• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    2018-03-12 08:40:49YIMingZHAORuXiaWANGDunQiuXIAOYu
    結(jié)構(gòu)化學(xué) 2018年2期

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu XIAO Yu

    ?

    A New Dinuclear Zinc Polymer Based on 3-Methoxy-2-hydroxybenzaldehyde:Synthesis, Structure, Spectral Characterization and Hirshfeld Surface Analysis①

    YI Ming ZHAO Ru-Xia WANG Dun-Qiu②XIAO Yu②

    (541004)

    room temperature synthesis; dinuclear zinc polymer; crystal structure; luminescence; Hirshfeld surface analysis;

    1 INTRODUCTION

    The rational design and syntheses of novel coor- dination polymers (CPs) have achieved considera- ble progress in the field of supramolecular che- mistry and crystal engineering, owing to their fascinating structural diversities and potential applications, such as sensor technology[1], separa- tion processes[2, 3], gas storage[4, 5]luminescence[6, 7], ion exchange[8]magnetism[9–13], catalytic mate- rials[14], analytic crystal structures[15]and electro- chemiluminescence(ECL)[16]. Many complexes with novel structures and interesting physical properties have been constructed through organic ligands, which contain different functional groups, such as-donor (COOH, PO3H2, SO3H, OH)[18–20]and-donor (4,4?-bipy, 2,2?-bipy, 1,10-phen, Schiff base ligands)[21–23]. The design and synthesis of new coordination polymers based on the Hmhbd ligand have attracted considerable attention due to both structures and fascinating properties[24–30]. As is well known, Hmhbd ligand has been reported offour coordination modes including3:2:2:1(Scheme 1a)[24],1:1:1(Scheme 1b)[25, 26],2:1:2:1(Scheme 1c)[27–29]and4:3:2:1(Scheme 1d)[30].

    Scheme 1. Coordination modes of Hmhbd

    To facilitate the use CPs in these applications, many researches are focused on the generation of new structures and functionalization, as well as synthesis methods[31]. Undoubtedly, the synthesis condition is one important parameter that is invol- ved in the applicability and property determination of CPs materials. The solvothermal procedure is used most frequently to synthesize CPs and the quality of the obtained crystals is mostly suitable for crystal analysis (single-crystal X-ray diffraction). On the other hand, solvothermal synthesis of CPs is time-(days to weeks) and energy-(heating system) consuming before CPs materials can be obtained. Several new developed methods are more efficient, such as mechanochemical[32, 33]and microwave assisted methods[9, 10, 12, 18, 34]. However, these methods have special requirement for the reactors or apparatus. The solvothermal procedure is even more disadvantageous since certain starting materials are unstable at high temperature and sensitive to the reaction environment. By com- parison, the room-temperature synthesis method has the pronounced advantages of low energy cost, easy and inexpensive apparatus, and even short reaction time. In recent years, many coordination complexes, such as CPs, MOFs, clusters have been synthesized under the ambient temperature or room temperature[35–39].

    Recently, Hirshfeld surface analysis as a useful tool described the surface characteristics of the crystal structures[40]. Thenormsurface is used for describing the very close intermolecular interactions in the crystals using a red-white-blue color scheme. Another important supplement for the Hirshfeld surface is the 2-D fingerprint plots. It quantitatively analyzes the nature and type of intermolecular interactions between the molecules inside the crystal[40]. Hirshfeld surface analysis and the 2-D fingerprint plot have been rapidly gaining promi- nence as a powerful technique in exploring the inter- molecular interactions of crystals[13, 16, 41-45].Herein, a dinuclear zinc ploymer [Zn2(mhbd)2(dca)2]nhas been synthesized under room temperature. Hirshfeld surface analysis and the 2-D fingerprint plot of 1 were also studied.

    2 EXPERIMENTAL

    2. 1 Synthesis of [Zn2(mhbd)2(dca)2]n (1)

    A mixture of Zn(ClO4)2·6H2O (0.279 g, 0.75 mmol), Hmhbd (0.114 g, 0.75 mmol), NaN(CN)2(0.133 g, 1.5 mmol), and methanol (10 mL) with a pH adjusted to 7.5 by the addition of triethylamine was stirred for 30 min at room temperature. The resulting solution was left at room temperature and colorless crystals of 1 were obtained after 3 d (yield: 83 mg,. 39.16% based on Hmhbd). Anal. Calcd. (%) for C20H14N6O6Zn2: C, 42.50; H, 2.50; N, 14.86. Found (%): C, 42.45; H, 2.57; N, 14.95. IR (KBr, cm?1): 3440 m, 2801 s, 2334 m, 2271 m, 2214 s, 1640 s, 1555 m, 1473 s, 1304 s, 1216 s, 1083 m, 965 m, 854 w, 731 m, 508 w, 417 w.

    2. 2 Structure determination

    The diffraction data were collected on an Agilent G8910A CCD diffractometer with graphite mono- chromated Mo-radiation (= 0.71073 ?), using thescan mode in the range of 3.62≤≤26.95°. Raw frame data were integrated with the SAINT program[46]. The structure was solved by direct methods using SHELXS-97[46]and refined by full-matrix least-squares on2using SHELXS- 97[46]. An empirical absorption correction was applied with the program SADABS[46]. All non- hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically and refined as riding. Selected bond lengths and bond angles for 1 are listed in Table 1.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°)

    Symmetry transformation: (A),, 1;(B) 1,,

    2. 3 Hirshfeld surface calculations of 1

    Molecular Hirshfeld surface calculations were performed by using the CrystalExplorer program[47]. When the CIF file of 1 is read into the Crystal- Explorer program, all bond lengths to hydrogen were automatically modified to the typical standard neutron values (C–H = 1.083 ?). In this study, all the Hirshfeld surfaces were generated using a high (standard) surface resolution. The 3Dnormsurfaces were mapped by using a fixed color scale of 0.76 (red) to 2.4 (blue). The 2D fingerprint plots were displayed by using the standard 0.4~2.6 ? view with thedandddistance scales displayed on the graph axes[48].

