• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two Copper Complexes Based on Pyrazole- 3-carboxylic Acid as Heterogeneous Catalysts for Highly Selective Oxidation of Alkylbenzenes①

    2018-03-12 05:00:43JIANGXiuYnRONGNinXinQIANRuiQIUTinTinYAOQingXiHUANGXinQing
    結構化學 2018年2期

    JIANG Xiu-Yn RONG Nin-Xin QIAN Rui QIU Tin-Tin YAO Qing-Xi HUANG Xin-Qing

    ?

    Two Copper Complexes Based on Pyrazole- 3-carboxylic Acid as Heterogeneous Catalysts for Highly Selective Oxidation of Alkylbenzenes①

    JIANG Xiu-YanaRONG Nian-XinbQIAN RuibQIU Tian-TianbYAO Qing-Xiab②HUANG Xian-Qiangb②

    a(257061)b(252059)

    Two new copper complexes based on pyrazole-3-carboxylic acid (H2pca) ligand, Cu(Hpca)2(H2O)2·2H2O (1) and Cu2(pca)2(H2O)4(2)have been synthesized and fully characterized by single-crystal X-ray diffraction (SXRD), infrared spectroscopy (IR), thermal gravity analysis (TGA), powder X-ray diffraction (PXRD) and elemental analyses. Complex1 is mononuclear whilecomplex 2 shows a dinuclear structure. Complex1 crystallizes in the monoclinic system, space group21/with= 2,= 6.5591(5),= 21.696(2),= 4.9486(2) ?,= 680.94(9) ?3,(000) = 366,D= 1.745 g/cm3,= 1.650 mm-1, the final= 0.0340 and= 0.0792. Complex2 crystallizes in the monoclinic system, space group21/with= 2,= 5.1935(4),= 9.6052(7),= 12.7347(9) ?,= 634.44(8) ?3,(000) = 420,D= 2.195 g/cm3,= 3.404 mm-1, the final= 0.0305 and= 0.0653.The three-dimensional frameworks of two complexes are formed by the O?H···O and N?H···O hydrogen bonding interactions. Notably, two copper complexes are further used as catalysts in the oxidation of alkylbenzenes using-butylhydroperoxide (TBHP) as the oxidant and they exhibit excellent catalytic performance (Conv. up to 98.9%, Sele. up to 98.7%).

    copper complexes, crystal structure, oxidation of alkylbenzenes;

    1 INTRODUCTION

    In recent decades, transition-metal complexes have obtained long-lasting attention owing to their special structures and extensive applications in catalysis, adsorption, electric conducting materials, magnetic and optical materials, and so on[1-4]. Among transi- tion metals, copper is an important element in coordination chemistry, catalysis chemistry and a microelement necessary to life[5-8]. Its flexible coor-dination modes make it easy to form mononuclear, dinuclearand multinuclear complexes[9, 10]. Pyrazole carboxylates as a kind of multifunctional ligands play an important role in generating excellent architectures because of some advantages: firstly, the multidentate organic ligands possess potential coor- dination nodes and the strong coordination ability, and they exhibit diverse chelating and bridging modes; secondly, pyrazole carboxylates also act as the multiple proton donors and acceptors, and may build high-dimensional supramolecular frameworks by hydrogen-bonding orstacking interactions.However, few examples are reported with the transi- tion-metal complexes based on 1-pyrazole-3-car- boxylic acid owning to only one carboxyl group in the ligand[11-13].And it remains a significant challenge to synthesize such pyrazole-3-carboxylic acid complexes and develop their catalytic activities in some organic reactions.

    Herein, we report the syntheses and structural characterizations of the mononuclear copper complex 1 and dinuclear copper complex 2, which were obtained by theroom temperature conditions or hydrothermal method. The two copper complexes have been fully characterized by SXRD, PXRD, elemental analyses, TGA and FT-IR spectroscopy. Complexes 1 and 2 were further investigated as catalysts for the oxidation of alkylbenzenes with TBHP as an oxidant.

    2 EXPERIMENTAL

    2. 1 Instruments and reagents

    All reagents and solvents were purchased from commercial sources and used without further puri- fication. PXRD patterns of the samples were analy- zed with monochromatized Cu-(= 1.54178 ?) incident radiation by a Shimadzu XRD-6000 instrument operating at 40 kV voltage and 50 mA current, and PXRD patterns were recorded from 4° to 50° (2) at 298 K. The C, H and N elemental analyses were conducted on a Perkin-Elmer 240C elemental analyzer. The FT-IR spectra were recorded from KBr pellets in the range of 4000~400 cm-1on a Nicolet 170 SXFT/IR spectrometer. The GC analyses were performed on Shimadzu GC-2014C with a FID detector equipped with an Rtx-1701 Sil capillary column.TGA experiments were carried out on a Perkin-Elmer TGA 7 analyzer at a heating rate of 10 °C/min from the room temperature to 600 °C under nitrogen atmosphere.

    2. 2 Synthesis ofcomplex Cu(Hpca)2(H2O)2·2H2O (1)

    A solution containing Cu(ClO4)2·6H2O (0.074 g, 0.2 mmol) in 5 mLof distilled water was slowly added to a solution containing H2pca (0.0448 g, 0.4 mmol) and NaOH (0.1 mL, 1 M in H2O) under stirring in 5 mL of distilled water. The reaction mixture was stirred for 1 h at room temperature and filtrated. The blue block crystals of 1 were obtained by slow evaporation of the filtrate at room tempera- ture over a period of three weekswith the yield of 32% based on Cu. IR (KBr, cm-1): 3484(s), 3363(s), 1660(s), 1555(m), 1507(m), 1475(m), 1382(m), 1355(s), 1263(s), 1232(w), 1133(m), 1068(s), 1014(m), 942(m), 898(m), 839(m), 785(m), 649(m), 502(w). Anal. calcd forC8H14CuN4O8: 26.86, H 3.94, N 15.66%. Found: C, 26.91; H, 3.97; N, 15.54%.

