• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    2018-03-12 05:00:39YANGJieLIUXiangRongYUEWuSiYANGZaiWenZHAOShunShengYANGZheng
    結(jié)構(gòu)化學 2018年2期
    關(guān)鍵詞:契機數(shù)學教師習題

    YANG Jie LIU Xiang-Rong YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    ?

    Crystal Structures, Thermal Behaviors and Biological Activities of Acylhydrazone Compounds Containing Pyrazine Rings and Halogen Atoms①

    YANG Jie LIU Xiang-Rong②YUE Wu-Si YANG Zai-Wen ZHAO Shun-Sheng YANG Zheng

    (710054)

    acylhydrazone, crystal structure, CT-DNA/BSA,antibacterial activities, anticancer;

    1 INTRODUCTION

    Acylhydrazones are special Schiff base including -CONHN=CH- and have been widely used in medi- cine and pesticide fields[1-3]. The nitrogen and oxygen donor atoms in acylhydrazone make it easily form hydrogen bonds resulting in the inhibi- tion of many physiological chemical processes in organism[4-6]. Moreover, acylhydrazones often serve as ligand to create novel metal organic complexes which possess more attractive structures and outstanding bioactivity[7, 8].

    The synthesis of acylhydrazones is usually through the condensation reaction of hydrazine with aldehyde or ketone, so it is more flexible and has imaginary space to construct required acylhydra- zone molecules by not only selecting different hydrazine and aldehyde or ketone, but also depen-ding on the superposition effects of the two above groups.

    We intend to design a new kind of acylhydrazone compounds possessing higher bioactivities by combining the pyrazine rings and halogen atoms, because pyrazine has excellent antitumor, antibac- terial and antituberculous activities[9-12]. Further- more, the halogen atoms in molecules can enhance the bioactivities obviously[13-15].

    In this work, three acylhydrazone compounds were synthesized and their single crystals were all obtained. Among them, 1 and 3 arenovel com- pounds, while 2 was synthesized by Barbar Mil- czarska[16]but its single crystal structure has not been reported. The single-crystal structures of the three hydrazones were characterized by elemental analyses and single-crystal X-ray diffraction (XRD), and their thermal stabilities were studied by thermogravimetry.

    The interactions of the three compounds with calf thymus DNA (CT-DNA) were investigated by several methods like UV-Vis spectrum, fluores- cence spectrum and viscosity measurement.The interactions of three compounds and bovine serum albumin (BSA) were explored by fluorescence spectra. The antibacterial activities were tested against,and. And anticancer activities were also evaluated against human lung cancer cells A549 by MTT experiment. Synthetic routes of the three compounds are shown in Scheme 1.

    Scheme 1. Synthetic routes of the three compounds

    2 EXPERIMENTAL

    2. 1 Materials and instruments

    Hydrazine hydrate (80%), acetic acid, ethanol, 4-fluorobenzaldehyde, 4-chlorobenzaldehyde, 4- bromobenzaldehyde, methylene blue,thiazole blue and 2-amino-3-pyrazine-carboxylate were all of analytical grade and used without further purify- cation. CT-DNA was biological reagent and pur- chased from American Sigma Company. BSA was purchased from J&K Scientific LTD.,andwere obtained from China General Microbiological Cul- ture Collection Center.

    The melting points were measured on XT4-100B melting point apparatus (China). Elemental analyses (C, H, and N) were performed on a PE 2400-II elemental analyzer (America). Infrared spectra were recorded on a Bruker Tensor-II Fourier infrared spectrometer (Germany). Crystal structures were determined on a Bruker Apex-Ⅱ CCD diffract- tometer (Germany).1H NMR spectra were obtained on a Bruker Avance-400 MHz NMR spectrometer (Switzerland). UV-Vis absorption spectra were recorded on a TU-1900 ultraviolet visible spectro- photometer (China). Thermal decomposition pro- cesses were measured on a Mettler Toledo TG- DSC1 HT thermogravimetric analyzer (Swiss). Fluorescence spectra were recorded on a Perkin Elmer LS55 spectrofluorometer. Optical densities were measured using BAJIU SAF-680T microplate reader (China).

    2. 2 Syntheses of 1~3

    2. 2. 1 Synthesis of 2-amino-3-pyrazine-carbohydrazide(C5H7N5O)

    A solution of methyl 2-amino-3-pyrazine-car- boxylate (2 mmol, 0.3063 g) in ethanol (15 mL) was added to 80% hydrazine hydrate (5 mL). The mixture was placed in a thermostat water bath and heated at 80 ℃to reflux under stirring for 4~5 h,then slowly cooled to room temperature over 48 h. Yellow needle crystals were obtained,then filtered, washed with cold ethanol and dried.

    2. 2. 2 Syntheses of compounds 1~3

    Synthesis of 4-fluorobenzaldehyde-2-amino-3- pyrazine hydrazone (1): 2-amino-3-pyrazine- carbo- hydrazide (0.3 mmol, 0.0459 g) and 4-fluorobenzal- dehyde (0.3 mmol, 32 μL) were dissolved in ethanol. The mixture was placed in a thermostat water bath and heated at 80 ℃ to reflux under stirring for 4 h. Then the resultant solution of 4-fluorobenzalde- hyde-2-amino-3-pyrazine hydrazone (1) was fil- tered and the product recrystallized from etha- nol/acetic acid (v(ethanol):v(acetic) = 4:1, 20.0 mL). After 3 days, bright yellow flaky crystals suitable for X-ray crystallographic analysis were obtained. 4-chlorobenzaldehyde-2-amino-3-pyrazine hydra- zone (2) and 4-bromobenzaldehyde-2-amino-3-py- razine hydrazone (3) were synthesized as the same method.

    Compound 1: Yield: 70.38%. m.p. 198.48~198.68 ℃.Anal. Calcd. for C12H10FN5O·H2O (1, %): C, 55.55; H, 3.857; N, 27.00. Found (%): C, 52.98; H, 4.076; N, 24.00.IR (KBr, cm-1): 3260 (N–H), 3150 (N–H), 1680 (C=O), 1500 (C=N), 835 (C–F).1H NMR (400 MHz, DMSO-6): 12.09 (s, 1H, NH), 8.61 (s, 1H, CH), 8.30 (d,= 2.3 Hz, 1H, pyrazine-H), 7.91 (d,= 2.3 Hz, 1H, pyrazine-H), 7.82~7.72 (m, 2H, Ar–H), 7.64 (s, 2H, NH2), 7.37~7.26 (m, 2H, Ar–H).

    Compound 2: Yield: 74.24%. m.p. 261.78~262.08 ℃. Anal. Calcd. for C12H10ClN5O·2CH3COOH (2, %): C, 52.23; H, 3.627; N, 21.86. Found (%): C, 52.53; H, 3.564; N, 23.47. IR (KBr, cm-1): 3256 (N–H), 3146 (N–H), 1674 (C=O), 1514 (C=N), 556 (C–Cl);1H NMR (400 MHz, DMSO-d6): 12.14 (s, 1H, NH), 8.60 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.77~7.68 (m, 2H, Ar-H), 7.63 (s, 2H, NH2), 7.57~7.49 (m, 2H, Ar-H).