    3 RESULTS AND DISCUSSION

    3. 1 Description of the crystal structure

    Fig. 1. Structure of 1, symmetry codes: (a) –, –, 1–; (b) 1–, –, –. All hydrogen atoms were omitted

    Complex 1 constructs double chains through double1,5-dca bridges. It must be noted that the distances of Zn(1)···Zn(2a) and Zn(1)···Zn(2b) (symmetry code: (b) 1 –, –, –z) in the chain are 8.060(1) and 8.190(1) ?, respectively. The 1D chains further formed 2D layer through C–H···O hydrogen bonds (C(7)–H(7C)···O(6I), 3.392 ?, C(15)–H(15C)···O(3II), 3.367 ?, symmetry codes: (I) 1 +,– 1,, (II),– 1,, Fig. 2b). The weakstacking extends the 2D layers into a 3D supramolecular framework (Fig. 2a). Herein,distances are 3.795(1) and 3.792(1) ?, respectively. It must be noted thatdistances between the C(1)-C(6) and {C(1)-C(6)}irings is 3.795(1) whiledistances between the C(9)–C(14) and {C(9)–C(14)}iirings is 3.792(1) ? (symmetry codes: (i) 1 –, –, 1 –, (ii) –, –, –. Fig. 3).

    Fig. 2. 3-D network of 1 (a); 2-D layers of 1(b)

    Fig. 3.interaction of 1

    3. 2 Luminescent property

    In this study, luminescent property of complex 1 and the free Hmhbd ligand have been investigated in DMF solvent with the concentrations of 4 × 10–6and 8 × 10–6mol·L–1, respectively, as shown in Fig. 4. Upon photoexcitation at 375 nm, the free ligand Hmhbd is green luminescent with the maximum at 500 nm predominantly assigned to*→transition luminescence. With photoexcitation at 375 nm, 1 also exhibits a green luminescent emission band at 465 nm. ? The emission at 465 nm probably originates from metal-to-ligand charge transfer (MLCT)[53]. Complex 1 represents a novel qualita- tive change of luminescence property resulted from the interaction between metal ion and ligand. The ligand Hmhbd has relatively larger-conjugated system of benzene ring and phenolato oxygen, aldehyde oxygen, and methoxy oxygen donors forming4:1:2:1-dentate coordinate to two zinc ions which benefits the charge transfer from Zn ion to mhbd ligands. At the same time, the 310electric structure of Zn ion benefits from metal-to-ligand charge transfer. As a result, the luminescence intensity of complex 1 is much higher than that of the Hmhbd ligand. In addition, the chelation of the ligand to metal ion increases their rigidity and thus reduces the loss of energy by thermal vibration decay. At last, the result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1 may be a good candidate for useful photoactive material due to its strong luminescent emissions.

    Fig. 4. Luminescent of 1 and the free Hmhbd ligand

    3. 3 IR spectrum property

    The IR spectral data of the ligand Hmhbd and complex 1 are shown in Fig. 5. Contrast to the Hmhbd ligand, complex 1 shows three new strong characteristic stretching vibrations (2334, 2271, 2214 cm–1) which may be assigned to the1,5-1:1coordination mode of the dca bridged ligand[24]. The vibration bands at 2801 cm–1for 1 and 2844 cm–1for the Hmhbd ligand were observed, which are attributable to the saturation -CH2- stretching frequency in 1 and the Hmhbd ligand. The band at 3440 cm–1stretching vibration may be attributed to the intermolecular hydrogen bonds (C7–H7C···O6I, 3.392 ?, C15–H15C···O3II, 3.367 ?). It is signi- ficant that the band at 1653 cm–1is attributable to the carbonyl bond(C=O) of the free Hmhbd ligand[54–56]which red shifts to 1640 cm–1for 1. The results indicate that the aldehydo oxygen of the Hmhbd ligand is coordinated[6, 30]. The bond originating from the C–O stretching vibrations of the free Hmhbd ligand at 1254 cm–1exhibit red shifts to 1216 cm–1for 1, suggesting its partici- pation in chelation[6, 57]. At very low frequencies (510~440 cm–1), two weak bands at 417 and 508 cm–1were observed from Zn–N and Zn–O bonds, respectively. The IR attribution is consistent with the crystal structure determination.

    3. 4 Hirshfeld surface analysis

    Hirshfeld surface analysis and 2D fingerprint plots are often used to identify the types of the intermolecular interactions and the proportion of this interaction. It is a useful tool for describing the surface characteristics of the molecules in the crystals. The molecular Hirshfeld surface (norm) of complex 1 is shown in Fig. 6a. They clearly show the influences of different relationship on the intermolecular interactions of complex 1. The large and deep red spots on the 3D Hirshfeld surfaces indicate the close-contact interactions. Herein, the red spots mean the Zn–N coordination bonds.

    The 2D fingerprint plotsare used for quan- titatively analyzing the nature and type of intermo- lecular interactions between the molecules inside the crystal (Fig.6b–6h). The fingerprint plots can be decomposed to highlight particular close contacts between the elements. This decomposition enables separation of contributions from different interac- tion types, which overlap in the full fingerprint. For 1, C···H interactions have the most significant contribution (26.1%) to the total Hirshfeld surface. They are reflected in the middle of scattered points in the 2D fingerprint plots. The N···H intermo- lecular interactions have 24.0% contribution to the total Hirshfeld surface. The H···H intermolecular interactions appear as an acanthosphere in the 2D fingerprint plots, which have 16.3% contribution to the total Hirshfeld surface. TheO···H intermo- lecular interactions have 10.0% contribution to the total Hirshfeld surface, including C–H···O hydro- gen bonds. In addition, the C···C intermolecular interactions have 7.6% contribution to the total Hirshfeld surface which mainly includeinteractions. It must be noted that the maximum interaction for each kind interaction is labeled in Fig.6c–6h (red ring). In general, it is obvious that the maincontacts in complex1 are C···H and N···H interactions (Fig.7).