    2. 3 Synthesis of complex Cu2(pca)2(H2O)4 (2)

    A mixture of H2pca (0.0448 g, 0.4 mmol), CuCl2·2H2O (0.068 g, 0.4 mmol), NaOH (0.2 mL, 1 M in H2O) and distilled water (10 mL) was sealed in a 23 mL Teflon-lined steel vessel and heated at 150 °C for 72 h, and then cooled to room tempera- ture at a rate of 0.1°C/min. The resulting blue block crystals of 2 were obtained and washed with dis- tilled water with a yield of 31% based on Cu. IR (KBr, cm-1): 3485 (s), 1659 (s), 1557 (w), 1512 (m), 1475 (m), 1382 (s), 1356 (s), 1263 (s), 1232 (w), 1133 (m), 1068 (m), 1014 (m), 942 (m), 898 (m), 838 (m), 785 (m), 649 (w), 497 (w). Anal. calcd for C8H12Cu2N4O8: C, 22.91; H, 2.88; N, 13.36%. Found: C, 22.98; H, 2.95; N, 13.27%.

    2. 4 Procedure for the catalytic oxidation of alkylbenzenes

    Alkylbenzenes (0.25 mmol), copper complex (5 mol%), 70% TBHP (0.625 mmol) and benzonitrile (2 mL) were added to a 10 mL flask, and the catalytic reaction was performed at 70 °C for 24 h. After the reaction was completed, the resulting mixture was analyzed by GC-MS and GC.

    2. 5 Reuse experiments

    The reuse experiments were carried out for the oxidation of diphenylmethane under the optimum conditions. After the reaction was completed, the catalyst was retrieved by filtration (5.8 mg, 96% recovery), washed with MeOH (ca. 3* 5 mL), and air-dried prior to being used for the reuse experi- ment. The PXRD spectrum of the retrieved catalyst was identical to that of the fresh catalyst (Fig. 6). In addition, the retrieved catalyst could be reused for the second run of oxidation of diphenylmethane. After the second run reaction was completed, the catalyst was retrieved by filtration (5.5 mg, 95% recovery), washed with MeOH (ca. 3* 5mL), and air-dried prior to being used for the third run experiment. The experiment of the third run was prepared in the same way as that for the second run, and finally the 95.7% conversion of diphenyl- methane was also determined by GC. The PXRD spectrum of the third run retrieved catalyst was identical to that of the fresh catalyst (Fig. 6).

    2. 6 Structure determination

    Single-crystal X-ray diffraction data forcom- plexes 1and2 were performed with Moradia- tion (= 0.71073 ?) on a Bruker-AXS CCD diffractometer equipped with multi-scan technique at 296 K. The structures were solved by direct methods and refined through full-matrix leastsqua- res techniques method on2using the SHELXTL 97 crystallographic software package[14, 15]. The final refinements included anisotropic displacement parameters for all atoms. The selected bond lengths, bond angles and hydrogen bond parameters of 1and2 are shown in Tables 1 and 2, respectively.

    Table 1. Selected Bond Lengths (?) and Bond Angles (°) for Complexes 1 and 2

    Symmetry code: a: –+1, –+1, –3

    Table 2. Hydrogen BondLengths (?) and Bond Angles (°) for Complexes 1 and 2

    Symmetry codes: a:–+1, –+1, –+2; b:,,–1; c: –, –+1, –+3; d: –, –+1, –+3; e:, –+3/2,+1/2

    3 RESULTS AND DISCUSSION

    3. 1 Structure description of Cu(Hpca)2(H2O)2·2H2O (1)

    The single-crystal X-ray diffraction reveals thatcomplex 1 contains one crystallographically inde- pendentCu2+ion, one Hpca?anion and one coor- dination water molecule. As shown in Fig. 1a, the Cu2+ion is surrounded by two oxygen atoms, two nitrogen atoms (O(1), O(1A), N(1) and N(1A)) from two Hpca?anions, and two oxygen atoms (O(3), O(3A)) from two coordinated water mole- cules, and it exhibits a distorted {CuO4N2}octahe- dral geometry. The bond distances of the Cu?O and Cu?N are 1.9901(19)~2.508(2) and 1.976(2) ?, respectively, which are similar with those of repor- ted copper complexes[16]. The bond angles around Cu2+ion are in the range of 81.44(8)~180.0.00(5)°. The Hpca?anion adopts a chelate coordination mode: one oxygen atom and one nitrogen atom of Hpca?anion act as coordinationatoms connecting theadjacent Cu2+ions, forming a five-membered ring. The adjacent mononuclear structures are connected by two kinds of hydrogen bonding interactions to form a 1D supramolecular chain, in which the first hydrogen bonding interaction is formed by the oxygen atoms (O(3)) of coordinated water molecules and the carboxylic oxygen atoms (O(1)) of Hpca?anions with the O(3)?H(3C)···O(1) distance of 2.737(5) ?, and the second hydrogen bonding interaction is formed by oxygen atoms (O(3)) and nitrogen atoms (N(2)) of pyrazole rings from Hpca?anions with the N(2)?H(2)···O(3) distance of 2.733(4) ? (Fig. 1b). The coordinated water molecules and carboxylic oxygen atoms (O(2)) of the adjacent supramolecular chains are linked by the O(3)?H(3D)···O(2) (2.687(0) ?) hydrogen bonding interactions to construct a 2D supramo- lecular layer (Fig. 1c). It is noteworthy that there are 1D water chains formed by O(4)?H(4D)···O(4) (2.814(3) ?) hydrogen bonding interactions. The existence of hydrogen-bonding interactions (O(4)? H(4C)···O(2), 2.888(7) ?) between carboxylic oxygen atoms (O(2)) of the 2D supramolecular layers and the 1D water chains which further stabi- lize the whole structure leads to a 3D supramo- lecular structure (Fig. 1d).

