• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films

    2024-01-25 07:29:34KaiChen陳凱JianguoZhao趙見(jiàn)國(guó)YuDing丁宇WenxiaoHu胡文曉BinLiu劉斌TaoTao陶濤ZheZhuang莊喆YuYan嚴(yán)羽ZiliXie謝自力JianhuaChang常建華RongZhang張榮andYouliaoZheng鄭有炓
    Chinese Physics B 2024年1期
    關(guān)鍵詞:嚴(yán)羽陳凱自力

    Kai Chen(陳凱), Jianguo Zhao(趙見(jiàn)國(guó)),2,?, Yu Ding(丁宇), Wenxiao Hu(胡文曉), Bin Liu(劉斌),?,Tao Tao(陶濤), Zhe Zhuang(莊喆), Yu Yan(嚴(yán)羽), Zili Xie(謝自力), Jianhua Chang(常建華),Rong Zhang(張榮),3, and Youliao Zheng(鄭有炓)

    1Key Laboratory of Advanced Photonic and Electronic Materials,School of Electronic Science and Engineering,Nanjing University,Nanjing 210023,China

    2School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China

    3Xiamen University,Xiamen 361005,China

    Keywords: nonpolar a-plane GaN film,Mg-doping temperature,strains,activation efficiency

    1.Introduction

    III-nitrides are promising semiconductor systems with widespread applications for power,[1,2]radio frequency(RF),[3,4]optoelectronic,[5,6]and light-emitting devices.[7,8]In general, most of the conventional III-nitride-based devices are epitaxially grown along thec-plane direction.However,a strong built-in electric field parallel to thec-direction induced by the spontaneous and piezoelectric polarization forces the spatial separation of electrons and holes in the quantum wells,causing a reduction of the recombination rate and a redshift of the emission wavelength in III-nitrides based lightemitting devices.[9,10]This general phenomenon, known as the quantum-confined Stark effect (QCSE), severely hinders the improvement of the internal quantum efficiency in nitridebased optoelectronic devices.[11]Currently, various methods for conquering the adverse effects of QCSE have been reported, such as the introduction of V-pits,[12]the employment of AlN/AlGaN strain-compensating layers,[13]the usage of stress engineering,[14]and the growth of InGaN quantum dots.[15]In fact, the adverse effects of built-in electric field could also be eliminated by growing nonpolar GaNbased materials, which means that the growth direction of semiconductor is perpendicular to the direction of electric field.[16,17]Apparently, the adverse effects of built-in electric field could be suppressed with various degrees when the angle between growth direction of semiconductor and the direction of electric field is varied from 0°to 90°, which are semipolar materials.[18]Thus,the study of nonpolar/semipolar GaNbased materials has increasingly received more attention.

    Recently, the successful fabrications of semipolar (1–101)-plane,[19](11–22)-plane,[20]and(20–21)-plane[21]GaNbased LEDs have been reported.Moreover, high bandwidth visible light communication has been reported by using semipolar(20–21)-plane[22]and(11–22)-plane[23]GaN-based LEDs.However,given the presence of apparent anisotropy in the growth surface of nonpolar materials,the epitaxial growth of nonpolar GaN-based materials is relatively difficult when compared to the polar/semipolar counterparts.[24]Although studies of nonpolar (10–10)-plane AlGaN,[25]GaN,[26]and InGaN,[27]and nonpolar (11–20)-plane AlGaN,[11]GaN,[28]and InGaN[29]have recently been reported, the research of nonpolar III-nitrides based devices is significantly behind.A reliable p-type semiconductor is necessary for a device with p–n junction.Although the successful growth of nonpolar p-GaN has been reported,[30]there is no detailed and in-depth study of the activation efficiency and activation energy of Mg acceptors in nonpolar p-type GaN.

    In this paper,nonpolara-plane p-type GaN epilayers with growth temperatures from 980°C to 1010°C were grown onr-plane sapphire substrate by a close coupled shower head(CCS) metal–organic chemical vapor deposition (MOCVD)system.The influence of growth temperature on structural anisotropy and electrical properties of nonpolar p-type GaN films were investigated intensively.Eventually,a p-type GaN with high activation efficiency and high doping concentration was obtained.

