫av网址| 女警被强在线播放| 亚洲五月色婷婷综合| 精品久久久久久久毛片微露脸| 高清在线国产一区| 精品亚洲成国产av| 欧美成狂野欧美在线观看| 高清欧美精品videossex| 高清视频免费观看一区二区| 婷婷丁香在线五月| 欧美 日韩 精品 国产| 老鸭窝网址在线观看| 少妇猛男粗大的猛烈进出视频| 精品一品国产午夜福利视频| 很黄的视频免费| 国产亚洲av高清不卡| 国产伦人伦偷精品视频| 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| 99久久精品国产亚洲精品| 不卡一级毛片| 一级片免费观看大全| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| а√天堂www在线а√下载 | 久久久久久久精品吃奶| 午夜福利影视在线免费观看| 亚洲av日韩精品久久久久久密| 国内久久婷婷六月综合欲色啪| 久久精品国产a三级三级三级| 青草久久国产| 一级黄色大片毛片| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜添小说| 久久精品国产清高在天天线| 99久久综合精品五月天人人| 男女午夜视频在线观看| 国产极品粉嫩免费观看在线| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| av不卡在线播放| 天堂√8在线中文| √禁漫天堂资源中文www| 久久精品国产a三级三级三级| 制服诱惑二区| 757午夜福利合集在线观看| 91成年电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产蜜桃级精品一区二区三区 | 国产91精品成人一区二区三区| 精品欧美一区二区三区在线| 精品人妻1区二区| 别揉我奶头~嗯~啊~动态视频| 黄色成人免费大全| 最近最新中文字幕大全免费视频| 咕卡用的链子| 亚洲精品美女久久av网站| 国产片内射在线| 亚洲国产看品久久| 精品久久蜜臀av无| 色在线成人网| 最新在线观看一区二区三区| av中文乱码字幕在线| 在线观看日韩欧美| 国产亚洲一区二区精品| 18禁裸乳无遮挡免费网站照片 | 一级黄色大片毛片| 大型av网站在线播放| netflix在线观看网站| 十八禁网站免费在线| 国内久久婷婷六月综合欲色啪| 在线视频色国产色| 操美女的视频在线观看| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 精品少妇一区二区三区视频日本电影| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 电影成人av| 欧美人与性动交α欧美软件| 少妇裸体淫交视频免费看高清 | 岛国在线观看网站| 亚洲av日韩在线播放| 91九色精品人成在线观看| 亚洲av日韩精品久久久久久密| 亚洲在线自拍视频| 国产精品免费一区二区三区在线 | 久久人人97超碰香蕉20202| 大香蕉久久成人网| 久久久精品区二区三区| 日韩大码丰满熟妇| 亚洲中文字幕日韩| 国产色视频综合| 亚洲欧美激情在线| 亚洲一区二区三区欧美精品| 国产精品99久久99久久久不卡| 男女下面插进去视频免费观看| 美国免费a级毛片| 老司机影院毛片| 男男h啪啪无遮挡| 十八禁网站免费在线| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀| 国产在线精品亚洲第一网站| 久久中文看片网| 成人18禁在线播放| 国产不卡一卡二| 中文字幕色久视频| 村上凉子中文字幕在线| 狂野欧美激情性xxxx| 91成人精品电影| 国产区一区二久久| 一级a爱片免费观看的视频| 18禁裸乳无遮挡动漫免费视频| av线在线观看网站| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 免费在线观看黄色视频的| 超碰97精品在线观看| 午夜精品在线福利| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 三上悠亚av全集在线观看| 中文字幕人妻熟女乱码| 中文字幕制服av| 在线观看免费午夜福利视频| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 女人被躁到高潮嗷嗷叫费观| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 亚洲一区高清亚洲精品| 精品一区二区三卡| 夜夜夜夜夜久久久久| 九色亚洲精品在线播放| 大香蕉久久网| 成人黄色视频免费在线看| 咕卡用的链子| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片 | 成人18禁高潮啪啪吃奶动态图| 午夜福利视频在线观看免费| 国产精品偷伦视频观看了| 色婷婷久久久亚洲欧美| 亚洲精品美女久久久久99蜜臀| 老司机福利观看| 中文字幕制服av| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 日韩欧美三级三区| 女人被狂操c到高潮| 欧美日韩黄片免| 男女免费视频国产| 午夜日韩欧美国产| 亚洲第一青青草原| 国产激情欧美一区二区| 美女高潮到喷水免费观看| 一区二区三区国产精品乱码| 国产精品自产拍在线观看55亚洲 | 中亚洲国语对白在线视频| 九色亚洲精品在线播放| 91国产中文字幕| 悠悠久久av| 热99re8久久精品国产| 极品少妇高潮喷水抽搐| 久久久久国产一级毛片高清牌| 村上凉子中文字幕在线| 国产精品久久电影中文字幕 | 久久久国产成人精品二区 | 99国产精品一区二区蜜桃av | 波多野结衣一区麻豆| 精品国产超薄肉色丝袜足j| 黄频高清免费视频| 久久精品国产综合久久久| 中文字幕人妻丝袜一区二区| 