    Compound 3: Yield: 76.56%. m.p. 272.14~272.44 ℃. Anal. Calcd. for C12H10BrN5O (3, %): C, 44.98; H, 3.123; N, 21.86. Found (%): C, 45.27; H, 3.088; N, 20.62. IR (KBr, cm–1): 3256 (N–H), 3148 (N–H), 1673 (C=O), 1511 (C=N), 573 (C–Br).1H NMR (400 MHz, DMSO-d6): 12.15 (s, 1H, NH), 8.58 (s, 1H, CH), 8.29 (d,= 2.3 Hz, 1H, pyrazine-H), 7.90 (d,= 2.3 Hz, 1H, pyrazine-H), 7.71~7.61 (m, 6H, 4×Ar–H, 2×NH2).

    2. 3 Crystal structure determination

    Three kinds of single crystals with dimensions of 0.35 × 0.28 × 0.23 mm3(1), 0.37 × 0.28 × 0.14 mm3(2) and 0.31 × 0.23 × 0.15 mm3(3) were put on a Bruker ApexⅡCCD diffractometer with a graphite- monochromatic Moradiation (= 0.71073 ?) at room temperature by using anscan mode. Absorption corrections were applied with the program SADABS[17]. The crystal structure was solved by direct methods using SHELXS-97 pro- gram[18]. Non-hydrogen atoms were refined by full-matrix least-squares using SHELXL-97 and the hydrogen atoms were placed in the calculated positions.

    2. 4 Thermogravimetric experiments

    5~10 mg compound was placed in the N2atmos- phere and the thermogravimetric experiment was carried out for each compound from room tempera- ture to 800 ℃ at heating rates of 5, 10 and 15.00 ℃·min-1, respectively.

    2. 5 Interactions of compounds with CT-DNA

    2. 5. 1 UV-Vis absorption spectra[19]

    The compounds were dissolved in tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution with con- centration of 1 × 10-5mol·L-1. 3.0 mLcompound solution was added into a cuvette and tris-HCl buffer solution was the reference solution. And 50 μL CT-DNA solution (100.0 mg·L-1) was then gradually added into the compound solution 5 times at 1 minute intervals by using micro inject- tor. The UV absorption spectrum was determined in the wavelength range of 250~500 nm.

    2. 5. 2 Fluorescence spectra[20]

    CT-DNA solution (100.0 mg·L-1) was mixed with methylene-blue liquid (1 × 103mol·L-1) and the concentration ratio of CT-DNA solution to methylene blue liquor was 10:1. Then 3.0 mL mixture was added into a cuvette. 50 μL compounds solution (1 × 10-5mol·L-1) were added into the cuvette 5 times at 1 minute interval by using micro injector. The fluorescence spectra were recorded at an excitation wavelength of 630 nm and cover a wavelength range of 650~900 nm. The widths of entrance and exit slits were 5 nm.

    2. 5. 3 Viscosity measurements[21]

    The viscosity measurements were carried out on an Ubbelodhe viscometer immersed in a thermostat water bath at 25 ℃. 10 mL Tris-HCl (0.01 mol·L-1pH = 7.90) buffer solution was added into the Ubbelodhe viscometer. The flow time0was measured by a digital stopwatch. Then CT-DNA concentration remained unchanged (10 mL 1.88 × 10-4mol·L-1) and the compound solutions (1.88 × 10-3mol·L-1) were gradually and continuously added into the CT-DNA for 6 times with an interval to be 30 min. Each sample was measured three times, and the average flow time was calculated. Relative viscosities were calculated from the following formula:

    where0is the viscosity of CT-DNA alone andis the viscosity of mixed solution of compounds and CT-DNA. Data are presented as (/0)1/3versus(compound)/(CT-DNA).

    2. 6 Interactions of compounds with BSA[22]

    BSA was dissolved in Tris-NaCl (0.01 mol·L-1, pH = 7.20) buffer solution with concentration of 110-7mol·L-1. Then 3.0 mL solution was added into a cuvette. 30 μL compound solution (1 × 10-5mol·L-1) was added into the cuvette 6 times at 1 minute interval by using microinjector. The fluorescence spectra were recorded at an excitation wavelength of 280 nm over a wavelength range of 300~540 nm.The widths of entrance and exit slits were 5 nm.

    2. 7 Antibacterial activity

    Antibacterial activities of compounds were tested by microplate reader method[23]. Three strains were inoculated into 5 mL of Luria-Bertani (LB) medium at 37 ℃ for 3.5 h. Compound solutions were prepared with LB medium and diluted into various concentrations. Then 5 μL bacterial suspen- sions with concentration of 105colony forming units per mL were added into 5 mL compound solution. 250 μL mixture was put into a sterile 96-well plate. After 6 h incubation, optical densities (OD) were measured by microplate reader at 630 nm and inhibition rates were calculated as:

    Inhibition rate = (1–ODsample/ODcontrol) × 100% (2)

    And IC50was calculated by PASW Statistics software.

    2. 8 Cytotoxic activity[24]

    Cytotoxicities of compounds 1~3 against human lung cancer cells (A549) were determined by using the MTT (3-(4,5-dimethylthiazol-2yl)-2,5-diphe- nyl-tetrazolium bromide) assay. The logarithmic growth phase cells were plated in 96-well plate and incubated at 37 ℃ for 24 h to allow cell attachment. Then the A549 cells were treated with three compounds separately at the concentration of 0, 10, 20, 30, 40, 50 and 100 uM for 24 h, and then 90 uL of culture medium and 10 uL of MTT solution (5 mg/mL in PBS) were added to each well. After 4 h incubation, the medium was discarded and 100 uL of DMSO was added to each well for dissolving the formazan crystals. OD was also measured by a microplate reader at 570 nm and inhibition rates were calculated by formula (2).