    2.Experiment

    All the nonpolar (11–20)a-plane GaN samples were grown on semipolar (1–102)r-plane sapphire substrates by a CCS MOCVD system.Ammonia (NH3), trimethyl-gallium(TMGa), and bicyclopentadienyl-magnesium (Cp2Mg) were used as the N, Ga, and Mg source precursors, respectively,which were mainly introduced into the reaction chamber by hydrogen (H2) as a carrier gas.The pressure of the chamber was maintained at 53 mbar during the whole process.The schematic structure of the nonpolar p-type GaN samples prepared in this paper is shown in Fig.1(a).Figure 1(b) shows the temperature changed with time in the corresponding process.Before growth, high-temperature baking and a nitridation process were carried out at 990°C to remove the surface contamination of the sapphire substrate.Subsequently,a 20 nm-thick low-temperature GaN(LT-GaN)nucleation layer was deposited on the sapphire substrate at 550°C and followed by a high-temperature GaN (HT-GaN) buffer layer grown at 1030°C.Afterward,the temperature was raised to 1035°C to grow an undoped GaN (u-GaN) layer on the HT-GaN layer.Finally, the Mg-doped GaN layers with various temperatures with a V/III molar flow ratio of 5000 were grown on the u-GaN layer to explore the influence of temperature on the morphology and electrical properties of nonpolara-plane p-type GaN.Four nonpolara-plane p-type GaN samples were grown in this work with 980°C, 990°C, 1000°C, and 1010°C, and were named samples T1, T2, T3, and T4, respectively.To activate the Mg dopants,all of the samples were rapidly thermally annealed at 800°C for 10 min within a nitrogen ambient.

    The surface morphologies of the p-type GaN samples were characterized by scanning electron microscopy (SEM)and atomic force microscopy (AFM).The crystalline quality analysis of the samples was mainly achieved by high resolution x-ray diffraction (HR-XRD).The in-plane strains ofaplane p-GaN samples were evaluated with the Raman spectra excited by a 514 nm laser at room temperature.The Hall effect measurements were employed to estimate the electrical properties of all of the samples.Specifically, the Ni (20 nm)/Au(20 nm) electrodes were deposited at the four corners of the surface of the squarea-plane GaN sample by electron beam evaporation,and ohmic contact was formed between the metal and the sample after annealing at 500°C for 10 min in an air environment.The Mg incorporation density was determined using secondary ion mass spectroscopy (SIMS) measurements.

    3.Results and discussion

    The cross-sectional SEM graph for the nonpolara-plane p-GaN sample is shown in Fig.1(c).The difference in conductivity between the Mg-doped layer at the top and undoped layer at the bottom results in a clear boundary at the interface.The thickness of the Mg-doped layer was determined to be 270 nm by both the cross-sectional SEM graph and the in situ reflectance monitoring system(not shown).The threedimensional view AFM images of alla-plane p-GaN samples were measured in a detection area of 3 μm×3 μm.It is evidently observed from Fig.2 that the surface morphology of the four samples possesses an undulating structure that is distributed along thec-direction.This typical directional structure of nonpolar GaN is mainly related to the larger diffusion length of the Ga adatom along thec-direction than along them-direction on the surface.[31]Samples T1 and T2 with 0.83 nm and 0.97 nm root mean square(RMS)roughness feature a smoother and flatter surface that is comparable to the previously reported Mg-doped nonpolara-plane GaN.[32]In addition, for samples T3 and T4, the width of the undulating structure gradually increases and the corresponding RMS roughnesses are 1.41 nm and 1.62 nm,respectively.This phenomenon implies that a higher temperature might inhibit the in-plane surface diffusion of GaN along them-direction[33]and promote the growth along thec-direction,resulting in the deteriorated surface morphology.

    Fig.1.(a) The schematic layer structure for the nonpolar a-plane p-type GaN samples.(b) The growth temperature of each layer varies with time.(c)The cross-sectional SEM graph for the nonpolar a-plane p-GaN sample.

    Fig.2.(a)–(d)The AFM images for the samples T1–T4 with a detection area of 3μm×3μm.

    Fig.3.(a)The XRD ω–2θ scanning curve for the nonpolar a-plane p-type GaN.(b)XRCs of the samples T1–T4.

    Table 1.The FWHM values of XRCs and the anisotropy ratios for samples T1–T4 along c-and m-directions.

    The XRDω–2θscanning curve of the sample is shown in Fig.3(a).The diffraction peaks at 52.54°and 57.71°correspond to(2–204)r-plane sapphire substrate and(11–20)aplane GaN, respectively.[11]This further indicates that nonpolara-plane GaN has been successfully grown on semipolarr-plane sapphire substrate.The x-ray rocking curves(XRCs)based on 57.71°position were measured, respectively, at azimuth angles of?=0°(alongc-direction)and?=90°(alongm-direction) to describe the structural anisotropy of the nonpolara-plane GaN samples.The full width at half maximum (FWHM) values for XRCs of the four samples can be obtained by a Gauss function fitting the XRCs, as shown in Figs.3(b)and 3(c),and the results are summarized in Table 1.Significantly, the FWHM values of XRCs alongc-direction are much smaller than those along them-direction, which is due to the smaller lattice mismatch between the nonpolaraplane GaN and the semipolarr-plane sapphire substrate along thec-direction.[34]Additionally, the FWHM values of XRCs alongc-direction increased from 1019 arcsec for sample T1 to 1101 arcsec for sample T2, but decreased from 1515 arcsec to 1300 arcsec along them-direction.This indicates that temperature has a great difference on the crystalline quality in both directions.To accurately evaluate anisotropy in crystalline quality,the anisotropy ratioAis defined by the following equation:

    whereF90andF0are the FWHM values of XRC measured at azimuth angles of?=0°and?=90°, respectively.The calculation results of samples T1–T4 are presented in Table 1.The anisotropy ratios reduced sharply from 19.6% for sample T1 to 8.3%for sample T2.This remarkable improvement of anisotropy in crystalline quality can be attributed to the release of residual stress between u-GaN layer and p-type GaN layer as the temperature increased.[35]On the contrary, the anisotropy ratio increased significantly from 8.3%for sample T2 to 14.0% for sample T4.Although relatively high temperatures can promote the incorporation of Mg atoms,[35]an excess of Mg atoms can result in lattice distortion and an increased density of defects, particularly nitrogen vacancies, in the p-GaN layer.[34]The presence of excessive nitrogen vacancies can strengthen the self-compensation effect, leading to a decrease in the concentration of the holes.As a result,an 8.3%of low anisotropy in crystalline quality could be obtained at 990°C by optimizing the growth temperature.

    Fig.4.(a)Raman spectra and(b)calculated in-plane strains of samples T1–T4.

    The Raman spectra of the p-typea-plane GaN films prepared at different growth temperatures were carried out to investigate the strain state.As shown in Fig.4(a), the Raman peaks for all of the samples located at 418 cm?1belong to A1gmode ofr-sapphire and the peaks observed at 532 cm?1,559 cm?1,and 568 cm?1correspond to A1(TO),E1(TO),E2(high) mode of GaN, respectively.[36]In general, the biaxial in-plane strainεalongx,y, andzaxis for nonpolara-plane GaN film can be expressed as[36]

    whereC11,C12, andC13are all the elastic stiffness constants and thex,y, andzaxis are defined as GaN[11–20], [1–100],and[0001]-directions,respectively.Furthermore,the relationship between Raman peak shifts Δωand in-plane strain can be described as[36]

    Hereλrepresents a certain Raman mode andaλ,bλ, andcλare all the phonon deformation constants for the above homologous mode.Independent peaks,which are shown as the yellow dotted line in the Fig.4(a), can be obtained by Lorentz fitting Raman spectra so as to accurately extract the peaks positions.The relative displacement of peak position can be calculated according to the strain-free phonon frequencies of E1(TO)(558.8 cm?1)and E2(high)(567.6 cm?1)modes.The inplane strainsεyyandεzzare estimated by solving Eqs.(2)and(3).In order to correctly describe the in-plane strains of all of the samples,the Raman spectra at four positions were measured for each sample under the same conditions.Figure 4(b)gives a box-type statistical diagram of the calculated in-plane strains as a function of growth temperature.It is clearly noted that all of the samples suffered compressive strain along thec- andm-directions,[37]and the values of compressive stress inc-direction are less than those in them-direction.Interestingly,the strain variations alongc-andm-directions for samples T1–T4 are consistent with the trend of the FWHM values of the XRCs.This means that an increase or decrease in stress can be judged by an increase or decrease in the FWHM value of XRC, which indicates that the crystal quality seriously restricts the stress value.

    Fig.5.(a)The AC Hall effect measurement at room temperature for sample T1–T4.(b) The resistivity for sample T2 as a function of reciprocal temperature.The inset is the acceptor activation energy of samples T1–T4.

    The AC Hall effect measurement at room temperature was used to reliably determine the carrier type of Mg-doped nonpolara-plane GaN films, as shown in Fig.5(a).The hole concentrations after annealing were determined to be 4.1×1017cm?3, 1.3×1018cm?3, 5.9×1017cm?3, and 5.5×1017cm?3for samples T1,T2,T3,and T4,respectively,suggesting that all of the films achieve Mg activation and ptype semiconductor.Meanwhile, hole concentrations as the temperature increased first increased and then decreased.The contrary variation of carrier mobility was ascribed to the enhanced ionized impurity scattering caused by a relatively high hole concentration.It can be found that a hole concentration of 1.3×1018cm?3for sample T2 was achieved with a relatively smooth surface morphology (as shown in Fig.2(b)),a low anisotropy in crystalline quality (as shown in Table 1),and small strains(as shown in Fig.4(b)).Naturally,the carrier mobility of sample T2 was decreased evidently due to its high hole concentration.

