• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography

    2023-11-16 05:37:42XiaoCHEN陳笑YaoLI黎遙JianboHOU侯鑒波ZheZHANG張哲XianyangLU陸顯揚(yáng)YuYAN嚴(yán)羽LiangHE何亮andYongbingXU徐永兵
    Plasma Science and Technology 2023年10期
    關(guān)鍵詞:張哲嚴(yán)羽

    Xiao CHEN (陳笑), Yao LI (黎遙), Jianbo HOU (侯鑒波), Zhe ZHANG (張哲),Xianyang LU (陸顯揚(yáng)), Yu YAN (嚴(yán)羽), Liang HE (何亮) and Yongbing XU (徐永兵)

    Jiangsu Provincial Key Laboratory of Photonic and Electronic Materials Sciences and Technology,School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People’s Republic of China

    Abstract

    Keywords: extreme ultraviolet light source, laser-produced plasma, gadolinium

    1.Introduction

    Extreme ultraviolet (EUV) lithography has been a key technology for the semiconductor industry, which enables the volume manufacture of large-scale integrated circuits with feature sizes below 14 nm.According to the Rayleigh formula(CD=k×λ/NA),it is possible to employ short-wavelength light sources to reduce the critical distance (CD) of the chip,in addition to raising the numerical aperture (NA) of the optical system.The development of high-efficiency and lowdebris EUV light sources is one of the critical requirements for the EUV lithography system.At present, the laserproduced plasma (LPP) of tin (Sn) targets has been successfully applied as the EUV light source in current lithography systems [1].When the Sn target is heated to 30-50 eV by a high-power laser, the plasma can produce strong emissions with a peak wavelength at 13.5 nm [2], which matches with the reflective band of available Mo/Si multilayer mirrors[3].The emission features make Sn plasma the advisable solution for high-power EUV light sources.To further advance the semiconductor process to smaller nodes, the next-generation light source beyond the EUV(<10 nm)has been added to the research agenda.With the development of La/B4C multilayer mirrors, a high reflectivity of 20%-40%has been obtained at 6.5-6.7 nm, and achievement of a theoretically higher reflectivity of 80% is possible.Therefore, the relative wavelength band coupled with these mirrors is deemed the suitable wavelength for the next stage of the beyond EUV(BEUV) light source [4, 5].Gadolinium (Gd) plasma heated to over 100 eV can generate thousands of emission lines centered at 6.7 nm [6], which makes it one of the most appropriate candidates for BEUV lithography.

    At present,there are some works that have been reported to obtain a BEUV light source at 6.7 nm based on the LPP of Gd targets [7-10].Similar to the pioneering efforts of Sn plasmas,the goals of these efforts are either to improve the conversion efficiency (CE) of the Gd plasma or to reduce the debris produced during the excitation process.To pursue the two goals for practical applications,two main approaches have been proposed:optimization of the laser parameters [10-14], and choosing the appropriate form of the targets[10,15,16].With respect to the second approach,a mass-limited target is preferred as it can not only produce sufficient EUV emission but also reduce the neutral atoms and low-ionized ions that come from the deep layer of the target[17].There are several forms of mass-limited targets, such as sphere targets made by depositing materials on balls[18-21]or bubbles[22],thin-film targets coated on planar Si wafers or glass[23,24]and uniform liquid droplets[25,26].Comparably,the thin-film target approach is simpler,and it can be easily applied to the study of the properties of mass-limited targets made of new materials in the laboratory.By using masslimited thin-film targets, it is found that Sn targets that are several tens of nanometers thick, which are also named minimum-mass thin-film targets,are able to generate EUV radiation as efficiently as the planar bulk targets[18,27].However,until now,there have been few reports about the LPP of mass-limited thin-film Gd targets for the BEUV light source.

    In this work, we have studied the LPP spectra of BEUV sources based on mass-limited thin-film Gd targets, which were prepared using the magnetron sputtering method.LPPs of the thin-film targets were excited by a high-energy neodymium-doped yttrium aluminum garnet (Nd:YAG) laser at 1064 nm.The influences of the laser intensity on the BEUV emission from thin-film targets were first investigated.When the laser intensity was changed from 6 × 1010to 3.37 ×1011W cm?2, it was found that the CE of the LPP peaks at about 2 × 1011W cm?2for the thin-film target.Then, the emission spectra of the LPPs were compared with Gd targets with different thicknesses.A minimum-mass target with a thickness of 400 nm was deduced by evaluating the CEs of LPPs, which further proved that this thickness may be the ablation depth for this kind of mass-limited target.These findings in this work may give us guidance on how to develop high-efficiency and low-debris BEUV light sources in the future.