    Fig. 1. (a) Coordination environment of the Cu2+ions in 1 (Hydrogen atoms and lattice water molecules are omitted for clarity). (b) 1D supramolecular chain of 1 formed by hydrogen bonds in-axis. (c) 2D supramolecular layer of 1 formed by hydrogen bonds in theplane. (d) 3D supramolecular framework of 1 consisting of 1D water chains

    3. 2 Crystal structure of Cu2(pca)2(H2O)4 (2)

    The single-crystal X-ray data reveal the asym- metric unit of 2 consists of one Cu2+cation, one pca2-anion and two coordination water molecules (Fig. 2a). The Cu2+ion is five-coordinated by one oxygen atom (O(1)) and one nitrogen atom (N(1)) from one pca2-anion, one nitrogen atom (N2) from the other pca2-anion and two coordination water molecules (O(3), O(4) to give the {CuO3N2}tetragonal pyramidal geometry. The bond distances of Cu?O and Cu?N are 1.9684(17)~2.3624(18) and 1.9521(19)~1.9628(19) ?, respectively. The bond angles around Cu2+ion are in the range of 81.98(7)~172.52(8)°. The pca2-anion adopts the monodentate-chelating coordination mode connecting Cu2+ions to generate the dinuclear structure, in which two pyrazole rings from the adjacent pca2-anion are parallel with a dihedral angle of 0o, and the distance of Cu???Cu is 3.9060 ?. Four pyrazole nitrogen atoms and two Cu2+ions almost locate in a plane and construct a six-membered ring. The dinuclear structures are further connected to form a 1D supramolecular chain by the O–H???O hydrogen bonding interactions, which occur between the oxygen atoms (O(3)) from coordination water molecules and the carboxyl oxygen atoms (O(1)) from pca2-anions with the distance of 2.720(2) ? (Fig. 2b). The final 3D supramolecular architecture is formed through O(4)?H(8)···O(3), O(3)?H(6)···O(2) and O(4)? H(7)···O(2) hydrogen bonding interactions between the neighboring 1D supramolecular chains with the distances of 2.729(2), 2.749(2) and 2.736(3) ?, respectively (Fig. 2c).

    Fig. 2. (a) Coordination environment of the Cu2+ions in 2 (Hydrogen atoms are omitted for clarity). (b) 1D supramolecular chain of 2 formed by hydrogen bonds in-axis. (c) 3D supramolecular framework of 2 formed by hydrogen-bonding interactions

    3. 3 PXRD analysis

    The experimental and simulated PXRD patterns of complexes 1and2 are shown in Fig. 3. Their peak positions were in good agreement with each other, indicating the phase purity of complexes 1 and 2.

    3. 4 Thermal stability analysis

    In order to study the thermal stabilities of com- plexes 1 and 2, their TGA were performed. The TGA curves of complexes 1 and 2 are shown in Fig. 4. For 1, the weight loss from room temperature to 105 °C is 19.98% (calculated 20.12%), which corresponds to the loss of lattice water and coordinated water molecules. Then the network began to decompose totally at 410 °C, and the residual is CuO. Complex 2 displayed the first weight loss of 16.69% at the temperature of 90 °C (calculated 17.17%), which was due to the departure of coordinated water molecules, and then it kept stable until 225 °C. When the temperature was above 395 °C, the framework collapsed totally.

    Fig. 3. Powder X-ray diffraction patterns of complexes 1 and 2

    Fig. 4. TGA curves for complexes 1 and 2

    3. 5 Selective oxidation of alkylbenzenes catalyzed by complexes 1 and 2

    The oxidation of C?H bonds of alkylbenzenes, for instance, is a powerful tool to generate high value chemical feedstock from less expensive raw mate- rials such as alkyl aromatics, and great efforts have been made in exploring new catalysts[17]. In this regard, the means to convert benzylic hydrocarbons into valuable compounds have received considerable attention in recent years[18]. Herein, we report the oxidation of alkylbenzenes with TBHP as the oxidant using two copper complexes as catalysts.

    To investigate the effectiveness of complexes 1 and 2 in the oxidation of alkylbenzenes, the oxide- tion of diphenylmethane was first examined as a standard substrate with 70% TBHP inbenzonitrile at 80 oC for 24 h (Scheme 1). The conversion and selectivity of each reaction were summarized and illustrated in Fig. 5. After the preliminary optimiza- tion, we noted that complex 2 was active and more selective for the oxidation of diphenylmethane than other catalysts tested.

    Scheme 1. Oxidation of diphenylmethane to benzophenone with TBHP

    As the excellent performance, complex2was selected to examine the long-term stability in a heterogeneous system. After completion of the oxidation reaction, the catalyst can easily be separa- ted from the reaction mixture by filtration. The recovered catalyst was re-activated by washing with methanol and further reused directly in the subsequent oxidation reactions. The experiment results displayed that after three runs no obvious loss of activity (Conv. 96.2% (1st), 96.0% (2nd), 95.7% (3rd)) was observed (Fig. 5). The PXRD spectra of 2 collected before and after the catalytic reactions indicatedthat the structure was maintained under turnover conditions(Fig. 6).