    To explore the transmission characteristics of the carriers, we performed temperature dependent Hall-effect measurements on sample T2 from 298 to 853 K.From the resistivity as a function of reciprocal temperature in Fig.5(b),it is obvious that the sample presents a typical thermally activated conduction process.[38]The resistivity decreases with increasing temperature,whereas hole concentration is positively correlated with temperature.The acceptor activation energy(EA) can be deduced by fitting the measurement data with Arrhenius-type formula.[39]The inset shows the relationship between activation energy and temperature.The calculatedEAvalues of all nonpolara-plane GaN samples are smaller than that reported in thec-plane GaN(174 meV).[40]It can be inferred from this that the heavy hole band in nonpolar GaN would upward shift due to its strain anisotropy,so the Mg acceptors energy level will become shallower accordingly.Thus,the activation energy of Mg acceptors in nonpolar GaN is obviously smaller than that in polar GaN.

    Fig.6.SIMS measurement of sample T2.

    A SIMS measurement of sample T2 was recorded to confirm the Mg-doping concentration of Mg atoms into the GaN film, as shown in Fig.6.The Mg concentration signal increased along the growth direction and the strongest signal appeared near the surface of the sample, which could be explained by the Mg memory effect.[41]The significant Mg concentrations(>1.5×1019cm?3)are observed at profile depth<270 nm.This is in agreement with the SEM results.Furthermore, the Mg-doping efficiency is defined as the ratio of the hole concentration and Mg-doping density(Hall/SIMS ratio).Here,the average Mg concentration is 2×1019cm?3in the p-type GaN layer of sample T2 and the Hall/SIMS ratio is calculated to be as high as 6.5%,indicating that the optimized temperature can significantly suppress the self-compensation effect to effectively increase the hole concentration and activation rate.

    4.Conclusion

    We have grown nonpolara-plane p-type GaN with different Mg-doping temperatures on two-inch semipolarr-plane sapphire substrates by the MOCVD system.The sample with 0.97 nm RMS roughness at an optimized temperature of 990°C reveals high crystalline quality,relatively low in-plane strains, and high hole concentrations of 1.3×1018cm?3.It is revealed that the variation trend of the XRC FWHM values along thec- andm-directions are essentially consistent with the stress along the corresponding directions.Temperature dependent Hall measurements show that the acceptor activation energy is 114 meV at a growth temperature of 990°C.It is of note that a Mg activation efficiency as high as 6.5%has been achieved in this work by optimizing the growth temperature of the Mg-doped layer.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China (Grant Nos.2021YFB3601000 and 2021YFB3601002), the National Natural Science Foundation of China (Grant Nos.62074077, 61921005,61974062,62204121,and 61904082),Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No.BE2021008-2),and the China Postdoctoral Science Foundation(Grant No.2020M671441).