    2.Experimental setup

    Figure 1.A schematic setup of the LPP based on thin-film Gd targets.

    A schematic setup of the experiment is shown in figure 1.The target was irradiated by a high-energy Q-switched Nd:YAG laser operating in single-shot mode.The laser has a center wavelength of 1064 nm, a maximum pulse energy of 900 mJ and a pulse width of 7 ns.The laser beam was perpendicularly focused on the Gd targets by an anti-reflection (AR@1064 nm) plano-convex BK7 lens with a focal length of 15 cm.The focused laser diameter was determined by the ablative aperture of the target at a low incident energy of 1 mJ.In our experiment, the focused laser diameter at the target position was measured to be 165 μm by an optical microscope.To investigate the properties of the BEUV spectra under different laser intensities, the energy of the incident Nd:YAG laser was adjusted by rotating the halfwaveplate in front of the polarizer.

    The thin-film targets used in this work were prepared using the magnetron sputtering method to deposit layers of Gd onto Si wafers.The steps to prepare the targets are as follows: first,3 cm×4 cm size Si wafers were used as the target substrate.All the substrates were cleaned with acetone, ethanol and deionized water before material deposition.Then, the Si substrates were deposited with thin layers of Gd via the magnetron sputtering equipment with an argon(Ar)pressure of 4.3×10?3mbar and an Ar flow rate of 20 sccm.A direct-current power of 60 W was applied to control the deposition speed of 0.25 nm s?1.The purity of the Gd source in the sputtering procedure was 99.99%.The thicknesses of the deposited Gd thin films were monitored by a quartz crystal with a precision of 0.1 nm.Finally,the Gd targets were fixed on an aluminum holder in the target chamber,and its position could be translated by X-Y linear stages to provide a fresh surface for each laser shot.

    The vacuum of the target chamber was maintained by a molecular turbo pump (2200 l s?1, Leybold) connected to a forestage scroll pump (15 m3h?1, Edwards) to avoid the absorption of the generated BEUV radiation.The pressure of the target chamber was maintained in the range of 10?7mbar during the experiment.The BEUV spectra from the Gd plasmas were recorded by a flat-field spectrometer (FFS)positioned at 45 degrees with respect to the incident laser.The FFS consisted of a spherical collecting mirror, a variable spaced reflective grating (1200 l mm?1), a slit and a backilluminated x-ray charge coupled device (CCD) camera(Andor 940P).The CCD camera was thermoelectrically cooled down to ?15°C to reduce the background noise.The typical spectral resolution of the FFS is ~0.02 nm within the spectral range from 4 to 20 nm.

    Figure 2.The BEUV spectra of the 300 nm thin-film Gd target.

    3.Results and discussion

    Typically,Gd plasma produces BEUV emission at 6.7 nm when its electron temperature is heated to over 100 eV, which can be controlled by the laser and target properties.Therefore,to obtain the best CE for the mass-limited targets,it is necessary to find the optimal experimental conditions,which are the laser intensity and the target’s thickness.First,we fixed the thickness of the target at 300 nm and measured the corresponding BEUV spectra from the LPP under different incident laser intensities.The spectra of the LPP, when the incident laser intensity is changed from 6.7 ×1010to 3.37 × 1011W cm?2, are shown in figure 2.It can be seen that the peaks of the emission spectra are around 6.7 nm,which is mainly attributed to the 4d-4p and 4d-4f transitions in ions from Gd12+to Gd25+.It is also observed that the Gd spectra contain satellite emission lines at the wavelength of 7.17 nm when the incident laser intensity is increased.These emissions come from the n=4?n=5(Δn=1)transitions in ions from Gd19+to Gd27+[7,13],because the mean ionic charge state has been increased during the procedure.Moreover, when the laser intensity was increased over 2 × 1011W cm?2, specific radiations in the 8-9 nm region were observed.This is because the Si substrate will absorb the residual incident laser and produce emissions due to the charged states from Si3+to Si8+.On the other side, a superposition of lines, including the Gd line at 5.9 nm and the Si lines at 4.55 nm, 4.8 nm and 5.2 nm [28],dominates the spectra in the range of 4.5-6 nm.