    Fig. 5. IR of 1 and the free Hmhbd ligand

    Fig. 6. Hirshfeld surface mapped with dnorm (a); 2D finger print plot for 1(b–h)

    Fig. 7. Hirshfeld surface calculations for 1

    4 CONCLUSION

    At room temperature, a dinuclear zinc polymer [Zn2(mhbd)2(dca)2]nwas synthesized which is astraightforward and energy-saving procedure to produce CPs. Complex 1 presents a double 1-Dchain linked by the dca ligand which further constructs a 2-D layer through hydrogen bonds.The 2-D layer formed a 3-D framework thoughstacking. In 1, the mhbd ligand displays a2:1:2:1-mhbd coordination mode, while the dca group does a1,5-dca coordination mode. The result indicates that the fluorescence intensity of complex 1 is forty-one times the fluorescence intensity of Hmhbd ligand. Complex 1may be a good candidate for useful photoactive material. Hirshfeld surface analysis indicates thatthe mainly contacts in complex 1 are C···H and N···H interactions.

    (1) Wu, C.D.; Hu, A.; Zhang, L.; Lin, W. B. A Homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis.. 2005, 127, 8940–8941.

    (2) Lee, E.Y.; Jang, S.Y.; Suh, M. P.Multifunctionality and crystal dynamics of a highly stable, porous metal-organic framework [Zn4O(NTB)2].. 2005,127, 6374–6381.

    (3) Dybtsev, D.N.; Chun, H.; Yoon, S. H.; Kim, D.; Kim, K. Microporous manganese formate:?asimple metal-organic porous material with high framework stability and highly selective gas sorption properties..2004, 126, 32–33.

    (4) Ma, L.F.; Wang, L.Y.; Huo, X.K.; Wang, Y.Y.; Fan, Y.T.; Wang, J.G.; Chen,S.H.Chain, pillar, layer, and different pores: a-[(3-carboxyphenyl)-sulfonyl]glycine ligand as a versatile building block for the construction of coordination polymers.2008, 8, 620–628.

    (5) Rosi, N.L.; Eckert, J.; Eddaoudi, M.; Vodak, D.T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Hydrogen storage in microporous metal-organic frameworks.2003, 300, 1127–1129.

    (6) Zhang, S.H.; Zhao, R.X.; Li, G.; Zhang, H.Y.; Huang, Q.P.; Liang, F.P.Room temperature syntheses, crystal structures and propertiesof two new heterometallic polymers based on3-ethoxy-2-hydroxybenzaldehyde ligand.2014, 220, 206–212.

    (7) Zhao, B.; Gao, H.L.; Chen, X.Y.; Cheng, P.; Shi, W.; Liao, D.Z.; Yan, S.P.; Jiang, Z. H. A promising MgII-ion-selective luminescent probe: structures and properties of Dy–Mn polymers with high symmetry.2006, 12, 149–158.

    (8) Min, K.S.; Suh, M.P.Silver(I)-polynitrile network solids for anion exchange:? anion-induced transformation of supramolecular structure in the crystalline state.2000, 122, 6834–6840.

    (9) Wang, W.; Hai, H.; Zhang, S. H.; Yang, L.; Zhang, C. L.; Qin, X. Y. Microwave-assisted synthesis, crystal structure and magnetic behavior of a schiff base heptanuclear cobalt cluster.. 2014, 25, 357–365.

    (10) Huang, Q.P.; Li, G.; Zhang, H. Y.; Zhang, S.H.; Li, H.P.Microwave-assisted synthesis, structure, and properties of a heptanuclear cobalt cluster with 2-ethyliminomethyl-6-methoxy-phenol.2014, 640, 1403–1407.

    (11) Yang, L.; Zhang, S.H.; Wang, W.; Guo, J.J.; Huang, Q. P.; Zhao, R.X.; Zhang, C.L.; Muller, G. Ligand induced diversification from tetranuclear to mononuclear compounds: syntheses, structures and magnetic properties.2014,74, 49–56.

    (12) Huang,Q.P.; Zhang, S.H.; Zhang, H.Y.; Li, G.; Wu, M.C.Microwave-assisted synthesis, structure and properties of a nano-double-bowl-like heptanuclear nickel(II) cluster.2014, 25, 1489–1499.

    (13) Zhang, H.Y.; Li, Y.; Wang, W.; Zhang, X.Q.; Wang, J.M.; Zhang, S.H.Tetranuclear nickel(II) clusters: syntheses, crystal structures, magnetic properties and Hirshfeld surface analysis.2016, 69, 1938–1948.

    (14) Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y.; Kim, K.A homochiral metal-organic porous material for enantioselective separation and catalysis.2000,404, 982–986.

    (15) Lee, S.; Kapustin, E.; Yaghi, O. M.Coordinative alignment of molecules in chiral metal-organic frameworks.2016, 353, 808–811.

    (16) Zhang, S. H.; Wang, J. M.; Zhang, H. Y.; Fan, Y. P.; Xiao, Y. Highly efficient electrochemiluminescence based on 4-amino-1,2,4-triazole Schiff base two-dimensional Zn/Cd coordination polymers.2017, 46, 410–419.

    (17) Siman, P.; Trickett, C. A.; Furukawa, H.; Yaghi, O. M.L-aspartate links for stable sodium metal-organic frameworks..2015, 51, 17463–17466.

    (18) Lin, S.; Diercks, C.S.; Zhang, Y.B.; Kornienko, N.; Nichols, E.M.; Zhao, Y.; Paris, A.R.; Kim, D.; Yang, P.;Yaghi, O.M.; Chang, C.J. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2reduction in water.2015, 349, 1208–1213.

    (19) Jiang, J.; Yaghi, O. M.Br?nsted acidity in metal-organic frameworks..2015, 115, 6966–6997.