    3 RESULTS AND DISCUSSION

    3. 1 Crystal structure

    Fig. 1. Crystal structure of 1(Probability of ellipsoid is 30%)

    Fig. 2. Crystal packing structure of 1

    Fig. 3. Crystal packing structure of 2

    Fig. 4. Crystal packing structure of 3

    Table 1. Crystallographic Data for 1~3

    Table 2. Selected Bond Distances (?) and Bond Angles (o) for 1~3

    Table 3. Hydrogen Bond Distances (?) and Bond Angles (°) for 1~3

    Symmetry codes: for 1 (a)1,,; (b)1,,;(c)–+2, –+1, –+1; for 2 (a),– 1,

    ; (b),+ 1,; (c) –+ 1, –+ 1, –+ 1; (d)– 1,,; for 3 (a) –, –+ 1, –+ 2

    Table 4. Selected π-π Stacking Interactions of Compounds 2 and 3

    As seen in Fig. 1 and Table 2,the dihedral angle of pyrazine and benzene rings in compound 1 is 8.18°, which indicates the two rings are not in the same plane. The torsion angles of C(8)–C(7)– C(6)–N(5) and C(12)–C(7)–C(6)–N(5) are 57.9(4)° and –174.3(2)°, also illustrating that C(6)–N(5) is obviously deviated from the benzene ring. The bond length of C(6)–N(5) (1.227(2) ?) is shorter than N(4)–C(5) (1.347(2) ?), attributed to a C=N double bond existing between C(6)–N(5)[25]. The C(5)– O(1) bond distance is 1.227(2) ?, which is the typical C=O double bond[26]. As shown in Fig. 2, there are three kinds of hydrogen bonds in 1: N–H···N, O–H···O and N–H···O.Through the hydrogen bonds between intermolecules, the 1D chains are further linked into a 2D network which stabilizes the structure.Hydrogen bond distances and anglesare given inTable 3.

    The dihedral angles of pyrazine and benzene rings in compounds 2 and 3 are 1.47° and 4.69°. Thus compound 2 shows better coplanarity among 1~3.Moreover, interchain-stacking interac- tions are founded between the pyrazine and benzene rings in the crystals of 2 and 3. The parameters of-stacking interactions are shown in Table 4.-stacking interactions and hydrogen bonds extend the structure of compounds 2 and 3 into 1D double-chain structures. All the three compounds exist in a keto form.

    3. 2 Thermal stabilities

    The TG-DTG curve of compound 1is shown in Fig. 5. The TG curves at the heating rates of 10.00 and 15.00 ℃·min–1are similar to that of the 5.00 ℃·min–1. FromFig. 5, the thermal decom- position temperature of maximum weight loss for 1 is 282 °C at theheating rate of 5.00 °C·min–1. And the decomposition temperature of compounds 2 and 3 is alsomore than 280 ℃, showing that the three compounds possess good thermal stabilities. The thermal decomposition of 1can be divided into two stages and the weight loss percentage of the first stage is 5.01%, which might be the loss of water molecules. The mass loss of the second stage is 60.89%, which is assigned to the bond breaking of C(4)–C(5) (calcd. 63.71%). Compound 2 undergoes just one stage of decomposition and the temperature ofendothermic peak is 283 ℃. The weight loss at this stage is 69.47%, corresponding to the bond breaking of C(1)–N(3) and C(4)–C(5) (calcd. 71.64%). The decomposition process of compound 3 is also one stage with mass loss of 43.09% which is attributed to the bond breaking of N(4)–N(5) and C(10)–Br(calcd. 67.75%).

    小學數(shù)學教師應當意識到學習評價的重要性,通過對評價環(huán)節(jié)的科學設置,將讓學生獲得數(shù)學思維發(fā)展的契機,同時亦可以讓數(shù)學教師獲取學生的學習情況反饋。具體而言,小學數(shù)學教師應當利用多媒體技術(shù)將班級學生所完成的計算習題進行課上展示,并組織班級學生共同進行查錯和改正,如此便達成了帶領(lǐng)學生共同進行學習評價的目的,這樣將讓整體的數(shù)學課堂教學效果更為理想。

    Fig. 5. TG-DTG curves of compound1

    The kinetic parameters of decomposition pro- cesses for three compounds are calculated by Kis- singer (3) and Ozawa (4) equations[27]:

    wherepis the maximum temperature of endo- thermic peak,the pre-exponential factor,athe apparent activation energy,the gas constant,the heating rate, and() the integral mechanism function.The calculation results are shown in Table 5.

    Table 5. Kinetic Parameters of Thermal Decomposition for Three Compounds

    3. 3 Interactions of compounds with CT-DNA

    3. 3. 1 UV–Vis absorption spectra

    UV-Vis absorption spectra are often used to study the interactions of compounds with CT-DNA.Fig.6 shows the absorption spectra of compound1 interaction with CT-DNA. With increasing the concentration of CT-DNA, the absorbance of 1 decreases. The absorption band of 1 exhibits hypochromism at 294 and 365 nm. For 2 and 3, the hypochromisms are observed at 299, 367 nm and 301, 366 nm.It can be inferred that all the com- pounds could bind with CT-DNA through intercala- tion. Generally, hypochromic effect is the spectral feature of intercalative binding mode. Because the* orbital of the intercalated compound could couplewith theorbital of CT-DNA base pairs after the compound inserts into CT-DNA, the coupling* orbital ispartially filled by electrons, which makes the transitionpossibilities decrease[28, 29].

    The binding constants (b) of three compounds with CT-DNA are calculated by using the following function equation (5)[30]:

    whereDNAis the concentration of CT-DNA,a,bandfthe molar extinction coefficient of compound that is apparent, free and fully bonding with CT– DNA.

    The plots ofDNA/(a–f) versusDNAare pre- sented as inset in Fig. 6 and theb-of three com- pounds are determined by the ratio of slope to intercept.b-is shown in Table 6 and follows the order of 2 >1 >3. Thebvalues of three compounds are larger than that of classical DNA intercalator such as ethidium bromide (b-= 3.3 × 105L·mol–1)[31]. Therefore, three compounds have strong binding abilities to the CT-DNA and 2 binds more effectively to CT-DNA than 1 and 3.

    Table 6. Parameters of Interaction with CT-DNA Obtained from UV-Vis Spectra for 1~3 with CT-DNA

    Fig. 6. UV-Vis spectra of the interaction of 1 with CT-DNA (Inset:the plot ofDNA/(a-f) againstDNA)

    3. 3. 2 Fluorescence spectra

    The interaction between small molecules and CT-DNA is often studied by fluorescence probe[32]. In this paper, the competitive binding experiment has been carried out using methylene-blue (MB) as a probe. MB has strong intrinsic fluorescence and could insert into the base pair of CT-DNA by hydrophobic interactions and-interactions when the concentration ratio of CT-DNA to MB is more than 6[33]. The interaction of MB with CT-DNA results in a decrease in the fluorescence intensity. After adding compounds into the solution, the compound could displace the MB from CT-DNA causing the fluorescence intensity increase.

    Fig. 7 shows the fluorescence spectra of the CT-DNA-MB system of 1. The emission intensities of the CT-DNA-MB system increase as the concentration of the three compounds increase, which indicates that three compounds react with CT-DNA by intercalation effect[20].

    Fig. 7. Fluorescence spectra of the interaction of 1 with CT-DNA-MB

    3. 3. 3 Viscosity measurements

    Viscositymeasurement is usually considered as one of the most accurate and effective methods to study the interaction between small molecule compounds and DNA[34]. In classical intercalation,the viscosity of CT-DNA solution increases because DNA base pairs were separated to accommodate the bound ligand, which results in DNA helix leng- thens. Instead, partial non-classical intercalation of compounds could bend or kink the DNA helix, resulting in the decrease of DNA length as well as the viscosity. And in groove binding or electrostatic mode, the viscosity of the DNA solution does not change significantly[35, 36].