    Based on the spectra,figure 3 illustrates the dependence of the CEs on the laser intensity within the 0.6% bandwidth at 6.7 nm [29].In this experiment, we used a spectrometer and calculated the relative CEs of the light source.First, we evaluated the intensity of the BEUV light of bulk targets under the same conditions as the experiment in[13],and considered the CE to be the same with a value of 0.4%.Then,the relative CEs in this work were obtained by comparing the BEUV radiant spectra from thin-film targets with those of the bulk targets.Although an accurate CE is preferred, it is found that the relative CEs are sufficient to obtain the laws of impacts by changing the laser’s and targets’ parameters.As seen in figure 3,the CEs of the thin-film targets increase with the laser intensity in the beginning and then saturate when the laser intensity reaches 2 × 1011W cm?2.In these conditions, the optimal CE of the 300 nm thick Gd target is 0.54%.The results indicate that this threshold point should be the optimal laser intensity.This CE tendency is similar to that of Sn plasma,which also saturates at a dedicated incident laser intensity.The saturation of the CE is attributed to the self-absorption effect when the produced plasma is overheated.In this case,the plasma around the BEUV emission zone gets denser.Thus,the denser plasma will absorb the BEUV light and prevent the light from passing through the plasma.It should also be noted that the CE will gradually decrease when the laser intensity is further higher than the optimum conditions.

    Figure 3.The CEs of the 300 nm thick Gd target under different laser intensities.

    Figure 4.The BEUV spectra of the LPP from Gd targets with different thicknesses.

    When the optimal laser intensity was preliminarily determined, the BEUV spectra of the mass-limited thin-film Gd targets with various thicknesses were recorded, as shown in figure 4.It is observed that there is a dip structure at 6.82 nm together with two peaks at 6.676 nm and 6.955 nm for targets with a thickness less than 200 nm.The dips gradually disappear as the thin-film Gd targets become thicker.This dip structure in the spectra is attributed to the re-absorption of BEUV light by the surrounding low-temperature plasma, which is formed by the atoms in the thin film below 200 nm.It can also be seen that the intensity of BEUV emission increases when the thickness of the target increases from 50 to 400 nm, and declines slightly from 400 to 500 nm.

    Figure 5.(a) The CEs of the Gd targets with different thicknesses,and (b) the intensity of the Si emission line at 11.786 nm.

    Identically, the evolutions of the CEs of the thin-film targets with different thicknesses are illustrated in figure 5(a).It can be seen that the CE increases with the thickness in the beginning and reaches its peak of 0.6% at a thickness of 400 nm.There are some differences in the error bars for the data at different target thicknesses.This is because unavoidable errors in the installation position and angle are introduced when we change the target with different thicknesses.The spectrometer is comparably sensitive to the radiation position.Thus, when the target is moved for new data, there will be a slight fluctuation in the measured spectra.The CE of the Gd plasma from the bulk target is also shown in the figure as the dashed line (black).The CEs of the 400 nm target and the bulk target are comparable, which indicates that the 400 nm target is the minimum mass for the LPP emission under the current incident laser intensity of 2×1011W cm?2.

    This minimum-mass target’s thickness is, to a certain extent, connected to the ablation depth of the incident laser.The ablation depth can also be evaluated via the intensities of the Si emission lines in the spectra.When the thin-film target is thinner than the ablation depth, there will be observable emissions from the Si substrate.Thus,the emission lines from the 2p-3s transition of Si4+at 11.786 nm were extracted, as shown in figure 5(b) [28].It is observed that the intensity of this Si line dominates for Gd targets below 400 nm, which matches with the CE results in figure 5(a).

    Figure 6.(a)A microscope photograph of the laser spot profile, and(b) a microscope photograph of the 400 nm Gd target irradiated under a laser intensity of 2 × 1011 W cm?2.

    The theoretical ablation depth for a thin-film target according to [18] is calculated as:

    where Ia, λL, and τLare the intensity, wavelength and pulse width of the incident Nd:YAG laser, respectively, and ρ0is the initial density of the target.Under the present experimental conditions(Ia=2×1011W cm?2,λL=1064 nm,τL=7 ns,ρ0=7.901 g cm?2),the theoretical ablation depth dais calculated to be 36 nm.It is found that the experimental ablation depth is greater than the calculation result,which we think is due to the small laser spot used in this experiment.The smaller laser spot, compared to [18] (165 μm versus 500 μm,assuming the same laser intensity),leads to greater expansion of plasma in the focal plane and deeper ablation on the target surface.As shown in figure 6(a),the incident laser has a focused diameter of 165 μm, measured by the ablative aperture of the bulk target at a low incident energy.Figure 6(b) displays the spatial profile of the ablated 400 nm target under an irradiated laser intensity of 2×1011W cm?2.The ablated area of the thinfilm target has a larger diameter compared to the laser diameter,which is due to the expansion of the plasma in the focal plane.Thus,the plasma exhibits a two-dimensional expansion,leading to a much deeper ablation depth[14].In contrast,if a larger laser spot is assumed, the plasma will exhibit a one-dimensional expansion and a lower ablation depth can be expected.