欧洲精品卡2卡3卡4卡5卡区| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 999久久久精品免费观看国产| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 多毛熟女@视频| 日韩成人在线观看一区二区三区| 人人妻人人澡人人看| 一区二区三区激情视频| 欧美激情久久久久久爽电影 | 精品国产一区二区久久| 自线自在国产av| 99热网站在线观看| 亚洲精品久久成人aⅴ小说| 夫妻午夜视频| 捣出白浆h1v1| 久久精品国产综合久久久| 亚洲国产精品一区二区三区在线| 一级黄色大片毛片| 中文字幕人妻熟女乱码| 亚洲国产精品sss在线观看 | 91大片在线观看| 亚洲精品美女久久av网站| 精品国产国语对白av| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 别揉我奶头~嗯~啊~动态视频| 极品少妇高潮喷水抽搐| 成人18禁在线播放| 国产午夜精品久久久久久| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 女性被躁到高潮视频| 久久精品91无色码中文字幕| 老汉色∧v一级毛片| 亚洲欧美激情综合另类| 在线观看免费视频网站a站| 正在播放国产对白刺激| 日韩熟女老妇一区二区性免费视频| 国产免费男女视频| 国产成人影院久久av| 免费在线观看影片大全网站| 久久久国产成人精品二区 | 桃红色精品国产亚洲av| 国产深夜福利视频在线观看| 亚洲国产中文字幕在线视频| 亚洲成av片中文字幕在线观看| 亚洲国产欧美网| 亚洲aⅴ乱码一区二区在线播放 | 精品人妻熟女毛片av久久网站| 韩国av一区二区三区四区| 老鸭窝网址在线观看| 美女视频免费永久观看网站| 久久久国产成人精品二区 | 亚洲五月婷婷丁香| 欧美+亚洲+日韩+国产| 人妻久久中文字幕网| av视频免费观看在线观看| 啦啦啦在线免费观看视频4| 午夜福利在线免费观看网站| 一边摸一边抽搐一进一出视频| 成年人黄色毛片网站| av中文乱码字幕在线| 欧美国产精品一级二级三级| 国产欧美日韩精品亚洲av| 午夜福利影视在线免费观看| 高清毛片免费观看视频网站 | 亚洲片人在线观看| 精品国产乱子伦一区二区三区| 精品久久久久久久毛片微露脸| 欧美日韩av久久| 国产熟女午夜一区二区三区| 亚洲美女黄片视频| 黄色丝袜av网址大全| 女人久久www免费人成看片| 无限看片的www在线观看| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 国产激情久久老熟女| 99re6热这里在线精品视频| 韩国av一区二区三区四区| 亚洲精品自拍成人| 国产精品影院久久| 欧美精品av麻豆av| 午夜福利在线免费观看网站| 侵犯人妻中文字幕一二三四区| 一进一出抽搐动态| 亚洲国产精品sss在线观看 | 午夜福利影视在线免费观看| 桃红色精品国产亚洲av| 91成人精品电影| 国产日韩一区二区三区精品不卡| 亚洲九九香蕉| 亚洲欧美激情在线| 国产97色在线日韩免费| 久久精品国产清高在天天线| 韩国av一区二区三区四区| 久久久久国内视频| 国产男靠女视频免费网站| 久久ye,这里只有精品| 免费高清在线观看日韩| 国产精品亚洲一级av第二区| 午夜老司机福利片| 丰满的人妻完整版| 国产成人av激情在线播放| 欧美日本中文国产一区发布| 在线国产一区二区在线| a级毛片在线看网站| www.自偷自拍.com| 亚洲国产中文字幕在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美色中文字幕在线| 黄片播放在线免费| 五月开心婷婷网| 午夜91福利影院| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| 很黄的视频免费| 少妇被粗大的猛进出69影院| 黑人操中国人逼视频| 美女午夜性视频免费| 国产成人啪精品午夜网站| 久久久精品免费免费高清| 夫妻午夜视频| 亚洲成人国产一区在线观看| 我的亚洲天堂| 日本黄色日本黄色录像| 久久青草综合色| 人人妻人人澡人人爽人人夜夜| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜制服| 中文字幕精品免费在线观看视频| 大型av网站在线播放| 麻豆成人av在线观看| 午夜精品在线福利| 日韩制服丝袜自拍偷拍| 久久精品国产99精品国产亚洲性色 | 国产一区二区三区综合在线观看| 看黄色毛片网站| 免费女性裸体啪啪无遮挡网站| 欧美精品亚洲一区二区| 一边摸一边抽搐一进一小说 | 一级作爱视频免费观看| 成年动漫av网址| 色播在线永久视频| 国产精品偷伦视频观看了| 丁香欧美五月| 免费观看精品视频网站| 日韩人妻精品一区2区三区| 自线自在国产av| av天堂久久9| 精品免费久久久久久久清纯 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品粉嫩美女一区| 久热爱精品视频在线9| 欧美丝袜亚洲另类 | 日本五十路高清| 人人澡人人妻人| 18禁美女被吸乳视频| 久久久久久免费高清国产稀缺| 一级片'在线观看视频| videosex国产| 丰满饥渴人妻一区二区三| 欧美成人免费av一区二区三区 | 淫妇啪啪啪对白视频| 男女之事视频高清在线观看| 老汉色∧v一级毛片| 国产精品久久电影中文字幕 | 国产激情欧美一区二区| 亚洲精品自拍成人| 亚洲国产毛片av蜜桃av| 啦啦啦视频在线资源免费观看| 丝袜人妻中文字幕| 巨乳人妻的诱惑在线观看| 一级毛片高清免费大全| 视频在线观看一区二区三区| tube8黄色片| 免费在线观看日本一区| 久久天躁狠狠躁夜夜2o2o| tube8黄色片| 美女福利国产在线| 国产精品成人在线| 亚洲片人在线观看|