    According to our experiment, as illustrated in Fig. 8, the relative viscosities of CT-DNA increase continuously with the addition of compounds. The results show that three compounds interact with CT-DNA by intercalation and2 exhibits the strongest biological activity, which is consistent with UV-Vis absorption spectra.

    Fig. 8. Plots of (/0)1/3versus(compound)/(CT-DNA)

    Fig. 9. Fluorescence spectra of the interaction of 1 with BSA (Inset: Stern-Volmer plot: F/)1~7,VOL= 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6M

    3. 4 The interactions of compounds with BSA

    Bovine serum proteins (BSA) emit strong endo- genous fluorescence due to the tyrosine, tryptophan and phenylalanine[37]. The effect of 1 on BSA is shown in Fig. 9, which is the same with 2 and 3. Along with the addition of three compounds, the endogenous fluorescence of BSA is quenched regularly, suggesting that 1~3 caninteract with BSA.

    Fluorescence quenching is divided into two types: dynamic quenching and static quenching[38]. Assuming three compounds quenched the fluore- scence of BSA through a dynamic process. Fluore- scence quenching is described by Stern-Volmer formular[39]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,qthe quenching rate constant and 2.0 × 1010the highest limit for dynamic quenching[40],0the average life of BSA without the quencher, at approximately 10–8s–1. [] is the concentration of compound andsvthe Stern-Volmer dynamic quenching constant,svandqwere obtained from the plots of/0versus [] (as insets in Fig. 9) and presented in Table 7.

    Table 7. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    As seen from Table 7, all the threeqvalues are more than the maximum dynamic fluorescence quenching rate constant (2.0 × 1010)[40]. Therefore, the assumption of dynamic quenching is not true. The quenching mechanisms of 1~3 with BSA are static quenching process with non fluorescence complex formed between compounds and BSA.

    For the static quenching process, the binding constants and the number of binding sites can be calculated from formula 7[41]:

    where0andare the fluorescence intensities of BSA in the absence and presence of the compounds,Athe binding constant,the number of binding site and [] the concentration of three compounds.Aandwere obtained from the plots of lg[(0–)/] versus lg[] (Fig. 10) and presented in Table 8.

    Table 8. Parameters of Interaction with BSA Obtained from Fluorescence Spectra for 1~3 with BSA

    Fig. 10. Plots of lg[(F–)/] versus lg[]

    The results show that the number of binding sites is less than one, so three kinds of compounds are partially bound to BSA. The binding constants are all in 104~105L·mol–1and decreased in the order of 2>3>1, revealing strong interaction between BSA and the three compounds[42]. Compound 2 exhibits superior binding ability. As shown above, compound 2 possesses better coplanarity than 1 and3,which makes it easily insert into the DNA base pairs or BSA[43].

    3. 5 Antimicrobial activity

    The antimicrobial activities of three compounds were determined against,and. The results are shown in Table 9, indicating that all the three compounds show an appreciable activity against. Compound 2 with IC50values of 7.75 μmol·L–1exhibited the highest activity among the three compounds. It is also noted that compound 2 is more effective against. Compounds 1~3 show less activity against. Generally, 1 exhibits better activities against bacteria than 2 and 3, which is the same order with the interaction of compounds with DNA and BSA.

    Table 9. IC50 of Compounds 1~3 against the Tested Bacteria

    3. 6 Cytotoxic activity

    Compounds were screened against human lung cancer cells A549 by using MTT assay. As shown in Fig. 11, compound 1 displays better inhibitory activities against the human cancer cell lines with IC50values of 72.16 μmol·L–1in comparison to other tested compounds. The IC50values of 2 and 3 against cells A549 were 428.03 and 424.33 μmol·L–1, respectively. It has been reported in other literatures that the introduction of fluorine atom in phenyl ring could result in a higher anticancer activity. The fluorine atom as substituent can enhance the liposolubility of the compound, which is beneficial for compound molecules to go through the biomembranes[44]. The IC50value of 1 againstA549 iscomparable to that of the standard drug Etoposide (33.13 μmol·L–1)[45].

    Fig. 11. Inhibition effects of three compounds on cell A549

    4 CONCLUSION

    (1) Lu, W. G.; Liu, H. W. Synthesis and crystal structure of a copper(II) complex with 2,4-dihydroxybenzylidene benzoylhydrazone ligand.2005, 24, 1078–1082.

    (2) Ni, Z. J.; Xue, S. J.; Wang, J.; Meng, W.Synthesis and anti-leukemia activity of 1-substituted piperidin-4-one arylformylhydrazones.2011, 31, 222–226.

    (3) Xiong, Q. Z.; Liu, J. H.; Lin, X. F.; Bao, X. P.Synthesis and bioactivities of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives containing 1,2,4-triazole-5-thione Schiff base unit.2012, 32, 1951–1957.

    (4) Bao, X. P.; Xiong, Q. Z.; Zou, L. B.; Zang, F.; Liu, Y.; Jian, J. Y. Synthesis and fungicidal activities of 2-benzyithio-5-methyl-1,2,4-triazolo [1,5-a]pyrimidine-7-oxoacetohydrazone derivatives.. 2013, 01, 53–57.

    (5) Shang, H. J.; Gao, L. Z.; Xie, Y. S.; Yan, Q.; Wu, S. M.; Ni, L. L.; Huang, W. L.; Xie, S. Q.; Hu, G. Q.Synthesis and antitumor activity of N-methyl ciprofloxacin acylhydrazone..2015, 05, 597–601.

    (6) Nath, M.; Saini, P. K. Chemistry and applications of organotin(IV) complexes of Schiff bases.. 2011, 40, 7077–7121.

    (7) Wang, D. B.; Chen, B. H.; Ma, Y. X.Aroyl hydrazones containing triazole and their divalent nickel complexes.1997, 27, 479–486.

    (8) Li, K.; Li, S. J.; Yao, X. J.; Niu, J. J.; Qiu, X. Y. Synthesis, crystal structures and antimicrobial activity of vanadium(V) complexes with similar tridentate hydrazone ligands.2015, 34, 885–893.

    (9) Wei, S. P.; Zhang, H.; Xu, X. B.; Yang, Y. Y.Natural existed pyrazine derivants and their application to flavors.. 2000,6, 25–31.

    (10) Li, Y. F.; Jin, L. Q.; Liu, Z. Q.; Zheng, Y. G.The research progress on pyrazinamide.. 2010, 04, 307–312.

    (11) Zhu, H. L.; Wang, X. L.; Tang, J. F.; Hu, Y.; Yang, Y. S.; Zhang, Y. B.; Zhang, F.103373992A 2013–10–30.

    (12) Zhu, H. L.; Wang, X. L.; Zhang, F.; Zhang, Y. B.; Yang, Y. S.; Tang, J. F..103373988A, 2013–10–30.