    Figure 7.The CEs of thin-film Gd targets with different thicknesses under different laser intensities.

    Finally, to consider the impact of laser spot size on the thickness of the minimum-mass target, we have analyzed the CEs for targets with different thicknesses while simultaneously varying the incident laser intensity,which is shown in figure 7.In general, the CEs of the targets increase with the incident laser intensity and then decrease gradually once the intensity goes beyond the optimal conditions.The exception of an increase near the highest intensities (>25 × 1010W cm?2) for the 300 nm target may be attributable to small measurement uncertainty,which is just a CE change of less than 0.03%in the experiment.From the figure, we can see that a higher laser intensity is needed to achieve the optimal CE for a thicker target.The maximum CE value of 0.6% was achieved for a 400 nm thin-film target under an incident laser intensity of 2×1011W cm?2, which indicates that this should be the optimal experimental parameters for such thin-film Gd targets.

    4.Conclusions

    In conclusion,we have presented a BEUV light source based on LPP of mass-limited thin-film Gd targets,which were prepared by sputtering Gd on Si wafers.The influences of the laser intensity and the target thickness on the CEs of the thin-film targets were carefully investigated.It is found that a maximum CE value of 0.6%was achieved with a 400 nm thick target at an optimal incident laser intensity of 2×1011W cm?2.It has been proven that the optimum mass-limited target is connected to the ablation depth of the LPP.It should also be expected that a thinner target will be possible in the future by optimizing the laser diameter.The advantage of using a thin-film Gd target is that it can generate sufficient BEUV emission that is comparable to the bulk target but potentially produces less debris.Therefore,the mass-limited Gd target is an important strategy to implement for the next-generation BEUV light source at 6.7 nm.

    It is known that mass-limited tin-droplet targets are employed as LPP targets in current industrial EUV light sources.However, due to the substantially higher melting point of Gd (1312°C), the design and manufacture of a Gddroplet generator is more challenging.Therefore, thin-film targets can be proposed as an alternative solution, which can also be made into tapes with a soft substrate to meet the temporary requirement for repetitive targets for long-time operation.It should be noted that this work is a preliminary result.The CE should be a complex function of the laser parameters and target forms.It is necessary to optimize the parameters of the plasma source for further improvement of BEUV CEs,and a more accurate CE should be obtained using a calibrated calorimeter, which will be our next work.Moreover, it is also very interesting to investigate plasma evolution to better understand BEUV radiation in the future.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Nos.61427812,61805118,12104216 and 12241403),and the Natural Science Foundation of Jiangsu Province of China (Nos.BK20192006, BK20180056 and BK20200307).