    (20) Choi, K. M.; Na, K.; Somorjai, G.A.; Yaghi, O.M.Chemical environment control and enhanced catalytic performance of platinum nanoparticles embedded in nanocrystalline metal-organic frameworks.2015, 137, 7810–7816.

    (21) Yang, L.; Guo, J.J.; Zhang, C. L.; Zhang, S. H.Syntheses, crystal structure, and properties of a newCo(II) coordination polymer constructed from 1,10–phenanthroline.2015,45, 1112–1115.

    (22) Zhang, S.H.; Li, G.; Zhang, H.Y.; Li, H.P. Microwave-assisted synthesis, structure andproperty of a spin-glass heptanuclear nickelcluster with 2-iminomethyl-6-methoxy-phenol.2015, 230, 479–484.

    (23) Xiao, Y.; Huang, P.; Wang, W.Ligand structure induced diversification from dinuclear to 1D chain compounds: syntheses, structures and fluorescence properties.. 2015, 26, 1091–1102.

    (24) Yang, X.P.; Jones, R.A.; Wiester, M.J.A nanoscale slipped sandwich of Tb10-stabilization of a benzaldehyde methyl hemiacetyl.2004, 1787–1788.

    (25) Costes, J. P.; Vendier, L.Structural and magnetic studies of new NiII–LnIIIcomplexes.2010, 2768–2773.

    (26) Zhang, S.H.; Zhang, Y.D.; Zou, H.H.; Guo, J.J.; Li, H.P.; Song, Y.; Liang, H.A family of cubane cobalt and nickel clusters: syntheses, structures and magnetic properties.2013, 396, 119–125.

    (27) Zhang, S.H.; Li, N.; Ge, C.M.; Feng, C.; Ma, L.F.Structures and magnetism of {Ni2Na2}, {Ni4} and {Ni6IINiIII} 2-hydroxy-3-alkoxy- benzaldehyde clusters.. 2011, 40, 3000–3007.

    (28) Costes, J.P.; Dahan, F.; Nicodeme, F.A trinuclear gadolinium complex:? structure and magnetic properties.2001, 40, 5285–5287.

    (29) Chaudhari,A.K.; Joarder, B.; Rivière, E.; Rogez, G.; Ghosh, S.K.Nitrate-bridged “pseudo-double-propeller”-type lanthanide(III)-copper(II) heterometallic clusters: syntheses, structures, and magnetic properties.2012, 51, 9159–9161.

    (30) Lalia-Kantouri, M.; Papadopoulos, C.D.; Hatzidimitriou, A.G.; Skoulika, S.Hetero-heptanuclear (Fe-Na) complexes of salicylaldehydes: crystal and molecular structure of [Fe2(3-OCH3-salo)8·Νa5]·3OH·8H2Ο.2009,20, 177–184.

    (31) Kitagawa, S.; Kitaura, R.; Noro, S.I.Functional porous coordination polymers.2004,43, 2334–2375.

    (32) Do, J.L.; Mottillo, C.; Tan, D.; ?trukil, V.; Fri??i?, T.Mechanochemical ruthenium-catalyzed olefin metathesis..2015, 137, 2476–2479.

    (33) Karthikeyan, S.; Potisek, S.; Piermattei, A.; Sijbesma, R.P.Highly efficient mechanochemical scission of silver-carbene coordination polymers.2008, 130, 14968–14969.

    (34) Zhang,S.H.; Huang, Q. P.; Zhang, H. Y.; Li, G.; Liu, Z.; Li, Y.; liang, H.Dodecanuclear water cluster in bowl: microwave-assisted synthesis of a heptanuclear cobalt(II) cluster.2014, 67, 3155–3166.

    (35) Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M.Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0.2008, 64, 8553–8557.

    (36) Zhao, R.X.; Zhang, J.L.; Zhang, S.H.; Zhang,H.Y.Room temperature synthesis, crystal structure, and properties of a new heterometallic one-dimensional Cu–Na polymer.2016, 46, 1462–1467.

    (37) Zhou, K.; Chaemchuen, S.; Wu, Z.X.; Verpoort, F.Rapid room temperature synthesis forming pillared metal-organic frameworks with Kagomé net topology..2017, 239,28–33.

    (38) Kai, K.; Yoshida, Y.; Kageyama, H.; Saito, G.; Ishigaki, T.; Furukawa, Y.; Kawamata, J.Room-temperature synthesis of manganese oxide monosheets..2008, 130, 15938–15943.

    (39) Zhao, R. X.; Zhang, S. H.; Zhang, H. Y.; Li, G.; Ding, G. H.; Li, H. P. Room temperature synthesis, crystal structure and magnetic property of a two-dimensional copper(II) polymer bridged by end-on and end-to-end azide bridges.2015, 26, 949–958.

    (40) Spackman, M. A.; Jayatilaka, D. Hirshfeld surface analysis.. 2009, 11, 19–32.

    (41) Zhang, H. Y.; Xiao, Y.; Zhu, Y. A novel copper(II) complex based on 4-Amino-1,2,4-triazole Schiff-base: synthesis, crystal structure, spectral characterization, and Hirshfeld surface analysis.. 2017, 36, 848-855.

    (42) Zhang, H. Y.; Wang, W.; Chen, H.; Zhang, S.-H.; Li, Y. Five novel dinuclear copper(II) complexes: crystal structures, properties, Hirshfeld surface analysis and vitro antitumor activity study.2016, 453, 507-515.

    (43) Luo, Y. H.; Zhang, C. G.; Xu, B.; Sun, B. W. A cocrystal strategy for the precipitation of liquid 2,3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them.2012, 14, 6860–6868.

    (44) Seth, S. K.; Saha, I.; Estarellas, C.; Frontera, A.; Kar, T.; Mukhopadhyay, S. Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, Hirshfeld surface analysis, and DFT calculations (H2IDA = iminodiacetic acid, M = Cu(II), Ni(II)).. 2011, 11, 3250–3265.