    (13) Xu, Z. P.; Shao, X. S.The unique position of halogen substituents in modern pesticide design.2011, 01, 12–19+38.

    (14) Zhang, M.Synthesis and antibacterial activities research of C–N bridged-hydroxy diphenyl compounds.2008.

    (15) Wang, Y. Studies on the synthesis, crystal structure biological activity of first-row transition metal complexes with 3,5-dichlorosalicylaldehyde.2009.

    (16) Milczarska, B.; Gobis, K.; Foks, H.; Golunski, L.; Sowinski, P.The Synthesis of 3-amino-pyrazine-2-carbohydrazide and 3-amino-N′-methylpyrazine-2-carbohydrazide derivatives.2012, 49, 845–850.

    (17) Sheldrick, G. M.. University of G?ttingen, Germany 1996.

    (18) Sheldrick, G. M.University of G?ttingen, Germany 1997.

    (19) Liu, X. R.; Sun, X. C.; Yang, Z. W.; Zhao, S. S.; Yang, S. L.; Yan, S.2-furancarbaldehyde-4-hydroxy-benzoylhydrazone and its Cu(Ⅱ) complex: crystal structures and binding ability with CT-DNA.2016, 02, 250–258.

    (20) Zhang, H. Y. The spectroscopy study on the interaction of the three drugs and BSA/ct–DNA.2014.

    (21) Guo, Q.; Li, L. Z.; Dong, J. F.; Liu, H. Y.; Xue, Z. C.; Xu, T.Synthesis, crystal structure and interactions with DNA and BSA of an oxovanadium(IV) complex [VO(-Van-Asn)(Phen)]·1.5CH3OH.2012, 15, 1617–1624.

    (22) Sathyadevi, P.; Krishnamoorthy, P.; Bhuvanesh, N. S. P.Organometallic ruthenium(II) complexes: synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity.2012, 55, 420–431.

    (23) Zhou, Z. X.; Huang, Q. H.; Zhu, S.; Zhou, L. Establishment of rapid determining method for antibacterial activity by microplate reader.2014, 3, 29–35.

    (24) Zhang, Q.; Wang, Q.; Chen, Z. S. In vitro antibacterium and antitumor activities of sesquiterpenes compound from cremanthodium discoideum Msxim.2002, 18, 597–598.

    (25) Yai, Z. W.; Ding, Z. C.; Liu, X. R.; Zhao, S. S.; Zhang, R. L.; Yang, S. L.Crystal structures and thermochemical properties of phenyl-acetic acid furan-2-ylmethylene-hydrazide and its Ni(Ⅱ) complex.2015, 08, 1520–1528.

    (26) Wei, Z. B.; Wang, J. C.; Jiang, X.; Li, Y. Q.; Chen, G. H.; Xie, Q. F.Experimental and DFT studies of pyridine-4-carboxylic acid (2,4-dihydroxy-phenylethylidene)-hydrazide Schiff base: synthesis, crystal structure, properties and quantum chemistry calculation.2015,09, 1014–1021.

    (27) Hu, R. Z.; Gao, S. L.; Zhao, F. Q.. Beijing 2008, 79–120.

    (28) Jian, Y.; Li, G.; Yang, P.; Deng, T.; Zhou, X.; Xu, H. Y.Syntheses, spectral properties of novel carbazole derivatives and evaluations of its Ct–DNA interaction.2014, 34, 809–816.

    (29) Wei, Q.; Dong, J. F.; Li, W. B.; Zhao, P. R.; Ding, F. F.; Li, L. Z.Syntheses, crystal structures, DNA interactions and SOD activities of two nickel(H) complexes with L-histidine Schiff Base.2016, 05, 789–798.

    (30) Yan, H.; Yang, L.; Chang, G. L.; Li, X.; Niu, M. J. DNA interaction and cytotoxic activity of a chiral amino-alcohol Schiff base derived Cu(Ⅱ) complex.2016, 35, 465–471.

    (31) Stothkamp, R. E. J. Fluorescence measurements of ethidium binding to DNA.1993,71, 77–79.

    (32) Luan, J. M.; Zhang, X. D. Advances of fluorimetric determination of DNA.2007, 43, 241–245.

    (33) Hu, Z.Analysis of DNA by the fluorescence probe of methylene blue and its application in the study of the interactions between heavy metals and paraquat with DNA2006.

    (34) Kashanian, S.; Dolatabadi, J. E. N.In vitro studies on calf thymus DNA interaction and 2-tert-butyl-4-methylphenol food additive.2010, 230, 821–825.

    (35) Kumar, A. K.; Reddy, K. L.; Satyanarayana, S.Study of the interaction between ruthenium(II) complexes and CT-DNA: synthesis, characterisation, photocleavage and antimicrobial activity studies.. 2010, 22, 629–643.

    (36) Chen, J. X.; Tian, Y.; Xiang, Q. X.; Zhang, L. Q.; Xiong, J. R.Spectroscopy studies of interactions between DNA and N3O2-donor macrocycle bearing naphathalic sulfonic group.2010, 30, 66–71.

    (37) Yan, C. N.; Shang, G. Y. F.; Tong, J. Q.; Liu, Y.; Pang, D. W.; Pan, Z. T.; Qu, S. S.Study on thermodynamics of binding reaction of dipyridamole with bovine serum albumin.2003, 23, 543–546.

    (38) Tian, Z. Y.; Su, L. P.; Xie, S. Q.; Zhao, J.; Wang, C. J.Synthesis, biological activity and fluorescence spectroscopy of naphthalimide-polyamine conjugates.2013, 33, 1514–1521.

    (39) Akbay, N.; Seferoglu, Z.; G?k, E.Fluorescence interaction and determination of calf thymus DNA with two ethidium derivatives.2009, 19, 1045–1051.

    (40) Wang, J.; Liu, L. J.; Liu, B.; Guo, Y.; Zhang, Y. Y.; Xu, R.; Wang, S. X.; Zhang, X. D.Spectroscopic study on interaction of bovine serum albumin with sodium magnesium chlorophyllin and its sonodynamic damage under ultrasonic irradiation.2010, 75, 366–374.

    (41) Zhang, G. W.; Zhao, N.; Hu, X.; Tian, J.Interaction of alpinetin with bovine serum albumin: probing of the mechanism and binding site by spectroscopic methods.2010, 76, 410–417.

    (42) Chen, Z. F.; Luo, Y. D.; Hua, L. G.; Zhang, J.Reactivities towards DNA and protein and cytotoxic activities of benzimidazole derived mononuclear cobalt(Ⅱ) and nickel(Ⅱ) complexes.2014, 07, 1525–1534.

    (43) Yang, L. N.; Yao, L.; Yu, L. L.; Yang, L. Y.; Yu, J. Study on synthesis of nitroderivatives of 2,2?--biimidazoleand their interaction with DNA.2012, 07, 56–59.