    猜你喜歡
    張哲嚴(yán)羽
    Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films
    山區(qū)公路路線設(shè)計(jì)的基本特點(diǎn)與思路
    淺析《滄浪詩話》中嚴(yán)羽對《詩經(jīng)》的“隱蔽”
    High-energy x-ray diffraction study on phase transition asymmetry of plastic crystal neopentylglycol
    一個(gè)叫“撲拉提”的漢族小伙
    吐魯番(2016年3期)2016-11-26 00:33:51
    鮐巴魚奇事
    論嚴(yán)羽的詩歌創(chuàng)作特色——試析嚴(yán)羽所自為詩反映的思想風(fēng)貌
    人間(2015年20期)2016-01-04 12:47:06
    Modelling of 2-D extended Boussinesq equations using a hybrid numerical scheme*
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 22:49:24
    用心靈呵護(hù)心靈
    紫光閣(2014年3期)2014-03-07 05:02:22
    欧美国产精品一级二级三级| 日日撸夜夜添| 99精国产麻豆久久婷婷| 欧美亚洲 丝袜 人妻 在线| 亚洲色图 男人天堂 中文字幕| 日本午夜av视频| 亚洲国产欧美在线一区| 成人国产av品久久久| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区黑人| 久久99一区二区三区| 天天躁夜夜躁狠狠久久av| 在线观看免费日韩欧美大片| 亚洲伊人久久精品综合| 久久综合国产亚洲精品| 下体分泌物呈黄色| 极品少妇高潮喷水抽搐| 亚洲在久久综合| 免费高清在线观看日韩| www.av在线官网国产| 久久精品国产亚洲av高清一级| 如日韩欧美国产精品一区二区三区| 亚洲欧美成人综合另类久久久| 一边亲一边摸免费视频| 99九九在线精品视频| 男人爽女人下面视频在线观看| 蜜桃国产av成人99| 考比视频在线观看| 人体艺术视频欧美日本| 亚洲天堂av无毛| 成人三级做爰电影| 久久99热这里只频精品6学生| 午夜福利影视在线免费观看| 九九爱精品视频在线观看| 午夜福利乱码中文字幕| 叶爱在线成人免费视频播放| 最黄视频免费看| av网站在线播放免费| 人人妻人人添人人爽欧美一区卜| 狂野欧美激情性bbbbbb| 国产成人系列免费观看| 老汉色av国产亚洲站长工具| 亚洲精品久久久久久婷婷小说| 最近中文字幕2019免费版| 亚洲精品久久久久久婷婷小说| 日韩制服骚丝袜av| 日日摸夜夜添夜夜爱| 五月天丁香电影| 久久久久久久大尺度免费视频| 亚洲欧美色中文字幕在线| 久久久久精品人妻al黑| 电影成人av| 亚洲欧美成人综合另类久久久| 国产精品欧美亚洲77777| 高清不卡的av网站| 曰老女人黄片| 精品亚洲成国产av| 日本黄色日本黄色录像| 美女大奶头黄色视频| 免费在线观看黄色视频的| 成人国语在线视频| 又粗又硬又长又爽又黄的视频| 亚洲,一卡二卡三卡| av不卡在线播放| 久久久久久免费高清国产稀缺| 精品亚洲成a人片在线观看| 精品国产一区二区三区四区第35| 蜜桃在线观看..| 亚洲成人av在线免费| 99国产综合亚洲精品| 欧美精品人与动牲交sv欧美| 成人三级做爰电影| 热99国产精品久久久久久7| 久久久久久久大尺度免费视频| 久久久精品免费免费高清| 久久久久久久大尺度免费视频| 成年动漫av网址| 国产一区二区激情短视频 | 国产伦理片在线播放av一区| 欧美激情高清一区二区三区 | 午夜日韩欧美国产| 青春草国产在线视频| 丝袜喷水一区| 美女脱内裤让男人舔精品视频| 国产 一区精品| 成人国产av品久久久| www.精华液| netflix在线观看网站| 一边摸一边做爽爽视频免费| 免费黄网站久久成人精品| 精品少妇黑人巨大在线播放| 极品人妻少妇av视频| 亚洲欧美清纯卡通| 午夜福利一区二区在线看| 超色免费av| 午夜免费鲁丝| av在线app专区| 欧美日韩亚洲综合一区二区三区_| 少妇的丰满在线观看| 女性被躁到高潮视频| avwww免费| 亚洲精品久久久久久婷婷小说| 天堂8中文在线网| 激情视频va一区二区三区| 久久久久精品人妻al黑| 少妇的丰满在线观看| 国产精品久久久久久精品电影小说| 男人添女人高潮全过程视频| 欧美日韩视频精品一区| 亚洲国产欧美日韩在线播放| 宅男免费午夜| 精品一区二区三区四区五区乱码 | 亚洲精品日本国产第一区| 秋霞伦理黄片| 观看av在线不卡| 午夜日韩欧美国产| 两个人免费观看高清视频| 国产黄色免费在线视频| 大码成人一级视频| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 男女午夜视频在线观看| 午夜免费观看性视频| 成人午夜精彩视频在线观看| 亚洲精品美女久久久久99蜜臀 | 你懂的网址亚洲精品在线观看| 国产精品一国产av| 国产成人啪精品午夜网站| 国产精品久久久久成人av| 悠悠久久av| 国产精品麻豆人妻色哟哟久久| 色94色欧美一区二区| 制服诱惑二区| 男女高潮啪啪啪动态图| 久久精品亚洲熟妇少妇任你| av线在线观看网站| 日韩,欧美,国产一区二区三区| 亚洲一区二区三区欧美精品| 熟女少妇亚洲综合色aaa.