    Fig. 5. Conversion of diphenylmethane to benzophenone with different catalysts. Reaction condtions: diphenylmethane (0.25 mmol), catalysts (5 mol%), 353 K, TBHP (0.625 mmol), benzonitrile (2 mL), 24 h. a) Blank; b) CuCl2(10 mol%);c) complex 1 (10 mol%); d) complex 2 (5 mol%); e) 1strun; f) 2ndrun; g) 3rdrun

    Fig. 6. PXRD spectra of comlpex 2 after three runs of catalytic cycles

    The mild reaction conditions, excellent stability, and high yield for the transformation of diphenyl- methane to benzophenone prompted us to extend the scope of 2 as heterogeneous catalyst for other benzylic hydrocarbons. As shown in Table 3, complex 2 exhibits excellent catalytic activity for oxidation of diphenylmethane, 9H-xanthenes, fluo- rene and derivates of fluorene to the corresponding aryl ketones with up to 97.6% yield (Table 3, entries 1-5). By comparison with previous reports, we found that 2 outperformed some heterogeneous catalysts, such as polyoxometalates[19], MOFs[20]in the oxidation of diphenylmethane, fluorene and 9H-xanthene (Table 3).

    4 CONCLUSION

    In summary, by controlling the reaction con-ditions, we have synthesized twopyrazole-3-car- boxylic acidcomplexes 1 and 2. The introduction of Cu2+cations make 1 and 2 more stable and can be used as heterogeneous catalysts in the selective oxidation of alkylbenzenes with high catalytic activities. Specifically, complex2 can convert alkylbenzenes to corresponding aromatic ketones efficiently and can be reused by filtration without the loss of its activity. Investigations on the use of these complexes for other potential catalytic reac-tions are in progress.

    Table 3. Results of Selective Oxidation of Benylic Compounds Catalyzed by Complex 2 Using TBHP Oxidant[a]

    [a] Reaction conditions: substrates (0.25 mmol), complex 2 (5 mol%), TBHP (0.625 mmol), benzonitrile (2 mL), 80 oC, 24 h.

    [b] Selectivity to ketones was analyzed by GC using the naphthalene as internal standard.

    The by-products are corresponding alcohols, which were analyzed by GC-MS.

    (1) (a) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Metal azolate frameworks: from crystal engineering to functional materials.2012, 112, 1001-1033; (b) Jiang, X. Y.; Rong, N. X.; Wang, G. D.; Cui, C. S.; Huang, X. Q.An imidazole-functionalized dioxovanadium complex with the highly selective oxidation of sulphides.2017, 36, 429-437.

    (2) (a) Yin, Y.; Tan, Z.; Hu, L.; Yu, S.; Liu, J.; Jiang, G.Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications.2017, 117, 4462-4487; (b) Han, C. B.; Wang, Y. L.; Liu, Q. Y.Crystal structure and magnetic properties of a dinuclear terbium compound Tb2(2-anthc)4(anthc)2(1,10-phen)2.2017, 36, 705-710.

    (3) Paskevicius, M.; Jepsen, L. H.; Schouwink, P.; ?erny, R; Ravnsb?k, D. B.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen T. R.Metal borohydrides and derivatives – synthesis, structure and properties.2017, 46, 1565-1634.

    (4) Zhao, Y.; Li, Z.; Sharma, U. K.; Sharma, N.; Song, G.; Eycken, E. V. V. Copper-catalyzed alkylarylation of activated alkenes using isocyanides as the alkyl source:an efficient radical access to 3,3-dialkylated oxindoles.2016, 52, 6395-6398

    (5) ?ili?, D.; Rakvin, B.; Mili?, D.; Paji?, D.; ?ilovi?, I. Crystal structures and magnetic properties of a set of dihalo-bridged oxalamidato copper(II) dimers.2014, 43, 11877-11887.

    (6) Teong, S. P.; Yu, D.; Sum, Y. N.; Zhang, Y. Copper catalysed alkynylation of tertiary amines with CaC2sp3C–H activation.2016, 18, 3499-3502.

    (7) Tirsoaga, A.; Cojocaru, B.; Teodorescu, C.; Vasiliu, F.; Grecu, M. N.; Ghica, D.; Parvulescu, V. I.; Garcia, H. C–N cross-coupling on supported copper catalysts: the effect of the support, oxidation state, base and solvent.2016, 341, 205-220.

    (8) Niu, M.; Li, Z.; Li, X.; Huang, X.Two chiral alkanolamine Schiff base Cu(II) complexes as potential anticancer agents: synthesis, structure, DNA/protein interactions, and cytotoxic activity.2016, 6, 98171-98179.

    (9) He, J.; Yin, Y. G.; Wu, T.; Li, D.; Huang, X. C. Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks.2006, 2845-2847.

    (10) Fernandes, T. A.; Santos, C. I. M.; Andre?, V.; K?ak, J.; Kirillova, M. V.; Kirillov, A. M. Copper(II) coordination polymers self-assembled from aminoalcohols and pyromellitic acid: highly active precatalysts for the mild water-promoted oxidation of alkanes.2016, 55, 125-135.

    (11) Artetxe, B.; Reinoso, S.; Felices, L. S.; Vitoria, P.; Pache, A.; Martín-Caballero, J.; Gutie?rrez-Zorrilla, J. M. Functionalization of krebs-type polyoxometalates with N,O-chelating ligands: a systematic study.2015, 54, 241-245.