    (44) Zhong, G. X. The research progress of fluorine-bearing antitumor drugs.2005, 1, 46–48.

    (45) Reddy, O. S.; Suryanarayana, C. V.; Sharmila, N.; Ramana, G. V.;Anuradha, V.;Babu, B. H. Synthesis and cytotoxic evaluation for some new dihydropyrimidinone derivatives for anticancer activity.2013, 10, 699–705.

    7 August 2017;

    10.14102/j.cnki.0254-5861.2011-1799

    27 November 2017 (CCDC 1473040 for 1, 1477347 for 2 and 1474331 for 3)

    ① Project supported by the National Natural Science Foundation of China (Nos. 21073139, 21103135 and 21301139)

    ②. E-mail: liuxiangrongxk@163.com

    猜你喜歡
    契機數(shù)學教師習題
    從一道課本習題說開去
    一道課本習題及其拓展的應用
    抓住習題深探索
    小學數(shù)學教師資格證面試研究
    將疫情當作樹立正確人生觀的契機
    甘肅教育(2020年4期)2020-09-11 07:41:06
    淺析如何提高小學數(shù)學教師素養(yǎng)
    活力(2019年17期)2019-11-26 00:42:48
    精心設計習題 構(gòu)建高效課堂
    小學數(shù)學教師如何才能提高課堂的趣味性
    以上率下 強化擔當 以文明創(chuàng)建為契機 助力鹽改取得新成效
    抓住契機全面推進醫(yī)改
    国产三级在线视频| 国产单亲对白刺激| 国产大屁股一区二区在线视频| 欧美高清成人免费视频www| 国产高清不卡午夜福利| 国产蜜桃级精品一区二区三区| av在线天堂中文字幕| 美女大奶头视频| 久久精品久久久久久噜噜老黄 | 插逼视频在线观看| 99久久精品一区二区三区| 大又大粗又爽又黄少妇毛片口| 国产综合懂色| 尤物成人国产欧美一区二区三区| 久久久久性生活片| 国产精品久久久久久精品电影小说 | 亚洲va在线va天堂va国产| 亚洲av一区综合| 美女黄网站色视频| 97超视频在线观看视频| 日韩欧美精品免费久久| 日本一本二区三区精品| 亚洲第一区二区三区不卡| 色综合亚洲欧美另类图片| 女人十人毛片免费观看3o分钟| 热99re8久久精品国产| 大又大粗又爽又黄少妇毛片口| 精品熟女少妇av免费看| av又黄又爽大尺度在线免费看 | 给我免费播放毛片高清在线观看| 久久久a久久爽久久v久久| h日本视频在线播放| 26uuu在线亚洲综合色| 亚洲七黄色美女视频| 亚洲一区高清亚洲精品| 日本熟妇午夜| 免费观看a级毛片全部| av在线天堂中文字幕| 久久久久性生活片| 国产免费男女视频| 欧美bdsm另类| 97热精品久久久久久| 亚洲图色成人| 小说图片视频综合网站| 99热只有精品国产| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| 99视频精品全部免费 在线| 日本色播在线视频| 国产午夜精品久久久久久一区二区三区| 寂寞人妻少妇视频99o| 一级黄色大片毛片| 久久精品久久久久久噜噜老黄 | 国产一级毛片在线| 人人妻人人澡人人爽人人夜夜 | 在线a可以看的网站| 国产蜜桃级精品一区二区三区| 好男人视频免费观看在线| 免费黄网站久久成人精品| 亚洲最大成人中文| 成人国产麻豆网| 一个人观看的视频www高清免费观看| 午夜精品国产一区二区电影 | 我要看日韩黄色一级片| 成人鲁丝片一二三区免费| 伦精品一区二区三区| 只有这里有精品99| 岛国在线免费视频观看| 国产大屁股一区二区在线视频| 亚洲人成网站在线播放欧美日韩| 九色成人免费人妻av| 欧美色视频一区免费| 大又大粗又爽又黄少妇毛片口| 成人毛片60女人毛片免费| 天堂√8在线中文| 午夜爱爱视频在线播放| 久久亚洲国产成人精品v| 国产三级中文精品| 一个人免费在线观看电影| 久久久国产成人精品二区| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区| 99九九线精品视频在线观看视频| 色视频www国产| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 毛片一级片免费看久久久久| 欧美一级a爱片免费观看看| 91久久精品电影网| 最近视频中文字幕2019在线8| 免费看av在线观看网站| 一个人看的www免费观看视频| 热99在线观看视频| 中国美女看黄片| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 精品久久久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| 最近的中文字幕免费完整| 97超碰精品成人国产| 自拍偷自拍亚洲精品老妇| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 一个人看的www免费观看视频| 高清日韩中文字幕在线| 国产精品一区www在线观看| 久久久欧美国产精品| 亚洲欧美精品专区久久| 国产高清有码在线观看视频| 久久久a久久爽久久v久久| 我的老师免费观看完整版| 国产精品福利在线免费观看| 免费无遮挡裸体视频| 国模一区二区三区四区视频| 色播亚洲综合网| 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 91精品一卡2卡3卡4卡| 国产午夜福利久久久久久| 日本色播在线视频| 一级毛片久久久久久久久女| 国产成人影院久久av| 非洲黑人性xxxx精品又粗又长| 在线播放国产精品三级| .