    (45) Feng, C.; Ma, Y. H.; Zhang, D.; Li, X. J.; Zhao, H. Highly efficient electrochemiluminescence based on pyrazolecarboxylic metal organic framework.. 2016, 45, 5081–5091.

    (46) Sheldrick, G. M.A short history of SHELX.2008, A64, 112–122.

    (47) Wolff, S.; Grimwood, D.; McKinnon, J.; Jayatilaka, D.; Spackman, M. Crystal explorer.2007, 377.

    (48) Spackman, M.A.; McKinnon, J.J.Fingerprinting intermolecular interactions in molecular crystals.2002, 4, 378–392.

    (49) Lo, W.K.; Wong, W.K.; Guo, J.P.; Wong, W.Y.; Li, K.F.; Cheah, K.W. Synthesis, structures and luminescent properties of new heterobimetallic Zn–4schiff base complexes.2004, 357, 4510–4521.

    (50) Wang, J.; Lin, Z.J.; Ou, Y.C.; Yang, N.L.; Zhang, Y.H.; Tong, M.L.Hydrothermal synthesis, structures, and photoluminescent properties of benzenepentacarboxylate bridged networks incorporating Zinc(II)?hydroxide clusters or Zinc(II)?carboxylate layers.. 2008,47, 190–199.

    (51) Zhang, Y. D.; Zhang, S. H.; Ge, C. M.; Wang, Y. G.; Huang, Y. H.; Li, H. P. Synthesis and crystal structures of two heterobinuclear nickel polymers [NiNaL(dca)]nand[NiNaL(dca)]2n·(CH3COOCH3)n·(H2O)n.2013, 43, 990–994.

    (52) Lin, H. H.; Mohanta, S.; Lee, C. J.; Wei, H. H.Syntheses,crystal engineering, and magnetic property of a dicyanamide bridged three-dimensional manganese(II)-nitronyl nitroxide coordination polymer derived from a new radical.2003, 42, 1584–1589.

    (53) Zhang, S.H.; Feng, C.Microwave-assisted synthesis, crystal structure and fluorescence of novel coordination complexes with Schiff base ligands.2010, 977, 62–66.

    (54) van Albada, G.A.; Quiroz-Castro, M.E.; Mutikainen, I.; Turpeinen, U.; Reedijk,J.The first structural evidence of a polymeric Cu(II) compound with a bridging dicyanamide anion: X-ray structure, spectroscopy and magnetism of-[polybis(2-aminopyrimidine)copper(II)bis(-dicyanamido)].2000, 298, 221–225.

    (55) Bhaumik, P.K.; Harms, K.; Chattopadhyay, S.Synthesis and characterization of four dicyanamide bridged copper(II) complexes with N2O donor tridentate Schiff bases as blocking ligands.2013, 405, 400–409.

    (56) Ray, A.; Pilet, G.; Gómez–García, C.J.; Mitra, S.Designing dicyanamide bridged 1D molecular architecture from a mononuclear copper(II) Schiff base precursor: syntheses, structural variations and magnetic study.2009, 28, 511–520.

    (57) Shebl, M.Synthesis, spectroscopic characterization and antimicrobial activity of binuclear metal complexes of a new asymmetrical Schiff base ligand: DNA binding affinity of copper(II) complexes.2014, 117, 127–137.

    18 May 2017;

    11 October 2017

    10.14102/j.cnki.0254-5861.2011-1726

    ① This work was financially supported by the National Natural Science Foundation of China (Nos. 51638006 and 51569008) and the Natural Science Foundation of Guangxi Province (No. 2015GXNSFAA139240)

    ②Tel: +86 773 2537332, Fax: +86 773 2537332, E-mails: wangdunqiu@sohu.com(Wang D. Q.) and 657683458@qq.com(Xiao Y.)