    (12) López-Viserasa, M. E.; Fernández, B.; Hilfiker, S.; González, C. S.; González, J. L.; Calahorro, A. J.; Colacio, E.; Rodríguez-Diéguez, A. In vivo potential antidiabetic activity of a novel zinc coordination compound based on 3-carboxy-pyrazole.2014, 131, 64-67.

    (13) Liu, G. N.; Zhu, W. J.; Chu, Y. N.; Li, C. C. Three10metal coordination compounds based on pyrazole-3-carboxylic acid showing mixed-ligand characteristic: syntheses, crystal structures, and photoluminescent properties.2015, 425, 28-35.

    (14) Sheldrick, G. M.. University of G?ttingen, Germany 1997.

    (15) Brese, N. E.; O’Keeffe, M. Bond-valence parameters for solids.1991, 47, 192-197.

    (16) Li, B.; Zhao, J. W.; Zheng, S. T.; Yang, G. Y. Hydrothermal synthesis and structure of di-copper(II)-complex substituted monovacant polyoxotungstate with a 1D chain structure.2008, 11, 1288-1291.

    (17) Chen, H.; Deng, Y.; Yu, Z.; Zhao, H.; Yao, Q.; Zou, X.; Ba?ckvall, J. E.; Sun, J. 3D Open-framework vanadoborate as a highly effective heterogeneous pre-catalyst for the oxidation of alkylbenzenes.2013, 25, 5031?5036.

    (18) Shi, D.; Ren, Y.; Jiang, H.; Lu, J.; Cheng, X. A new three-dimensional metal-organic framework constructed from 9,10-anthracene dibenzoate and Cd(II) as a highly active heterogeneous catalyst for oxidation of alkylbenzenes.2013, 42, 484-491.

    (19) Yang, X. L.; Xie, M. H.; Zou, C.; He, Y.; Chen, B.; O’Keeffe, M.; Wu, C. D. Porous metalloporphyrinic frameworks constructed from metal 5,10,15,20-tetrakis(3,5-biscarboxylphenyl)porphyrin for highly efficient and selective catalyticoxidation of alkylbenzenes.2012, 134, 10638-10645.

    (20) He,Q. T.; Li, X. P.; Chen, L. F.; Zhang, L.; Wang, W.; Su, C. Y. Nanosized coordination cages incorporating multiple Cu(I) reactive sites: host-guest modulated catalytic activity.2013, 3, 1-9.

    23 May 2017;

    12 October 2017 (CCDC 1055760 for 1 and 1055762 for 2)

    10.14102/j.cnki.0254-5861.2011-1731

    ①This project was supported by the NNSFC (Nos. 21401094 and 21501086), the Project of Shandong Province Higher Educational Science and Technology Program (No. J16LC53), and the College Students' Science and Technology Innovation Fund (No. CXCY2017028 and CXCY2017037)