国产精品久久| 亚洲自偷自拍三级| 色视频www国产| 白带黄色成豆腐渣| 亚洲内射少妇av| 欧美色欧美亚洲另类二区| 亚洲最大成人中文| 亚洲18禁久久av| 日韩 亚洲 欧美在线| 国产精品99久久久久久久久| 97超视频在线观看视频| 久久精品国产亚洲网站| 国产探花极品一区二区| 亚州av有码| 最近的中文字幕免费完整| 国产探花极品一区二区| 国产成年人精品一区二区| 狂野欧美白嫩少妇大欣赏| 熟妇人妻久久中文字幕3abv| 亚洲av免费在线观看| 美女 人体艺术 gogo| 人妻制服诱惑在线中文字幕| 深夜精品福利| 蜜桃亚洲精品一区二区三区| 寂寞人妻少妇视频99o| 中文字幕熟女人妻在线| 亚洲图色成人| 成人毛片a级毛片在线播放| 国产一区二区三区在线臀色熟女| 亚洲美女搞黄在线观看| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 尾随美女入室| 久久久久久久久久黄片| 国产单亲对白刺激| 身体一侧抽搐| 日韩av在线大香蕉| 国产激情偷乱视频一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 精品久久久久久久末码| 国产激情偷乱视频一区二区| 日韩制服骚丝袜av| 国产精品一二三区在线看| 欧美不卡视频在线免费观看| 国产一区二区激情短视频| 欧美成人精品欧美一级黄| 熟女电影av网| 青青草视频在线视频观看| 级片在线观看| 深夜a级毛片| 最后的刺客免费高清国语| 亚洲人成网站在线观看播放| 99久久精品热视频| 少妇熟女欧美另类| 久久精品91蜜桃| av在线天堂中文字幕| 国产乱人偷精品视频| 男女啪啪激烈高潮av片| 色播亚洲综合网| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| 亚洲国产精品成人久久小说 | 日韩高清综合在线| 精品少妇黑人巨大在线播放 | 插阴视频在线观看视频| 天天一区二区日本电影三级| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| av免费观看日本| 亚洲欧美清纯卡通| 日韩,欧美,国产一区二区三区 | 麻豆国产av国片精品| 日日摸夜夜添夜夜添av毛片| 精品午夜福利在线看| 亚洲一区高清亚洲精品| 男的添女的下面高潮视频| 91在线精品国自产拍蜜月| 国产精品麻豆人妻色哟哟久久 | 国产高潮美女av| 久久6这里有精品| 青春草视频在线免费观看| 精品久久久久久久久亚洲| 男人和女人高潮做爰伦理| 日韩成人伦理影院| 91av网一区二区| 91麻豆精品激情在线观看国产| www.av在线官网国产| 欧美三级亚洲精品| 国产三级在线视频| 97在线视频观看| 99久国产av精品国产电影| 最近最新中文字幕大全电影3| 搞女人的毛片| 亚洲中文字幕一区二区三区有码在线看| 91午夜精品亚洲一区二区三区| 久久99蜜桃精品久久| 亚洲av.av天堂| 欧美xxxx黑人xx丫x性爽| 日本在线视频免费播放| 久久精品91蜜桃| 亚洲国产欧洲综合997久久,| 最后的刺客免费高清国语| 在线播放国产精品三级| 三级男女做爰猛烈吃奶摸视频| 神马国产精品三级电影在线观看| 村上凉子中文字幕在线| 26uuu在线亚洲综合色| 99热只有精品国产| 国产一区二区三区在线臀色熟女| 青春草国产在线视频 | 一本精品99久久精品77| 亚洲一区高清亚洲精品| 亚洲国产精品成人久久小说 | 看黄色毛片网站| 亚洲第一电影网av| 亚洲成a人片在线一区二区| 一本久久中文字幕| 日本爱情动作片www.在线观看| 亚洲av成人av| 亚洲精品成人久久久久久| 久久久久久九九精品二区国产| 国产精品国产高清国产av| 成人午夜精彩视频在线观看| 国产精品伦人一区二区| 99久久精品国产国产毛片| 国产av国产精品国产| 有码 亚洲区| www.色视频.com| 亚洲天堂av无毛| 久久热精品热| 99精国产麻豆久久婷婷| 99国产精品免费福利视频| 中文字幕久久专区| 高清毛片免费看| 国产无遮挡羞羞视频在线观看| 女性被躁到高潮视频| 在线观看免费高清a一片| 国产亚洲最大av| 国产男人的电影天堂91| 国产精品秋霞免费鲁丝片| 这个男人来自地球电影免费观看 | 少妇精品久久久久久久| 国产成人精品婷婷| 亚洲欧美成人综合另类久久久| 久久99精品国语久久久| 国产成人精品无人区| 亚洲成人av在线免费| 人人妻人人爽人人添夜夜欢视频| 久久狼人影院| 乱码一卡2卡4卡精品| 狠狠精品人妻久久久久久综合| 97精品久久久久久久久久精品| 免费观看的影片在线观看| 91精品伊人久久大香线蕉| 欧美日韩视频高清一区二区三区二| 国产精品免费大片| 各种免费的搞黄视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲天堂av无毛| 免费人妻精品一区二区三区视频| 纵有疾风起免费观看全集完整版| 亚洲成人av在线免费| 黄色配什么色好看| 亚洲久久久国产精品| kizo精华| 日韩一区二区视频免费看| 国产成人精品一,二区| 乱人伦中国视频| 狠狠精品人妻久久久久久综合| 妹子高潮喷水视频| 国产日韩欧美视频二区| 熟女人妻精品中文字幕| 在现免费观看毛片| 亚洲欧美清纯卡通| av电影中文网址| 国语对白做爰xxxⅹ性视频网站| 91精品伊人久久大香线蕉| 亚洲精品av麻豆狂野| 久久久久久久精品精品| 青青草视频在线视频观看| 9色porny在线观看| 亚洲av电影在线观看一区二区三区| 久久久精品94久久精品| 国产亚洲午夜精品一区二区久久| 久久久国产一区二区| 啦啦啦在线观看免费高清www| 一本色道久久久久久精品综合| 日本vs欧美在线观看视频| 少妇人妻久久综合中文| 日本vs欧美在线观看视频| www.色视频.com| 国产成人免费观看mmmm| 国产成人91sexporn| 日韩制服骚丝袜av| 日本vs欧美在线观看视频| 久久久久久伊人网av| 99久久中文字幕三级久久日本| 我的女老师完整版在线观看| 七月丁香在线播放| av免费在线看不卡| 爱豆传媒免费全集在线观看| 大码成人一级视频| 午夜久久久在线观看| 黑人猛操日本美女一级片| 国产精品欧美亚洲77777| 中文字幕最新亚洲高清| 18禁在线播放成人免费| 免费大片18禁| 最近中文字幕高清免费大全6| 高清不卡的av网站| 王馨瑶露胸无遮挡在线观看| 国产日韩欧美视频二区| 黄色配什么色好看| 黄片无遮挡物在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产片特级美女逼逼视频| 性色avwww在线观看| 久久久久精品性色| 国产精品国产三级国产专区5o| 欧美成人精品欧美一级黄| 亚洲av在线观看美女高潮| av在线老鸭窝| 午夜免费观看性视频| 国产成人一区二区在线| 人妻制服诱惑在线中文字幕| .国产精品久久| 制服丝袜香蕉在线| 亚洲一区二区三区欧美精品| 亚洲熟女精品中文字幕| 国产精品秋霞免费鲁丝片| 一级毛片我不卡| 日韩视频在线欧美| 高清黄色对白视频在线免费看| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 国产乱人偷精品视频| 波野结衣二区三区在线| 人人妻人人澡人人看| 黄色毛片三级朝国网站| 欧美成人精品欧美一级黄| 国产一区有黄有色的免费视频| 熟女av电影| 插逼视频在线观看| 最新的欧美精品一区二区| 成人国产麻豆网| 高清av免费在线| 日本爱情动作片www.