    亚洲av成人不卡在线观看播放网| 男人舔女人的私密视频| 中文字幕最新亚洲高清| 美女cb高潮喷水在线观看 | 床上黄色一级片| 国产99白浆流出| 国产精品 欧美亚洲| 一本久久中文字幕| 欧美一区二区国产精品久久精品| 亚洲电影在线观看av| 日韩大尺度精品在线看网址| 精品欧美国产一区二区三| 99久久精品热视频| 在线a可以看的网站| av黄色大香蕉| 99久久综合精品五月天人人| 丝袜人妻中文字幕| 亚洲国产欧美人成| 91av网一区二区| 麻豆成人av在线观看| 91老司机精品| 久久久久性生活片| 国产成人精品无人区| www.999成人在线观看| 人人妻人人澡欧美一区二区| 九九在线视频观看精品| 国产1区2区3区精品| 免费在线观看成人毛片| 国产免费男女视频| 国产精华一区二区三区| 久久中文字幕一级| 国产伦精品一区二区三区视频9 | 香蕉国产在线看| 久久中文字幕人妻熟女| 色吧在线观看| 波多野结衣高清无吗| 黄色日韩在线| 久久久久久久久中文| 老司机福利观看| www国产在线视频色| 最近在线观看免费完整版| av视频在线观看入口| 国产精品自产拍在线观看55亚洲| 深夜精品福利| 久久久成人免费电影| 少妇人妻一区二区三区视频| 人妻夜夜爽99麻豆av| 亚洲av五月六月丁香网| 国产成+人综合+亚洲专区| 99久久精品一区二区三区| 精品99又大又爽又粗少妇毛片 | 亚洲欧美一区二区三区黑人| 国产免费av片在线观看野外av| 又粗又爽又猛毛片免费看| 国产黄片美女视频| 国产亚洲精品av在线| 一本精品99久久精品77| 亚洲第一欧美日韩一区二区三区| 免费在线观看亚洲国产| 毛片女人毛片| 欧美zozozo另类| 91av网站免费观看| 国产黄a三级三级三级人| 99re在线观看精品视频| 最好的美女福利视频网| 大型黄色视频在线免费观看| 日韩中文字幕欧美一区二区| av福利片在线观看| 99久久99久久久精品蜜桃| 99久久成人亚洲精品观看| 老司机午夜十八禁免费视频| 精品熟女少妇八av免费久了| 天天躁日日操中文字幕| 亚洲七黄色美女视频| 欧美一区二区国产精品久久精品| 黄片小视频在线播放| 欧美日本亚洲视频在线播放| 国产极品精品免费视频能看的| 国产亚洲精品一区二区www| 制服人妻中文乱码| 中出人妻视频一区二区| 99精品久久久久人妻精品| 免费搜索国产男女视频| 九色成人免费人妻av| 国产真人三级小视频在线观看| 黄色 视频免费看| 一个人看的www免费观看视频| 看黄色毛片网站| 日韩大尺度精品在线看网址| 亚洲天堂国产精品一区在线| 成熟少妇高潮喷水视频| svipshipincom国产片| 亚洲av电影不卡..在线观看| 国产97色在线日韩免费| 精品一区二区三区四区五区乱码| 一本一本综合久久| 亚洲精品久久国产高清桃花| 日本免费a在线| 99国产综合亚洲精品| 亚洲中文av在线| 国产精品一区二区三区四区久久| 亚洲激情在线av| www日本黄色视频网| 好男人电影高清在线观看| 国产一级毛片七仙女欲春2| av福利片在线观看| h日本视频在线播放| 亚洲欧美日韩东京热| 久久久久免费精品人妻一区二区| 免费观看精品视频网站| 日本在线视频免费播放| 老司机午夜福利在线观看视频| 亚洲欧美激情综合另类| 在线观看免费午夜福利视频| 最近在线观看免费完整版| 久久久久九九精品影院| 最近最新中文字幕大全免费视频| 久久精品国产亚洲av香蕉五月| 免费在线观看影片大全网站| 亚洲成人久久性| 亚洲中文字幕一区二区三区有码在线看 | 国产伦一二天堂av在线观看| 国产精品亚洲美女久久久| 天天一区二区日本电影三级| 日韩精品中文字幕看吧| 免费在线观看视频国产中文字幕亚洲| 老司机深夜福利视频在线观看| 日本熟妇午夜| 国产精品国产高清国产av| 亚洲欧美日韩东京热| 一个人看视频在线观看www免费 | 天堂av国产一区二区熟女人妻| 看片在线看免费视频| 成人一区二区视频在线观看| 麻豆一二三区av精品| 小蜜桃在线观看免费完整版高清| 午夜日韩欧美国产| 欧美高清成人免费视频www| 久久久久久久久中文| 亚洲自偷自拍图片 自拍| 欧美日本视频| 两性午夜刺激爽爽歪歪视频在线观看| 一本综合久久免费| 激情在线观看视频在线高清| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 一级黄色大片毛片| 亚洲色图av天堂| 亚洲无线在线观看| 此物有八面人人有两片| 免费在线观看日本一区| 日韩欧美 国产精品| 老熟妇乱子伦视频在线观看| 国产黄片美女视频| 麻豆成人av在线观看| 午夜福利在线观看免费完整高清在 | 成人三级做爰电影| 久久久国产成人精品二区| 99久久精品国产亚洲精品| 成年免费大片在线观看| 成年女人毛片免费观看观看9| 精品99又大又爽又粗少妇毛片 | 热99re8久久精品国产| 美女 人体艺术 gogo| 久久精品国产99精品国产亚洲性色| 久久草成人影院| 亚洲av电影不卡..在线观看| 黄色丝袜av网址大全| 亚洲欧美日韩高清在线视频| 可以在线观看毛片的网站| 中文字幕av在线有码专区| 欧美日韩瑟瑟在线播放| 手机成人av网站| 日本成人三级电影网站| 国产极品精品免费视频能看的| 久久久久久人人人人人| 精品人妻1区二区| 丰满的人妻完整版| 免费高清视频大片| 国产一区二区三区在线臀色熟女| 亚洲av第一区精品v没综合| 成人无遮挡网站| 久久久国产成人免费| 欧美黄色淫秽网站| 伦理电影免费视频| 91老司机精品| 国产精品亚洲美女久久久| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区色噜噜| 老熟妇仑乱视频hdxx| 午夜影院日韩av| 国产欧美日韩一区二区三| 亚洲精品粉嫩美女一区| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片| 免费观看的影片在线观看| 热99re8久久精品国产| 欧美一级毛片孕妇| 黑人欧美特级aaaaaa片| 久久精品国产综合久久久| 黄色日韩在线| 成人av一区二区三区在线看| 美女免费视频网站| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 