    猜你喜歡
    嚴(yán)羽陳凱自力
    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography
    Students’ Feedback on Integrating Engineering Practice Cases into Lecture Task in Course of Built Environment
    種七彩顏色的太陽(yáng)
    這就是我
    清朝花瓶
    離婚,婚姻的一次“手術(shù)”
    女子世界(2017年6期)2017-06-08 20:16:15
    鮐巴魚(yú)奇事
    Different Pronunciation Features of “TH” in China and India’s Official News
    論嚴(yán)羽的詩(shī)歌創(chuàng)作特色——試析嚴(yán)羽所自為詩(shī)反映的思想風(fēng)貌
    人間(2015年20期)2016-01-04 12:47:06
    Coupled Faults Analysis and Evaluation Methods Based on Cellular Automata
    亚洲精品国产色婷婷电影| 欧美黑人精品巨大| 久久中文字幕一级| 一区在线观看完整版| 色av中文字幕| 亚洲专区字幕在线| 日本五十路高清| 19禁男女啪啪无遮挡网站| 午夜福利在线观看吧| 精品欧美一区二区三区在线| 欧美日韩瑟瑟在线播放| 一区福利在线观看| 69av精品久久久久久| 一区二区三区精品91| 日本 欧美在线| 一级,二级,三级黄色视频| 嫁个100分男人电影在线观看| 午夜精品在线福利| 久久香蕉激情| 99香蕉大伊视频| 色精品久久人妻99蜜桃| 亚洲国产精品成人综合色| 亚洲性夜色夜夜综合| 久久久久久大精品| 日韩视频一区二区在线观看| 成在线人永久免费视频| 一个人观看的视频www高清免费观看 | 欧美丝袜亚洲另类 | 搡老妇女老女人老熟妇| 99久久综合精品五月天人人| 亚洲精品一卡2卡三卡4卡5卡| 国产xxxxx性猛交| 99国产综合亚洲精品| bbb黄色大片| 日日摸夜夜添夜夜添小说| 精品国产亚洲在线| 天堂√8在线中文| 午夜福利视频1000在线观看 | 黄色视频不卡| 美女 人体艺术 gogo| 看免费av毛片| 少妇粗大呻吟视频| 国产成人精品在线电影| 欧美丝袜亚洲另类 | 午夜精品在线福利| 黄片播放在线免费| 成人特级黄色片久久久久久久| 久久婷婷人人爽人人干人人爱 | 亚洲成人免费电影在线观看| 久久天堂一区二区三区四区| 真人一进一出gif抽搐免费| 50天的宝宝边吃奶边哭怎么回事| 久久香蕉精品热| 精品国产美女av久久久久小说| 久久久久国内视频| 国产人伦9x9x在线观看| 欧美亚洲日本最大视频资源| 久久精品影院6| 两性夫妻黄色片| 最近最新中文字幕大全电影3 | 天天躁夜夜躁狠狠躁躁| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久久免费视频了| 亚洲三区欧美一区| 黄色视频不卡| e午夜精品久久久久久久| 色综合婷婷激情| 亚洲伊人色综图| 一级a爱视频在线免费观看| 欧美av亚洲av综合av国产av| 免费观看人在逋| 首页视频小说图片口味搜索| 欧美不卡视频在线免费观看 | 午夜福利18| 国产一区二区三区在线臀色熟女| 性少妇av在线| 在线十欧美十亚洲十日本专区| 国产精品久久久av美女十八| 亚洲av第一区精品v没综合| www国产在线视频色| 国产免费男女视频| 国产不卡一卡二| 亚洲aⅴ乱码一区二区在线播放 | 亚洲男人的天堂狠狠| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片 | 一二三四在线观看免费中文在| 在线观看免费视频网站a站| 69av精品久久久久久| 日本在线视频免费播放| 女同久久另类99精品国产91| 国产一区二区三区综合在线观看| 日韩一卡2卡3卡4卡2021年| netflix在线观看网站| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 亚洲第一电影网av| 欧美亚洲日本最大视频资源| 精品久久久久久久毛片微露脸| 在线av久久热| 美国免费a级毛片| 日本免费一区二区三区高清不卡 | 亚洲一区中文字幕在线| 欧美老熟妇乱子伦牲交| 亚洲人成伊人成综合网2020| 欧美 亚洲 国产 日韩一| 日本欧美视频一区| a级毛片在线看网站| 精品第一国产精品| 此物有八面人人有两片| 久久久久久久久久久久大奶| 夜夜躁狠狠躁天天躁| 麻豆久久精品国产亚洲av| 欧美日本中文国产一区发布| 欧美黄色淫秽网站| 变态另类成人亚洲欧美熟女 | 一本综合久久免费| 少妇被粗大的猛进出69影院| 国产精华一区二区三区| 美国免费a级毛片| 亚洲国产看品久久| 成年人黄色毛片网站| 欧美最黄视频在线播放免费| 国产男靠女视频免费网站| 中文字幕另类日韩欧美亚洲嫩草| 自拍欧美九色日韩亚洲蝌蚪91| 免费无遮挡裸体视频| 日韩欧美一区二区三区在线观看| 