    ②E-mails: hxq@lcu.edu.cnand yaoqx_666@163.com

    a级毛片免费高清观看在线播放| 精品久久久精品久久久| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费日韩欧美大片 | 人人妻人人添人人爽欧美一区卜| 2018国产大陆天天弄谢| 99久久中文字幕三级久久日本| 99热国产这里只有精品6| 久久免费观看电影| a级毛片在线看网站| 久久久亚洲精品成人影院| 久久免费观看电影| 亚洲精品乱码久久久久久按摩| 你懂的网址亚洲精品在线观看| .国产精品久久| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜添av毛片| 一个人免费看片子| 黄色欧美视频在线观看| 最近最新中文字幕免费大全7| 视频在线观看一区二区三区| 久久99一区二区三区| 日韩av不卡免费在线播放| 久久精品国产自在天天线| 欧美人与性动交α欧美精品济南到 | 欧美精品一区二区大全| 大话2 男鬼变身卡| 男女免费视频国产| 亚洲精品亚洲一区二区| 久久99蜜桃精品久久| 99热国产这里只有精品6| 亚洲国产精品专区欧美| 欧美bdsm另类| 99久久中文字幕三级久久日本| 少妇的逼好多水| av一本久久久久| 黄色怎么调成土黄色| 国产成人免费无遮挡视频| 一区二区三区免费毛片| 久久午夜福利片| 亚洲av免费高清在线观看| 51国产日韩欧美| 韩国高清视频一区二区三区| 妹子高潮喷水视频| 亚洲精品第二区| 飞空精品影院首页| av在线app专区| 秋霞伦理黄片| 免费大片黄手机在线观看| 国产高清不卡午夜福利| 夜夜看夜夜爽夜夜摸| 午夜福利网站1000一区二区三区| 人成视频在线观看免费观看| 男女啪啪激烈高潮av片| 街头女战士在线观看网站| 日韩制服骚丝袜av| 国产男人的电影天堂91| 男女高潮啪啪啪动态图| 青春草亚洲视频在线观看| 中文字幕av电影在线播放| 亚洲色图综合在线观看| 精品卡一卡二卡四卡免费| 老司机亚洲免费影院| 亚洲精品成人av观看孕妇| 国产一级毛片在线| 精品亚洲乱码少妇综合久久| 久久久久久久久久久丰满| 天天影视国产精品| 另类亚洲欧美激情| av有码第一页| 满18在线观看网站| 只有这里有精品99| 天天操日日干夜夜撸| 国产精品无大码| 十分钟在线观看高清视频www| 少妇的逼好多水| xxxhd国产人妻xxx| 在现免费观看毛片| 丰满饥渴人妻一区二区三| 免费黄频网站在线观看国产| 在线观看人妻少妇| 亚洲精华国产精华液的使用体验| 九草在线视频观看| 高清黄色对白视频在线免费看| 日本与韩国留学比较| 日韩大片免费观看网站| 成人18禁高潮啪啪吃奶动态图 | 日韩三级伦理在线观看| 少妇人妻久久综合中文| 黑人高潮一二区| 精品一区二区免费观看| 又粗又硬又长又爽又黄的视频| 国产黄片视频在线免费观看| 日韩欧美精品免费久久| 一区二区三区乱码不卡18| 精品人妻熟女av久视频| 丝袜在线中文字幕| 国产色爽女视频免费观看| 亚洲人成网站在线观看播放| 欧美人与善性xxx| 精品国产一区二区三区久久久樱花| 亚洲精品视频女| 成人国产麻豆网| 又粗又硬又长又爽又黄的视频| 国产一区亚洲一区在线观看| 建设人人有责人人尽责人人享有的| 大片免费播放器 马上看| 性色avwww在线观看| 少妇精品久久久久久久| 精品人妻在线不人妻| 看十八女毛片水多多多| 边亲边吃奶的免费视频| 看非洲黑人一级黄片| 2018国产大陆天天弄谢| 日韩成人av中文字幕在线观看| 最后的刺客免费高清国语| 青春草国产在线视频| 乱码一卡2卡4卡精品| 一个人看视频在线观看www免费| 亚洲欧美一区二区三区黑人 | 欧美xxxx性猛交bbbb| 性色av一级| 精品人妻熟女av久视频| 超碰97精品在线观看| 日韩一区二区三区影片| 午夜福利视频在线观看免费| 亚洲在久久综合| 在线看a的网站| 国产精品国产三级专区第一集| 免费不卡的大黄色大毛片视频在线观看| 欧美性感艳星| 色婷婷久久久亚洲欧美| 欧美日韩亚洲高清精品| 热99久久久久精品小说推荐| 国产高清不卡午夜福利| 制服诱惑二区| 午夜久久久在线观看| 久久韩国三级中文字幕| 狂野欧美激情性bbbbbb| 久久国产精品男人的天堂亚洲 | 成年人免费黄色播放视频| 边亲边吃奶的免费视频| 99热网站在线观看| 人人澡人人妻人| 国产精品熟女久久久久浪| 亚洲av综合色区一区| 精品一区二区三卡| 久久女婷五月综合色啪小说| 在线观看免费日韩欧美大片 | tube8黄色片| www.av在线官网国产| 男的添女的下面高潮视频| 美女国产视频在线观看| 亚洲,一卡二卡三卡| 热re99久久国产66热| 亚洲av综合色区一区| 亚洲精品久久成人aⅴ小说 | 我的女老师完整版在线观看| 青春草亚洲视频在线观看| 亚洲精品日本国产第一区| 伊人久久国产一区二区| 国产精品99久久久久久久久| 大话2 男鬼变身卡| 欧美bdsm另类| 伦理电影免费视频| 国产亚洲精品久久久com| 999精品在线视频| 考比视频在线观看| 99国产综合亚洲精品| 亚洲一区二区三区欧美精品| 只有这里有精品99| 亚洲国产欧美在线一区| 国产成人av激情在线播放 | 欧美97在线视频| av.在线天堂| 七月丁香在线播放| 日韩成人av中文字幕在线观看| 国产精品久久久久久精品电影小说| 另类精品久久| 国产成人午夜福利电影在线观看| 免费观看在线日韩| 日本wwww免费看| 国产精品女同一区二区软件| 国产精品一区www在线观看| 亚洲av在线观看美女高潮| 国产精品99久久久久久久久| 久久久亚洲精品成人影院| 亚洲国产av新网站| 久久ye,这里只有精品| 插阴视频在线观看视频| 999精品在线视频| 欧美变态另类bdsm刘玥| 国产精品一区二区三区四区免费观看| 交换朋友夫妻互换小说| 精品国产一区二区久久| 免费大片18禁| 久久久久国产精品人妻一区二区| 涩涩av久久男人的天堂| 日韩,欧美,国产一区二区三区| 视频在线观看一区二区三区| 色吧在线观看| 免费观看性生交大片5| 99热6这里只有精品| 在线观看一区二区三区激情| 国产精品久久久久久久电影| 久久久久精品久久久久真实原创| 