免费人成视频x8x8入口观看| 后天国语完整版免费观看| 精品一区二区三区四区五区乱码| 级片在线观看| 99精品在免费线老司机午夜| 99久久99久久久精品蜜桃| 老司机深夜福利视频在线观看| av福利片在线观看| 大型黄色视频在线免费观看| 美女免费视频网站| 欧美黑人欧美精品刺激| 国产精品自产拍在线观看55亚洲| 国产精品久久视频播放| 日韩有码中文字幕| aaaaa片日本免费| 欧美大码av| 欧美乱码精品一区二区三区| 国语自产精品视频在线第100页| 亚洲精品在线美女| 村上凉子中文字幕在线| 中文字幕人妻丝袜一区二区| 极品教师在线免费播放| 中亚洲国语对白在线视频| 热99re8久久精品国产| 久久伊人香网站| 国产av麻豆久久久久久久| 不卡av一区二区三区| 动漫黄色视频在线观看| 国产三级在线视频| av欧美777| 久久久国产精品麻豆| 99国产精品一区二区蜜桃av| 一级作爱视频免费观看| 欧美另类亚洲清纯唯美| 真实男女啪啪啪动态图| 超碰成人久久| 精品国产超薄肉色丝袜足j| 欧美黄色片欧美黄色片| 噜噜噜噜噜久久久久久91| 久久精品91无色码中文字幕| 1024手机看黄色片| 99久久综合精品五月天人人| 亚洲在线自拍视频| 国产精品99久久久久久久久| 在线观看66精品国产| 成人国产一区最新在线观看| 啦啦啦免费观看视频1| 88av欧美| 淫秽高清视频在线观看| 欧美黑人巨大hd| 99久久国产精品久久久| 九色国产91popny在线| 成人精品一区二区免费| 成人高潮视频无遮挡免费网站| 不卡一级毛片| 亚洲成人精品中文字幕电影| 一进一出好大好爽视频| 我要搜黄色片| 亚洲欧美日韩高清专用| 人妻久久中文字幕网| 国产1区2区3区精品| 国产精品1区2区在线观看.| 嫩草影视91久久| 最新中文字幕久久久久 | 噜噜噜噜噜久久久久久91| 国产亚洲欧美在线一区二区| 性色av乱码一区二区三区2| 成人午夜高清在线视频| 欧美激情在线99| 亚洲人与动物交配视频| 制服人妻中文乱码| 757午夜福利合集在线观看| 国产乱人视频| 久久精品国产清高在天天线| 国产伦人伦偷精品视频| 日韩高清综合在线| 欧美色欧美亚洲另类二区| 欧美一级a爱片免费观看看| 手机成人av网站| 波多野结衣高清无吗| 久久天堂一区二区三区四区| 亚洲性夜色夜夜综合| 欧美色视频一区免费| 色av中文字幕| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 国产成人系列免费观看| 亚洲精品粉嫩美女一区| 久久久久国内视频| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 国产主播在线观看一区二区| 听说在线观看完整版免费高清| 国产淫片久久久久久久久 | 在线国产一区二区在线| 国产精品久久久久久久电影 | 精品人妻1区二区| 老汉色av国产亚洲站长工具| 中亚洲国语对白在线视频| 久久久久国产一级毛片高清牌| 午夜日韩欧美国产| 一进一出抽搐gif免费好疼| 欧美午夜高清在线| 18禁美女被吸乳视频| 三级毛片av免费| 国产在线精品亚洲第一网站| 亚洲专区国产一区二区| av欧美777| 一个人观看的视频www高清免费观看 | 免费观看的影片在线观看| 亚洲第一电影网av| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av在线| 国产av不卡久久| 欧美一区二区国产精品久久精品| 夜夜夜夜夜久久久久| 少妇的逼水好多| 国内精品美女久久久久久| 国产私拍福利视频在线观看| 中国美女看黄片| 亚洲av第一区精品v没综合| 18禁裸乳无遮挡免费网站照片| 亚洲精品乱码久久久v下载方式 | 亚洲欧美日韩高清在线视频| 国产精品亚洲一级av第二区| 亚洲美女视频黄频| 欧美zozozo另类| 成人亚洲精品av一区二区| 亚洲国产精品合色在线| 国产精品久久久人人做人人爽| 精品免费久久久久久久清纯| 欧美黄色淫秽网站| 亚洲av片天天在线观看| 悠悠久久av| 波多野结衣高清作品| 一本久久中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 欧美精品啪啪一区二区三区| 久久久国产欧美日韩av| 亚洲无线在线观看| 麻豆国产av国片精品| 亚洲在线自拍视频| av在线蜜桃| 国产一区二区激情短视频| 久久久久国内视频| 日本在线视频免费播放| 亚洲va日本ⅴa欧美va伊人久久| av中文乱码字幕在线| 偷拍熟女少妇极品色| 色视频www国产| 91在线观看av| 精品人妻1区二区| 成在线人永久免费视频| 97超级碰碰碰精品色视频在线观看| 在线观看舔阴道视频| 无遮挡黄片免费观看| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 国产av麻豆久久久久久久| 午夜视频精品福利| 亚洲精品美女久久久久99蜜臀| 欧美黑人巨大hd| 在线播放国产精品三级| 亚洲专区国产一区二区| 国产欧美日韩一区二区三| 久久精品91无色码中文字幕| 国产又黄又爽又无遮挡在线| 亚洲精品在线美女| 成人特级av手机在线观看| 亚洲成a人片在线一区二区| 亚洲午夜理论影院| 国产高潮美女av| 亚洲中文av在线| 午夜激情福利司机影院| 国产亚洲精品一区二区www| 丁香欧美五月| 国产精品女同一区二区软件 | 久久九九热精品免费| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 欧美黑人欧美精品刺激| 一进一出抽搐动态| 波多野结衣巨乳人妻| 2021天堂中文幕一二区在线观| 我要搜黄色片| 色综合欧美亚洲国产小说| 国产精品一区二区三区四区免费观看 | 久久亚洲精品不卡| 精品久久久久久久末码| 久久热在线av| 国产爱豆传媒在线观看| 亚洲九九香蕉| 精品99又大又爽又粗少妇毛片 | 免费无遮挡裸体视频| 草草在线视频免费看| 成年人黄色毛片网站| 一级毛片精品| 国产精品影院久久| 亚洲av电影在线进入| 99国产综合亚洲精品| 一区福利在线观看| svipshipincom国产片| 麻豆国产97在线/欧美| 亚洲乱码一区二区免费版| 国内揄拍国产精品人妻在线| 久久久久久大精品| 日本黄色片子视频| 成人高潮视频无遮挡免费网站| 男女做爰动态图高潮gif福利片| 亚洲五月婷婷丁香| 一级毛片高清免费大全| 久久精品人妻少妇| 一夜夜www| 久久久久精品国产欧美久久久| 成人高潮视频无遮挡免费网站| 男女午夜视频在线观看| 亚洲欧美一区二区三区黑人| 亚洲精品456在线播放app | 一级毛片精品| 国产99白浆流出| 老汉色av国产亚洲站长工具| 亚洲色图 男人天堂 中文字幕| 亚洲中文日韩欧美视频| 欧美日本亚洲视频在线播放| 天天躁日日操中文字幕| 亚洲 欧美一区二区三区| www.