久久久国产成人免费| 成人精品一区二区免费| 日韩精品免费视频一区二区三区| tocl精华| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 久久久久国内视频| 好看av亚洲va欧美ⅴa在| 国产又爽黄色视频| 午夜福利视频1000在线观看 | 69av精品久久久久久| 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 这个男人来自地球电影免费观看| 男男h啪啪无遮挡| 一级a爱片免费观看的视频| av超薄肉色丝袜交足视频| 可以免费在线观看a视频的电影网站| 最近最新中文字幕大全电影3 | 国产一级毛片七仙女欲春2 | 18禁国产床啪视频网站| 成人免费观看视频高清| 黄频高清免费视频| 久久中文字幕一级| 好男人在线观看高清免费视频 | 亚洲avbb在线观看| 亚洲一区中文字幕在线| 午夜福利高清视频| 一区福利在线观看| 黄色视频不卡| 日韩一卡2卡3卡4卡2021年| 日韩大尺度精品在线看网址 | 国产精品久久视频播放| 欧美中文日本在线观看视频| 制服人妻中文乱码| 国产乱人伦免费视频| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 欧美日韩亚洲综合一区二区三区_| 黄片大片在线免费观看| 亚洲免费av在线视频| 高潮久久久久久久久久久不卡| 女性被躁到高潮视频| 亚洲成人久久性| 18禁国产床啪视频网站| 亚洲欧美一区二区三区黑人| 亚洲人成电影免费在线| 国产av一区在线观看免费| 韩国av一区二区三区四区| 久久香蕉精品热| 男人舔女人下体高潮全视频| or卡值多少钱| 亚洲一卡2卡3卡4卡5卡精品中文| 成人18禁在线播放| 精品久久久久久久人妻蜜臀av | АⅤ资源中文在线天堂| 18美女黄网站色大片免费观看| 精品欧美一区二区三区在线| 成年版毛片免费区| 一a级毛片在线观看| 国产精品日韩av在线免费观看 | 欧美乱色亚洲激情| 一本久久中文字幕| 亚洲欧美激情综合另类| 亚洲avbb在线观看| 中文字幕高清在线视频| 在线观看免费视频日本深夜| 黑人巨大精品欧美一区二区蜜桃| 免费在线观看完整版高清| 男女下面插进去视频免费观看| 老司机午夜福利在线观看视频| 日韩欧美在线二视频| 国产亚洲精品综合一区在线观看 | 9色porny在线观看| 日韩欧美三级三区| 中文字幕人成人乱码亚洲影| 男人舔女人的私密视频| 国产精品亚洲一级av第二区| 麻豆久久精品国产亚洲av| 国产av在哪里看| 一区二区日韩欧美中文字幕| 久久精品国产亚洲av香蕉五月| 欧美激情极品国产一区二区三区| 久久久久久大精品| 久久香蕉激情| 日本撒尿小便嘘嘘汇集6| 在线播放国产精品三级| 欧美日韩瑟瑟在线播放| 色在线成人网| 亚洲激情在线av| 国产伦人伦偷精品视频| bbb黄色大片| 精品久久久久久久久久免费视频| 国产精品野战在线观看| 欧美亚洲日本最大视频资源| 国产精品国产高清国产av| 国产成人欧美| 久久亚洲精品不卡| 亚洲国产精品sss在线观看| 啦啦啦免费观看视频1| 国产蜜桃级精品一区二区三区| 国产蜜桃级精品一区二区三区| 露出奶头的视频| 91国产中文字幕| 好男人在线观看高清免费视频 | 免费观看精品视频网站| 亚洲欧美激情在线| 日韩欧美一区二区三区在线观看| 日韩欧美免费精品| aaaaa片日本免费| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看| 97人妻精品一区二区三区麻豆 | 色综合亚洲欧美另类图片| 人成视频在线观看免费观看| 欧美丝袜亚洲另类 | 精品福利观看| 美女午夜性视频免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩一级在线毛片| 国产人伦9x9x在线观看| 成年版毛片免费区| 日韩成人在线观看一区二区三区| 亚洲久久久国产精品| 青草久久国产| 国内久久婷婷六月综合欲色啪| av电影中文网址| 欧美日本亚洲视频在线播放| 久久精品国产清高在天天线| 日本 欧美在线| av天堂久久9| 女同久久另类99精品国产91| avwww免费| 最近最新中文字幕大全免费视频| 精品午夜福利视频在线观看一区| 欧美 亚洲 国产 日韩一| 一级a爱片免费观看的视频| 老鸭窝网址在线观看| 国产片内射在线| 不卡av一区二区三区| 国产成人系列免费观看| 男女下面插进去视频免费观看| 免费不卡黄色视频| 精品卡一卡二卡四卡免费| av天堂在线播放| 大陆偷拍与自拍| 国产精品美女特级片免费视频播放器 | 人人澡人人妻人| 国产成人欧美| 99国产极品粉嫩在线观看| 亚洲精品一区av在线观看| av天堂在线播放| 亚洲国产看品久久| 亚洲成av片中文字幕在线观看| 亚洲熟妇熟女久久| 91av网站免费观看| 欧美日韩福利视频一区二区| 国产人伦9x9x在线观看| 久久人人爽av亚洲精品天堂| 高清在线国产一区| 看片在线看免费视频| 99久久久亚洲精品蜜臀av| 国产精品av久久久久免费| 国产精品 国内视频| 别揉我奶头~嗯~啊~动态视频| 女性被躁到高潮视频| 亚洲精品美女久久av网站| 