亚洲欧美日韩卡通动漫| 亚洲国产欧美日韩在线播放| 国产精品国产av在线观看| 伊人亚洲综合成人网| 国产一区二区在线观看日韩| a级毛片免费高清观看在线播放| 女性被躁到高潮视频| 国产色爽女视频免费观看| 色网站视频免费| 26uuu在线亚洲综合色| 黄色毛片三级朝国网站| 妹子高潮喷水视频| 麻豆成人av视频| 观看av在线不卡| 免费大片18禁| 久久人人爽人人片av| 一区二区三区乱码不卡18| 国产精品一区www在线观看| av专区在线播放| 纵有疾风起免费观看全集完整版| 亚洲怡红院男人天堂| av天堂久久9| 亚洲欧美一区二区三区国产| 秋霞伦理黄片| 亚洲一区二区三区欧美精品| 丰满乱子伦码专区| 免费观看的影片在线观看| 黑人巨大精品欧美一区二区蜜桃 | 亚洲,欧美,日韩| 亚洲精品亚洲一区二区| 亚州av有码| 日韩免费高清中文字幕av| av线在线观看网站| 看免费成人av毛片| 国产精品一国产av| 国产综合精华液| 人妻系列 视频| 在线播放无遮挡| 久久久久久久精品精品| 美女福利国产在线| 久久久久久久国产电影| 免费看光身美女| 日本午夜av视频| 天美传媒精品一区二区| 韩国av在线不卡| 国产成人一区二区在线| av在线观看视频网站免费| 夫妻午夜视频| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 久久热精品热| 精品一区在线观看国产| 下体分泌物呈黄色| 日韩成人伦理影院| 欧美日韩在线观看h| av国产精品久久久久影院| 国产精品久久久久久久久免| 午夜福利,免费看| 69精品国产乱码久久久| 日日爽夜夜爽网站| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久免费av| 亚洲伊人久久精品综合| 国产成人免费无遮挡视频| 黑人巨大精品欧美一区二区蜜桃 | 黄色一级大片看看| 日本与韩国留学比较| 纯流量卡能插随身wifi吗| 国产欧美亚洲国产| 看非洲黑人一级黄片| 亚洲,一卡二卡三卡| 亚洲国产精品国产精品| 丝袜美足系列| 国产乱来视频区| 久久久欧美国产精品| 国产黄频视频在线观看| 国产亚洲最大av| 久久久精品区二区三区| 精品一品国产午夜福利视频| 一级毛片黄色毛片免费观看视频| 亚洲美女视频黄频| 成人无遮挡网站| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| av又黄又爽大尺度在线免费看| 久久国内精品自在自线图片| 久久久久久人妻| 色94色欧美一区二区| 99热国产这里只有精品6| 亚洲精品av麻豆狂野| 飞空精品影院首页| 精品少妇黑人巨大在线播放| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 99热这里只有是精品在线观看| a级片在线免费高清观看视频| 18在线观看网站| 伦理电影免费视频| 亚洲国产色片| 男女无遮挡免费网站观看| 久久99一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 日本欧美国产在线视频| videos熟女内射| 国产精品久久久久久久电影| 最新中文字幕久久久久| 18禁在线播放成人免费| 色婷婷久久久亚洲欧美| 丁香六月天网| 免费av不卡在线播放| 亚洲美女视频黄频| 久久 成人 亚洲| 丝袜在线中文字幕| 人人妻人人爽人人添夜夜欢视频| 男的添女的下面高潮视频| 久久久久视频综合| 插阴视频在线观看视频| 国产色爽女视频免费观看| 国产熟女欧美一区二区| 亚洲国产av影院在线观看| 久久女婷五月综合色啪小说| 肉色欧美久久久久久久蜜桃| 美女国产视频在线观看| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 久久久久久久久久成人| 3wmmmm亚洲av在线观看| 午夜福利视频精品| 免费黄网站久久成人精品| 看十八女毛片水多多多| 国产极品粉嫩免费观看在线 | 99久久精品国产国产毛片| 午夜视频国产福利| 国产精品成人在线| 亚洲色图综合在线观看| 亚洲欧美色中文字幕在线| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 免费少妇av软件| 这个男人来自地球电影免费观看 | 国产精品久久久久久精品电影小说| 亚洲无线观看免费| 日韩制服骚丝袜av| 老司机影院成人| 欧美激情 高清一区二区三区| 欧美日韩精品成人综合77777| 国模一区二区三区四区视频| 秋霞伦理黄片| 精品国产乱码久久久久久小说| 一本一本综合久久| 日韩一区二区视频免费看| 亚洲色图 男人天堂 中文字幕 | 一区二区av电影网| 老司机影院成人| 99re6热这里在线精品视频| 亚洲av.av天堂| 免费日韩欧美在线观看| 日韩在线高清观看一区二区三区| 婷婷色综合大香蕉| 能在线免费看毛片的网站| 18+在线观看网站| 又大又黄又爽视频免费| 99久久精品国产国产毛片| 赤兔流量卡办理| 日韩伦理黄色片| av电影中文网址| 精品视频人人做人人爽| 婷婷色麻豆天堂久久| 免费观看性生交大片5| 久久久久久人妻| 狠狠婷婷综合久久久久久88av| 亚洲欧洲精品一区二区精品久久久 | 国产精品人妻久久久久久| 亚洲欧洲国产日韩| 一本一本综合久久| 十八禁网站网址无遮挡| 日韩中文字幕视频在线看片| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 亚洲情色 制服丝袜| 久久精品国产a三级三级三级| 中文天堂在线官网| 在线观看国产h片| 亚洲精品一区蜜桃| 中文字幕人妻丝袜制服| 大片电影免费在线观看免费| 一级黄片播放器| 精品人妻熟女毛片av久久网站| av免费在线看不卡| 亚洲高清免费不卡视频| 97在线人人人人妻| 亚洲激情五月婷婷啪啪| 久久韩国三级中文字幕| 日本欧美视频一区| 成人手机av| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| 亚洲精品色激情综合| 天堂俺去俺来也www色官网| 国产白丝娇喘喷水9色精品| 国产片内射在线| 熟妇人妻不卡中文字幕| 