自偷自拍.com| 黄频高清免费视频| 九色国产91popny在线| 午夜福利高清视频| 国产一区二区在线av高清观看| 国产精品 欧美亚洲| 村上凉子中文字幕在线| bbb黄色大片| 悠悠久久av| 欧美zozozo另类| 精品日产1卡2卡| 国产精品1区2区在线观看.| 97超视频在线观看视频| 最近最新中文字幕大全免费视频| 最新美女视频免费是黄的| 亚洲专区中文字幕在线| 黄频高清免费视频| www.精华液| 日韩欧美 国产精品| 51午夜福利影视在线观看| 日日摸夜夜添夜夜添小说| 又粗又爽又猛毛片免费看| 久久天堂一区二区三区四区| 午夜免费激情av| 久久久久免费精品人妻一区二区| 精品国产三级普通话版| 成人性生交大片免费视频hd| 天天一区二区日本电影三级| 美女高潮喷水抽搐中文字幕| 性欧美人与动物交配| 亚洲中文字幕日韩| av在线天堂中文字幕| 真实男女啪啪啪动态图| 日本与韩国留学比较| 午夜福利视频1000在线观看| 在线观看舔阴道视频| 久久精品国产清高在天天线| 三级毛片av免费| 免费av不卡在线播放| 90打野战视频偷拍视频| www.熟女人妻精品国产| www.自偷自拍.com| 欧美xxxx黑人xx丫x性爽| 午夜日韩欧美国产| 美女黄网站色视频| 国产69精品久久久久777片 | 亚洲黑人精品在线| 国产av麻豆久久久久久久| 国产高清激情床上av| 无人区码免费观看不卡| 在线a可以看的网站| 亚洲性夜色夜夜综合| 久久人妻av系列| 人人妻人人澡欧美一区二区| 男人的好看免费观看在线视频| 又黄又粗又硬又大视频| 免费高清视频大片| 婷婷丁香在线五月| 国产精品综合久久久久久久免费| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| av在线蜜桃| 久久亚洲真实| 看黄色毛片网站| 少妇丰满av| 亚洲成人久久爱视频| 小说图片视频综合网站| 亚洲性夜色夜夜综合| 国产精品一区二区免费欧美| 丁香欧美五月| 一进一出抽搐动态| 亚洲成人免费电影在线观看| 亚洲欧美一区二区三区黑人| 99精品在免费线老司机午夜| 午夜福利欧美成人| 99热6这里只有精品| 成人国产综合亚洲| 国产精品爽爽va在线观看网站| 亚洲av电影不卡..在线观看| 国产精品影院久久| 免费观看的影片在线观看| 757午夜福利合集在线观看| 国产亚洲欧美在线一区二区| av黄色大香蕉| 日韩 欧美 亚洲 中文字幕| 亚洲人成伊人成综合网2020| 久久香蕉精品热| 夜夜爽天天搞| 成人永久免费在线观看视频| 亚洲熟妇熟女久久| 亚洲天堂国产精品一区在线| 女人高潮潮喷娇喘18禁视频| 狂野欧美白嫩少妇大欣赏| 精品国产超薄肉色丝袜足j| 欧美在线一区亚洲| 亚洲无线观看免费| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 精品电影一区二区在线| tocl精华| 中文亚洲av片在线观看爽| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩国产亚洲二区| 天堂√8在线中文| 午夜久久久久精精品| 国产精品av视频在线免费观看| 色av中文字幕| 亚洲自拍偷在线| aaaaa片日本免费| 国产乱人视频| 成人av在线播放网站| 小说图片视频综合网站| 性色av乱码一区二区三区2| 天堂av国产一区二区熟女人妻| 国产私拍福利视频在线观看| 99热这里只有精品一区 | 亚洲熟妇熟女久久| av黄色大香蕉| 日韩欧美一区二区三区在线观看| 欧美中文日本在线观看视频| 大型黄色视频在线免费观看| 亚洲欧美日韩高清专用| 成人特级黄色片久久久久久久| 日韩欧美免费精品| 波多野结衣巨乳人妻| 久久久国产精品麻豆| 天堂网av新在线| 黄片小视频在线播放| 亚洲第一电影网av| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 少妇的丰满在线观看| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 国产日本99.免费观看| 好男人电影高清在线观看| 国产成人av教育| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 国产一级毛片七仙女欲春2| 午夜免费激情av| 日本成人三级电影网站| 18禁裸乳无遮挡免费网站照片| 女同久久另类99精品国产91| 免费看十八禁软件| 黄色成人免费大全| 成人无遮挡网站| 九九在线视频观看精品| 又大又爽又粗| 日本成人三级电影网站| 日韩高清综合在线| 丝袜人妻中文字幕| 免费av不卡在线播放| 最近最新免费中文字幕在线| 在线a可以看的网站| 又大又爽又粗| 欧美三级亚洲精品| 日韩高清综合在线| 熟女电影av网| 欧美成狂野欧美在线观看| 我的老师免费观看完整版| 午夜精品久久久久久毛片777| 国产爱豆传媒在线观看| 国产麻豆成人av免费视频| 欧美+亚洲+日韩+国产| 久久久久性生活片| 午夜影院日韩av| 久久久久国产一级毛片高清牌| 啦啦啦免费观看视频1| 精品午夜福利视频在线观看一区| 男人舔女人下体高潮全视频| www.熟女人妻精品国产| 国产91精品成人一区二区三区| 国产高清三级在线| 国产高清视频在线观看网站| 国产激情欧美一区二区| 欧美日韩中文字幕国产精品一区二区三区| 9191精品国产免费久久| 男女之事视频高清在线观看| 欧美日韩瑟瑟在线播放| 中亚洲国语对白在线视频|