在线观看| 插阴视频在线观看视频| 99热全是精品| 乱人伦中国视频| 亚洲人成网站在线观看播放| 大香蕉久久网| 久久99一区二区三区| 男人操女人黄网站| 国产精品一区www在线观看| 色94色欧美一区二区| 亚洲内射少妇av| 久久久a久久爽久久v久久| 久久av网站| 国产熟女欧美一区二区| 只有这里有精品99| 99久久中文字幕三级久久日本| 亚洲欧洲精品一区二区精品久久久 | 久久久久久久久久久久大奶| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 人人澡人人妻人| 我要看黄色一级片免费的| 另类精品久久| 欧美一级a爱片免费观看看| 亚洲在久久综合| 国产女主播在线喷水免费视频网站| 如日韩欧美国产精品一区二区三区 | 色94色欧美一区二区| a级毛片在线看网站| www.色视频.com| 久久影院123| 大香蕉97超碰在线| 人妻制服诱惑在线中文字幕| 国产免费一级a男人的天堂| 久久精品国产自在天天线| 多毛熟女@视频| 亚洲高清免费不卡视频| 麻豆乱淫一区二区| 又黄又爽又刺激的免费视频.| 99国产精品免费福利视频| 边亲边吃奶的免费视频| 少妇人妻 视频| 99九九线精品视频在线观看视频| 亚洲四区av| 国产爽快片一区二区三区| 国产精品国产av在线观看| 在线天堂最新版资源| 3wmmmm亚洲av在线观看| 激情五月婷婷亚洲| 亚洲欧美清纯卡通| 中文字幕亚洲精品专区| 国产又色又爽无遮挡免| 国产有黄有色有爽视频| 欧美人与性动交α欧美精品济南到 | 国产成人精品福利久久| 亚洲激情五月婷婷啪啪| 亚洲精品色激情综合| 啦啦啦视频在线资源免费观看| 韩国av在线不卡| 精品一区二区三卡| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕 | 午夜福利,免费看| 美女大奶头黄色视频| 中国三级夫妇交换| 黄色毛片三级朝国网站| 在线观看www视频免费| 秋霞伦理黄片| av.在线天堂| 日韩制服骚丝袜av| 久久97久久精品| 超碰97精品在线观看| 蜜桃在线观看..| 91久久精品电影网| 国产欧美另类精品又又久久亚洲欧美| 美女福利国产在线| 香蕉精品网在线| 亚洲av综合色区一区| 男女无遮挡免费网站观看| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 免费观看性生交大片5| 麻豆乱淫一区二区| 美女中出高潮动态图| 永久网站在线| 18禁裸乳无遮挡动漫免费视频| 国产成人a∨麻豆精品| 多毛熟女@视频| 91久久精品国产一区二区成人| 国产亚洲一区二区精品| 赤兔流量卡办理| av网站免费在线观看视频| 最近最新中文字幕免费大全7| 精品卡一卡二卡四卡免费| 久久久久久人妻| 国产在线免费精品| 成人黄色视频免费在线看| 黄片播放在线免费| 热re99久久精品国产66热6| 热99久久久久精品小说推荐| 日韩av不卡免费在线播放| 亚洲一级一片aⅴ在线观看| videossex国产| 精品人妻一区二区三区麻豆| 免费观看在线日韩| 99久久综合免费| av有码第一页| 国产精品免费大片| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| √禁漫天堂资源中文www| 内地一区二区视频在线| 日韩av不卡免费在线播放| 亚洲国产最新在线播放| 黄色欧美视频在线观看| 91午夜精品亚洲一区二区三区| 日韩欧美精品免费久久| 久久女婷五月综合色啪小说| 免费观看无遮挡的男女| 日韩,欧美,国产一区二区三区| 亚洲情色 制服丝袜| 国产精品蜜桃在线观看| 老司机影院毛片| 亚州av有码| 国产成人aa在线观看| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 国产高清有码在线观看视频| 国产深夜福利视频在线观看| 熟女电影av网| 精品久久国产蜜桃| 国产亚洲一区二区精品| 九草在线视频观看| 99热网站在线观看| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 黄片无遮挡物在线观看| 在线观看免费高清a一片| 日本黄色日本黄色录像| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 精品一区二区免费观看| 亚洲成人一二三区av| 两个人的视频大全免费| 嫩草影院入口| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av天堂久久9| 狠狠精品人妻久久久久久综合| 亚洲第一区二区三区不卡| 国产片内射在线| 亚洲精品国产av蜜桃| 永久网站在线| 久久综合国产亚洲精品| 国产乱人偷精品视频| 22中文网久久字幕| 免费观看性生交大片5| 一个人免费看片子| freevideosex欧美| 丝袜美足系列| 一级毛片aaaaaa免费看小| 亚洲天堂av无毛| 大香蕉97超碰在线| 高清视频免费观看一区二区| 菩萨蛮人人尽说江南好唐韦庄| 丝袜脚勾引网站| 看免费成人av毛片| av又黄又爽大尺度在线免费看| 国产精品国产三级国产专区5o| 国产免费现黄频在线看| 日本猛色少妇xxxxx猛交久久| 美女视频免费永久观看网站| 高清午夜精品一区二区三区| 国产精品一区二区在线不卡| 乱人伦中国视频| 男女啪啪激烈高潮av片| 国产成人a∨麻豆精品| 亚洲精品久久成人aⅴ小说 | 777米奇影视久久| 超碰97精品在线观看| 亚洲第一区二区三区不卡| 久久综合国产亚洲精品| tube8黄色片| 欧美日韩视频精品一区| 免费观看的影片在线观看| 亚洲久久久国产精品| 五月玫瑰六月丁香| 国产一级毛片在线| 我的老师免费观看完整版| 国产高清有码在线观看视频| 美女中出高潮动态图| 久久精品久久久久久噜噜老黄| 熟女人妻精品中文字幕| 欧美最新免费一区二区三区| 一级片'在线观看视频| 三上悠亚av全集在线观看| 男的添女的下面高潮视频| 一级二级三级毛片免费看| 十八禁高潮呻吟视频| 18在线观看网站| 亚洲四区av| 女性生殖器流出的白浆| 男女边吃奶边做爰视频| 91精品国产九色| 久久久久久久久久久久大奶| 天美传媒精品一区二区| 日韩一区二区视频免费看| 少妇人妻久久综合中文| 国产乱人偷精品视频| 精品一区二区免费观看| 欧美97在线视频| 国产片内射在线| 少妇精品久久久久久久| 久久精品国产自在天天线| 亚洲五月色婷婷综合| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 久久久精品免费免费高清| 精品一区二区免费观看| 久热久热在线精品观看| 亚洲一区二区三区欧美精品| 亚洲四区av| 大陆偷拍与自拍| 91久久精品国产一区二区成人| 91精品一卡2卡3卡4卡| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| av播播在线观看一区| 国产黄色视频一区二区在线观看| 美女脱内裤让男人舔精品视频| 久久99热这里只频精品6学生| 99久久精品一区二区三区| 桃花免费在线播放| 18禁动态无遮挡网站| 2022亚洲国产成人精品| av不卡在线播放| 如日韩欧美国产精品一区二区三区 | 日韩一本色道免费dvd| 国语对白做爰xxxⅹ性视频网站| 亚洲久久久国产精品| 久久午夜综合久久蜜桃| 日本欧美视频一区| 中国三级夫妇交换| 精品人妻一区二区三区麻豆|