| 9191精品国产免费久久| 中文字幕制服av| 亚洲,欧美,日韩| 丝袜人妻中文字幕| www.精华液| 热99国产精品久久久久久7| av在线app专区| 日韩熟女老妇一区二区性免费视频| 亚洲人成电影观看| 日本猛色少妇xxxxx猛交久久| 2021少妇久久久久久久久久久| 亚洲精品国产av蜜桃| 国产成人系列免费观看| 精品少妇黑人巨大在线播放| 另类亚洲欧美激情| 久久婷婷青草| 精品一区二区三卡| 在线观看人妻少妇| 国产亚洲精品第一综合不卡| 999久久久国产精品视频| 国产精品蜜桃在线观看| 一区二区三区激情视频| av视频免费观看在线观看| 国产免费现黄频在线看| 亚洲精品视频女| 国产一区二区在线观看av| 中文乱码字字幕精品一区二区三区| 久久天堂一区二区三区四区| 亚洲精品乱久久久久久| 国产一级毛片在线| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 午夜福利,免费看| 日本wwww免费看| 国产精品嫩草影院av在线观看| 久久天堂一区二区三区四区| 久久久久视频综合| 欧美日韩亚洲高清精品| 亚洲精品自拍成人| 老司机深夜福利视频在线观看 | 国产色婷婷99| 国产欧美日韩综合在线一区二区| 少妇 在线观看| 不卡视频在线观看欧美| 爱豆传媒免费全集在线观看| 亚洲精品中文字幕在线视频| 国产精品久久久久久人妻精品电影 | √禁漫天堂资源中文www| 悠悠久久av| 亚洲欧美一区二区三区黑人| 在线观看免费高清a一片| 巨乳人妻的诱惑在线观看| 中文欧美无线码| 9191精品国产免费久久| 免费在线观看完整版高清| 亚洲国产av新网站| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 一级毛片电影观看| 无遮挡黄片免费观看| 18在线观看网站| 亚洲国产最新在线播放| 亚洲久久久国产精品| 七月丁香在线播放| 国产成人欧美| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 国产xxxxx性猛交| 亚洲精品,欧美精品| 嫩草影院入口| 久久精品国产亚洲av涩爱| 久久久久视频综合| 亚洲图色成人| 街头女战士在线观看网站| 一本大道久久a久久精品| 一本一本久久a久久精品综合妖精| 最近最新中文字幕免费大全7| 久久久久国产精品人妻一区二区| 欧美日韩亚洲综合一区二区三区_| av天堂久久9| 国产亚洲精品第一综合不卡| 日本一区二区免费在线视频| 最近2019中文字幕mv第一页| 日韩熟女老妇一区二区性免费视频| √禁漫天堂资源中文www| 韩国精品一区二区三区| 免费观看a级毛片全部| 亚洲四区av| 成年人免费黄色播放视频| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 一级片免费观看大全| 99久久99久久久精品蜜桃| 久久精品aⅴ一区二区三区四区| 少妇被粗大猛烈的视频| 欧美日韩av久久| 波野结衣二区三区在线| 亚洲情色 制服丝袜| 丝袜喷水一区| 精品一区二区三区四区五区乱码 | 老司机靠b影院| 亚洲欧美一区二区三区黑人| 热re99久久国产66热| 亚洲,欧美,日韩| 大码成人一级视频| 热re99久久精品国产66热6| 黑丝袜美女国产一区| 成人影院久久| 美女中出高潮动态图| 国产极品粉嫩免费观看在线| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 久久久久精品国产欧美久久久 | 欧美日韩视频高清一区二区三区二| 日本欧美视频一区| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 黄频高清免费视频| 久久久久人妻精品一区果冻| 国产成人系列免费观看| 少妇人妻久久综合中文| 成年av动漫网址| 亚洲精品久久久久久婷婷小说| 又黄又粗又硬又大视频| 国产在线免费精品| 国产日韩一区二区三区精品不卡| 国产免费又黄又爽又色| 亚洲精品乱久久久久久| 男女午夜视频在线观看| 欧美日韩福利视频一区二区| 亚洲精品中文字幕在线视频| 91国产中文字幕| 色婷婷久久久亚洲欧美| 国产伦人伦偷精品视频| 欧美乱码精品一区二区三区| av有码第一页| 啦啦啦视频在线资源免费观看| 蜜桃在线观看..| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 国产精品成人在线| 欧美成人午夜精品| 国产黄色免费在线视频| 成年人午夜在线观看视频| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 黄色一级大片看看| 精品一区二区三区av网在线观看 | 成人国语在线视频| 日日啪夜夜爽| 性少妇av在线| www.