精品国产一区二区三区久久久樱花| 在线观看三级黄色| 青春草国产在线视频| 熟女电影av网| 国产黄片视频在线免费观看| 国产高清三级在线| 我的老师免费观看完整版| 制服人妻中文乱码| 欧美成人午夜免费资源| 亚洲人成77777在线视频| 多毛熟女@视频| 国产乱人偷精品视频| 久久99精品国语久久久| 亚洲四区av| 国产精品99久久久久久久久| 亚洲av男天堂| 日本黄色片子视频| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 久久狼人影院| 日韩制服骚丝袜av| 99热6这里只有精品| 国产精品久久久久久久电影| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 日韩av不卡免费在线播放| 免费日韩欧美在线观看| 免费大片黄手机在线观看| 国产精品欧美亚洲77777| 内地一区二区视频在线| 国产精品一国产av| 国产精品一区www在线观看| 波野结衣二区三区在线| 成人漫画全彩无遮挡| 国产成人精品一,二区| 少妇被粗大猛烈的视频| a级毛片黄视频| 欧美最新免费一区二区三区| 在线观看国产h片| 成人综合一区亚洲| 3wmmmm亚洲av在线观看| 少妇熟女欧美另类| 插逼视频在线观看| 亚洲,一卡二卡三卡| 男人添女人高潮全过程视频| 亚洲国产av新网站| 在线免费观看不下载黄p国产| 99视频精品全部免费 在线| 久久国产亚洲av麻豆专区| 91精品一卡2卡3卡4卡| 国产精品国产三级国产av玫瑰| 纯流量卡能插随身wifi吗| av在线观看视频网站免费| 久久久久精品性色| .国产精品久久| 欧美日韩视频高清一区二区三区二| 亚洲丝袜综合中文字幕| 色吧在线观看| 香蕉精品网在线| 最近最新中文字幕免费大全7| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 国产精品成人在线| 日韩,欧美,国产一区二区三区| 22中文网久久字幕| 久久久久久伊人网av| 日韩成人av中文字幕在线观看| 人妻 亚洲 视频| av免费在线看不卡| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 内地一区二区视频在线| 中文欧美无线码| 黄色视频在线播放观看不卡| kizo精华| 国产高清不卡午夜福利| 日韩中字成人| 熟女人妻精品中文字幕| av有码第一页| 成人影院久久| 亚洲av不卡在线观看| 狠狠婷婷综合久久久久久88av| 观看美女的网站| 熟妇人妻不卡中文字幕| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 在线观看免费视频网站a站| 亚洲精品乱久久久久久| 中文字幕免费在线视频6| 18在线观看网站| 91久久精品国产一区二区成人| 伦精品一区二区三区| 丰满乱子伦码专区| 亚洲欧美色中文字幕在线| 又大又黄又爽视频免费| 国产无遮挡羞羞视频在线观看| 男女免费视频国产| 最后的刺客免费高清国语| 黄色一级大片看看| 男女高潮啪啪啪动态图| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 亚洲国产最新在线播放| 色5月婷婷丁香| 一级毛片电影观看| 国产免费又黄又爽又色| 亚州av有码| 乱人伦中国视频| 99热国产这里只有精品6| 欧美成人精品欧美一级黄| 一级,二级,三级黄色视频| 日韩亚洲欧美综合| 制服丝袜香蕉在线| 插阴视频在线观看视频| 亚洲人成77777在线视频| av卡一久久| videosex国产| 91精品国产国语对白视频| 伊人久久精品亚洲午夜| 多毛熟女@视频| 在线观看一区二区三区激情| 日韩大片免费观看网站| 精品亚洲成国产av| 十分钟在线观看高清视频www| 国产乱人偷精品视频| 一区二区av电影网| 欧美日韩亚洲高清精品| av福利片在线| 亚洲成人一二三区av| 在线观看免费日韩欧美大片 | 亚洲人成77777在线视频| 在线观看国产h片| 熟女av电影| 最近中文字幕高清免费大全6| 欧美日本中文国产一区发布| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 久久综合国产亚洲精品| 26uuu在线亚洲综合色| 成人二区视频| 亚洲精品乱码久久久久久按摩| 国产精品一区www在线观看| 亚洲av国产av综合av卡| 一边摸一边做爽爽视频免费| 只有这里有精品99| 亚洲av综合色区一区| 亚洲精品aⅴ在线观看| 99re6热这里在线精品视频| 天美传媒精品一区二区| 久热这里只有精品99| 777米奇影视久久| 91成人精品电影| 日韩三级伦理在线观看| 日本91视频免费播放| 国产成人免费观看mmmm| 国产精品麻豆人妻色哟哟久久| 国产一区亚洲一区在线观看| 欧美一级a爱片免费观看看| 日韩av免费高清视频| av专区在线播放| 国产片内射在线| 在线播放无遮挡| 丰满迷人的少妇在线观看| 人妻 亚洲 视频| 丰满迷人的少妇在线观看| 国产一区二区三区综合在线观看 | 久久久午夜欧美精品| 久久人人爽人人片av| 国产一区二区三区av在线| 三上悠亚av全集在线观看| 亚洲怡红院男人天堂| 久久久国产欧美日韩av| 日韩中文字幕视频在线看片| 精品视频人人做人人爽| 亚洲内射少妇av| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 日韩成人伦理影院| 日本av手机在线免费观看| 岛国毛片在线播放| 亚洲成人手机| 国产av精品麻豆| 一区二区三区乱码不卡18| 国产成人精品久久久久久| av电影中文网址| 成年美女黄网站色视频大全免费 | 夜夜看夜夜爽夜夜摸| 久久国内精品自在自线图片| 两个人的视频大全免费| 狂野欧美白嫩少妇大欣赏| 国产精品一国产av| 自线自在国产av| 各种免费的搞黄视频| 日韩欧美一区视频在线观看| 狂野欧美激情性xxxx在线观看| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 国产男女超爽视频在线观看| 日韩亚洲欧美综合| 亚洲精品视频女| 亚洲国产欧美日韩在线播放| 99热网站在线观看| av专区在线播放|