国产成人一区二区三区免费视频网站| 中文字幕精品免费在线观看视频| 欧美激情 高清一区二区三区| 乱人伦中国视频| 国产高清有码在线观看视频 | АⅤ资源中文在线天堂| 亚洲欧美精品综合久久99| av免费在线观看网站| 亚洲精品美女久久av网站| 中出人妻视频一区二区| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 国产人伦9x9x在线观看| 悠悠久久av| 黄色视频,在线免费观看| 成人18禁高潮啪啪吃奶动态图| 女人被躁到高潮嗷嗷叫费观| 亚洲av电影在线进入| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 亚洲 国产 在线| 俄罗斯特黄特色一大片| 亚洲精品国产一区二区精华液| 国产一级毛片七仙女欲春2 | 天堂√8在线中文| 日韩一卡2卡3卡4卡2021年| 一级a爱视频在线免费观看| 女人高潮潮喷娇喘18禁视频| 国内毛片毛片毛片毛片毛片| www.熟女人妻精品国产| 女同久久另类99精品国产91| 天堂动漫精品| 两个人视频免费观看高清| АⅤ资源中文在线天堂| 国产精品,欧美在线| 丝袜美腿诱惑在线| 亚洲成av人片免费观看| 很黄的视频免费| 国产单亲对白刺激| 中出人妻视频一区二区| 黄色a级毛片大全视频| 国产亚洲精品一区二区www| 亚洲第一青青草原| 国产麻豆成人av免费视频| 不卡av一区二区三区| 欧美亚洲日本最大视频资源| 此物有八面人人有两片| 嫩草影院精品99| 午夜成年电影在线免费观看| 国产亚洲精品av在线| 日本五十路高清| 波多野结衣一区麻豆| 不卡av一区二区三区| 91成年电影在线观看| 国产精品久久久久久人妻精品电影| 女警被强在线播放| 国产日韩一区二区三区精品不卡| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久| 在线观看免费午夜福利视频| 热re99久久国产66热| 一区二区日韩欧美中文字幕| 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 两个人免费观看高清视频| 久久香蕉激情| 757午夜福利合集在线观看| 波多野结衣av一区二区av| 一边摸一边抽搐一进一小说| 久久青草综合色| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 久久青草综合色| 日韩成人在线观看一区二区三区| 久久人妻福利社区极品人妻图片| 国产片内射在线| 此物有八面人人有两片| 久久精品人人爽人人爽视色| 亚洲欧美日韩高清在线视频| 婷婷六月久久综合丁香| 很黄的视频免费| 亚洲伊人色综图| 欧美色欧美亚洲另类二区 | 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品sss在线观看| 免费在线观看亚洲国产| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 天天躁夜夜躁狠狠躁躁| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 精品久久蜜臀av无| 男女做爰动态图高潮gif福利片 | 久久亚洲精品不卡| 国产aⅴ精品一区二区三区波| 国产欧美日韩一区二区三| 国产av一区在线观看免费| 亚洲激情在线av| 国产在线精品亚洲第一网站| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 国产一区二区激情短视频| 午夜日韩欧美国产| 一夜夜www| 欧美不卡视频在线免费观看 | 18禁美女被吸乳视频| 又黄又粗又硬又大视频| 夜夜爽天天搞| 国产午夜福利久久久久久| 久久香蕉激情| 欧美日本亚洲视频在线播放| 熟女少妇亚洲综合色aaa.| av欧美777| 日本在线视频免费播放| 99精品欧美一区二区三区四区| 啦啦啦韩国在线观看视频| 国产午夜精品久久久久久| 色综合婷婷激情| 欧美激情高清一区二区三区| 黄色毛片三级朝国网站| 国产男靠女视频免费网站| 亚洲欧美日韩另类电影网站| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 日本五十路高清| 欧美色视频一区免费| 国产成人免费无遮挡视频| 午夜福利一区二区在线看| 91国产中文字幕| 亚洲国产高清在线一区二区三 | 精品国内亚洲2022精品成人| 黄色女人牲交| 黄色a级毛片大全视频| 国产精品二区激情视频| 免费在线观看日本一区| 极品教师在线免费播放| 欧美日韩精品网址| 香蕉国产在线看| 自线自在国产av| aaaaa片日本免费| 国产又爽黄色视频| 最近最新中文字幕大全电影3 | 亚洲欧美一区二区三区黑人| 亚洲欧美日韩另类电影网站| 亚洲av熟女| 国产精品免费视频内射| 欧美色视频一区免费| 日韩精品青青久久久久久| www国产在线视频色| 男女做爰动态图高潮gif福利片 | 亚洲国产看品久久| 9色porny在线观看| 久久久精品欧美日韩精品| 一本大道久久a久久精品| 男女下面插进去视频免费观看| 女同久久另类99精品国产91| 可以在线观看的亚洲视频| 午夜福利18| 