自偷自拍.com| 成人国产麻豆网| 国产亚洲一区二区精品| 亚洲精品久久久久久婷婷小说| 久久久久网色| 男女下面插进去视频免费观看| 欧美乱码精品一区二区三区| 久久精品人人爽人人爽视色| 啦啦啦视频在线资源免费观看| 尾随美女入室| 中国国产av一级| 亚洲国产看品久久| 国产男人的电影天堂91| 国产免费又黄又爽又色| 国产男人的电影天堂91| 精品国产一区二区三区四区第35| 亚洲av福利一区| 日日啪夜夜爽| 久久久精品国产亚洲av高清涩受| 午夜精品国产一区二区电影| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 欧美日韩成人在线一区二区| 亚洲五月色婷婷综合| 成人亚洲精品一区在线观看| 成人三级做爰电影| 侵犯人妻中文字幕一二三四区| 午夜福利在线免费观看网站| 久久韩国三级中文字幕| 国产免费现黄频在线看| 嫩草影院入口| 亚洲成人av在线免费| 久久韩国三级中文字幕| 90打野战视频偷拍视频| 色播在线永久视频| 欧美日韩综合久久久久久| 亚洲色图综合在线观看| 国产在线免费精品| xxxhd国产人妻xxx| 国产成人精品福利久久| 91老司机精品| 91精品三级在线观看| 久久影院123| 久久久欧美国产精品| 一级片'在线观看视频| 亚洲欧美色中文字幕在线| 最新在线观看一区二区三区 | 久久精品aⅴ一区二区三区四区| 亚洲国产欧美在线一区| 日韩电影二区| 亚洲欧洲日产国产| 80岁老熟妇乱子伦牲交| 国产人伦9x9x在线观看| 国产毛片在线视频| 久久99热这里只频精品6学生| 欧美黑人欧美精品刺激| 久久99热这里只频精品6学生| 亚洲,欧美,日韩| 黑人欧美特级aaaaaa片| 人人妻人人爽人人添夜夜欢视频| xxxhd国产人妻xxx| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 九草在线视频观看| 99久久综合免费| 精品酒店卫生间| 高清不卡的av网站| 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 99国产综合亚洲精品| 咕卡用的链子| 精品免费久久久久久久清纯 | 久久婷婷青草| 99热网站在线观看| 999精品在线视频| 99国产综合亚洲精品| 国产一区亚洲一区在线观看| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 国精品久久久久久国模美| 1024香蕉在线观看| 女人精品久久久久毛片| 婷婷成人精品国产| 国产有黄有色有爽视频| 两个人看的免费小视频| 成年av动漫网址| 在线观看免费日韩欧美大片| 91精品国产国语对白视频| 午夜福利一区二区在线看| 精品国产一区二区久久| 在线免费观看不下载黄p国产| 国产熟女欧美一区二区| 成人18禁高潮啪啪吃奶动态图| 新久久久久国产一级毛片| 青草久久国产| 欧美国产精品va在线观看不卡| 黄片小视频在线播放| 十分钟在线观看高清视频www| 国产一级毛片在线| 国产精品 国内视频| av国产久精品久网站免费入址| 亚洲国产精品999| 国产精品人妻久久久影院| 女人被躁到高潮嗷嗷叫费观| 麻豆av在线久日| 不卡av一区二区三区| 五月开心婷婷网| 黑人欧美特级aaaaaa片| 久久狼人影院| 亚洲欧洲国产日韩| 97精品久久久久久久久久精品| 肉色欧美久久久久久久蜜桃| 午夜福利视频精品| 亚洲精品美女久久av网站| 久久影院123| 久久久精品免费免费高清| 成人国产av品久久久| 午夜91福利影院| 一区福利在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩免费高清中文字幕av| 久久亚洲国产成人精品v| 中文字幕色久视频| 在线亚洲精品国产二区图片欧美| 麻豆av在线久日| 夜夜骑夜夜射夜夜干| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久 | 视频区图区小说| 麻豆乱淫一区二区| 天天操日日干夜夜撸| 美女福利国产在线| 亚洲在久久综合| 国产成人免费无遮挡视频| 黑丝袜美女国产一区| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 热re99久久精品国产66热6| 精品国产乱码久久久久久小说| 亚洲av在线观看美女高潮| 中文字幕色久视频| 热99久久久久精品小说推荐| av国产精品久久久久影院| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 亚洲天堂av无毛| 丝瓜视频免费看黄片| 各种免费的搞黄视频| 日韩精品免费视频一区二区三区| 9色porny在线观看| 亚洲中文av在线| 欧美乱码精品一区二区三区| 欧美精品人与动牲交sv欧美| 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| av在线app专区| 熟女少妇亚洲综合色aaa.| 亚洲精品一二三| 久久97久久精品| 精品国产露脸久久av麻豆| 国产精品久久久久久精品电影小说| 日韩大码丰满熟妇| 嫩草影视91久久| 成年女人毛片免费观看观看9 | 少妇精品久久久久久久| 亚洲精品aⅴ在线观看| 中文字幕av电影在线播放| kizo精华| 大片电影免费在线观看免费| 高清在线视频一区二区三区| 精品国产乱码久久久久久小说| 久久久精品区二区三区| 丝袜美腿诱惑在线| 免费人妻精品一区二区三区视频| 精品久久久久久电影网| 99久久人妻综合| 捣出白浆h1v1| 伦理电影免费视频| 午夜福利一区二区在线看| 欧美少妇被猛烈插入视频| 搡老岳熟女国产| 精品久久蜜臀av无| 丝袜喷水一区| 日本av免费视频播放| 国产成人啪精品午夜网站| 午夜免费观看性视频| 久久久久人妻精品一区果冻| 亚洲精品美女久久久久99蜜臀 | 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 一本—道久久a久久精品蜜桃钙片| 亚洲专区中文字幕在线 | 美女视频免费永久观看网站| 老鸭窝网址在线观看| 亚洲国产精品成人久久小说| 欧美xxⅹ黑人| 超碰成人久久| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 久久国产亚洲av麻豆专区| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| 亚洲在久久综合| 观看美女的网站| 精品少妇黑人巨大在线播放| 久久综合国产亚洲精品| 18禁国产床啪视频网站| 久久ye,这里只有精品| 赤兔流量卡办理| 男女国产视频网站| 另类亚洲欧美激情| 国产片内射在线| 国产av一区二区精品久久| 国产男女内射视频| 青春草视频在线免费观看| 在线观看三级黄色| 亚洲成人免费av在线播放| 一本色道久久久久久精品综合| 97在线人人人人妻| 十分钟在线观看高清视频www| 亚洲成人免费av在线播放| 成人国语在线视频| 丁香六月天网| 色婷婷av一区二区三区视频| 久久精品国产a三级三级三级| 亚洲国产av影院在线观看| 国产在线一区二区三区精| 99久久精品国产亚洲精品| 精品亚洲成国产av| 亚洲av福利一区| 国产亚洲精品第一综合不卡| 亚洲精品乱久久久久久| 女人高潮潮喷娇喘18禁视频| 亚洲伊人久久精品综合| 国产野战对白在线观看| 各种免费的搞黄视频| 天天影视国产精品| 精品午夜福利在线看| 国产xxxxx性猛交| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 亚洲久久久国产精品| 最近中文字幕高清免费大全6| 色网站视频免费| 国产日韩欧美视频二区| 国产成人91sexporn| 久久天堂一区二区三区四区| 一区二区三区乱码不卡18| 在线观看免费日韩欧美大片| 免费黄频网站在线观看国产| 色视频在线一区二区三区| 黄频高清免费视频| 黄色 视频免费看| 久久久国产一区二区| 国产成人精品福利久久| 一二三四在线观看免费中文在| 国产麻豆69| 欧美变态另类bdsm刘玥| netflix在线观看网站| 免费高清在线观看视频在线观看| 免费黄频网站在线观看国产| 黄色怎么调成土黄色| 男女下面插进去视频免费观看| 纯流量卡能插随身wifi吗| 日本猛色少妇xxxxx猛交久久| 久久久国产精品麻豆| 国产黄色视频一区二区在线观看| 人人妻人人澡人人看| 亚洲视频免费观看视频| 女人爽到高潮嗷嗷叫在线视频| 青草久久国产| 久久狼人影院| 嫩草影院入口| 在线观看免费日韩欧美大片| 国产日韩欧美在线精品| 中文字幕av电影在线播放| 日韩一本色道免费dvd| 97在线人人人人妻| 91老司机精品| 人成视频在线观看免费观看| 亚洲av在线观看美女高潮| 成人漫画全彩无遮挡| 亚洲七黄色美女视频| 18禁动态无遮挡网站| 亚洲精品国产一区二区精华液| videosex国产| 国产精品一二三区在线看| xxx大片免费视频| 日韩,欧美,国产一区二区三区| 九色亚洲精品在线播放| av片东京热男人的天堂| 欧美人与善性xxx| 亚洲欧美中文字幕日韩二区| 别揉我奶头~嗯~啊~动态视频 | 天天躁狠狠躁夜夜躁狠狠躁| av在线播放精品| 日韩一本色道免费dvd| 精品亚洲成国产av| 最近中文字幕高清免费大全6| 日韩人妻精品一区2区三区| 久久人人97超碰香蕉20202| 多毛熟女@视频| 精品国产乱码久久久久久男人| 成人国产av品久久久| 中文字幕最新亚洲高清| 天堂中文最新版在线下载| 在线观看www视频免费| 美女扒开内裤让男人捅视频| 国产精品一区二区在线观看99| 国产乱来视频区| av网站在线播放免费| 国产成人精品在线电影| 丰满饥渴人妻一区二区三| 操美女的视频在线观看| 亚洲在久久综合| 亚洲欧美精品综合一区二区三区| 日日撸夜夜添| 岛国毛片在线播放| 亚洲三区欧美一区| 亚洲综合色网址|