欧美中文综合在线视频| 在线免费观看的www视频| 免费一级毛片在线播放高清视频 | av免费在线观看网站| 黄片大片在线免费观看| 欧美一区二区精品小视频在线| 国产亚洲欧美98| 精品国产一区二区三区四区第35| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸| 在线十欧美十亚洲十日本专区| 这个男人来自地球电影免费观看| 日韩免费av在线播放| 少妇的丰满在线观看| 国产免费av片在线观看野外av| 人妻丰满熟妇av一区二区三区| 亚洲av日韩精品久久久久久密| 老司机深夜福利视频在线观看| 18美女黄网站色大片免费观看| 99久久久亚洲精品蜜臀av| 亚洲免费av在线视频| 国产av一区二区精品久久| 亚洲在线自拍视频| 亚洲九九香蕉| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| av天堂在线播放| 午夜久久久在线观看| 岛国视频午夜一区免费看| 色播在线永久视频| 国产成人精品久久二区二区91| 又紧又爽又黄一区二区| 99久久国产精品久久久| 精品一品国产午夜福利视频| 国产精品电影一区二区三区| 狠狠狠狠99中文字幕| 一区二区三区激情视频| 久久这里只有精品19| 亚洲精品久久成人aⅴ小说| 黑人欧美特级aaaaaa片| 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看.| 一级作爱视频免费观看| 久久国产精品男人的天堂亚洲| 九色国产91popny在线| 亚洲狠狠婷婷综合久久图片| 一二三四在线观看免费中文在| 精品熟女少妇八av免费久了| 亚洲国产精品sss在线观看| 久久影院123| 亚洲av日韩精品久久久久久密| 美女国产高潮福利片在线看| 欧美成狂野欧美在线观看| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲av电影在线进入| 国产精品98久久久久久宅男小说| 日本一区二区免费在线视频| 精品一品国产午夜福利视频| 成人欧美大片| av网站免费在线观看视频| 一进一出抽搐gif免费好疼| 女人被狂操c到高潮| 精品乱码久久久久久99久播| 国产精品亚洲美女久久久| 嫁个100分男人电影在线观看| 婷婷精品国产亚洲av在线| 国产片内射在线| 淫秽高清视频在线观看| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 久热这里只有精品99| 一级毛片高清免费大全| 色精品久久人妻99蜜桃| 亚洲伊人色综图| 国产片内射在线| 嫩草影院精品99| 国产精品亚洲一级av第二区| 桃色一区二区三区在线观看| 亚洲,欧美精品.| 91在线观看av| 在线观看免费日韩欧美大片| 波多野结衣av一区二区av| 91老司机精品| 制服丝袜大香蕉在线| 亚洲中文字幕一区二区三区有码在线看 | 精品不卡国产一区二区三区| 欧美色欧美亚洲另类二区 | 亚洲国产欧美网| 亚洲五月天丁香| 神马国产精品三级电影在线观看 | www国产在线视频色| 亚洲久久久国产精品| 少妇熟女aⅴ在线视频| 别揉我奶头~嗯~啊~动态视频| 在线观看一区二区三区| 成人精品一区二区免费| 亚洲精品久久国产高清桃花| 亚洲精品在线观看二区| 九色国产91popny在线| 十八禁网站免费在线| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| 日本vs欧美在线观看视频| 黄色成人免费大全| 久久久久久大精品| 搞女人的毛片| 亚洲精品久久国产高清桃花| 国产亚洲av高清不卡| 久久九九热精品免费| 黄色 视频免费看| 青草久久国产| 天天躁夜夜躁狠狠躁躁| 性欧美人与动物交配| 亚洲国产精品sss在线观看| 色尼玛亚洲综合影院| 国产精品,欧美在线| 脱女人内裤的视频| 视频区欧美日本亚洲| 热re99久久国产66热| 免费高清在线观看日韩| 熟妇人妻久久中文字幕3abv| 亚洲精华国产精华精| 此物有八面人人有两片| 久久热在线av| 欧美成人性av电影在线观看| 女人被躁到高潮嗷嗷叫费观| 国内久久婷婷六月综合欲色啪| av在线天堂中文字幕| 色哟哟哟哟哟哟| 欧洲精品卡2卡3卡4卡5卡区| 91成年电影在线观看| 亚洲电影在线观看av| 少妇的丰满在线观看| 国产精品九九99| 精品不卡国产一区二区三区| 少妇的丰满在线观看| av有码第一页| 午夜两性在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩中文字幕国产精品一区二区三区 | 美女免费视频网站| 日日夜夜操网爽| 日本 欧美在线| 无遮挡黄片免费观看| 日韩大尺度精品在线看网址 | 18禁观看日本| 最近最新中文字幕大全电影3 | 波多野结衣一区麻豆| 婷婷六月久久综合丁香| 成人永久免费在线观看视频| 中文字幕人妻熟女乱码| 午夜免费观看网址| 757午夜福利合集在线观看| 久久这里只有精品19| 亚洲久久久国产精品| 九色亚洲精品在线播放| 欧美中文日本在线观看视频| 琪琪午夜伦伦电影理论片6080| 日韩中文字幕欧美一区二区| 熟女少妇亚洲综合色aaa.| av在线天堂中文字幕|