• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transitional Area of Ce4+ to Ce3+ in SmxCayCe1-x-yO2-δ with Various Doping and Oxygen Vacancy Concentrations: A GGA + U Study①

    2018-03-12 08:40:50WUTongWeiJIAGuiXioWANGXioXiLILeiANShengLi
    結(jié)構(gòu)化學 2018年2期

    WU Tong-Wei JIA Gui-Xio, b WANG Xio-Xi LI Lei AN Sheng-Li, b

    ?

    Transitional Area of Ce4+to Ce3+in SmCaCe1-x-yO2-δwith Various Doping and Oxygen Vacancy Concentrations: A GGA +Study①

    WU Tong-WeiaJIA Gui-Xiaoa, b②WANG Xiao-XiaaLI LeiaAN Sheng-Lia, b

    a(,014010)b(014010)

    In this work, we perform DFT + U periodic calculations to study geometrical and electronic structures and oxygen vacancy formation energies of SmCaCe1-x-yO2-δsystems (= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) with different oxygen vacancy and doping concentrations. The calculated results show that the V1-Sm3+-V2structures where there is a position relationship of the face diagonal between V1and V2both nearest to Sm3+have the lowest energy configurations. The study on electronic structures of the SmCaCe1-x-yO2-δsystems finds that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, and Ca2+and Sm3+co-doping effectively restrains the reduction of Ce4+. In order to avoid the existence of Ce3+,andmust be both larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625.The Ce3+/Ce4+change ratiohas an obvious monotonous increase with increasing the vacancy oxygen concentration. The introduction of Sm3+decreases.In addition, the doped Sm3+can restrain the reduction of Ce4+when the V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere exists. It need be pointed out that the Sm0.25Ce0.75O1.5system should be thought of as a Sm-doped Ce2O3one.

    cerium oxide, oxygen vacancies, doping, electronic structures, GGA+;

    1 INTRODUCTION

    Theoretically, the distributions of oxygen vacan- cies and dopants[23], their formation energies[24], geometric and electronic structures[25]and oxygen ionic migration energies of CeO2systems[15, 25, 26]have been investigated at the atomic level. CeO2systems with Sm3+among rare earth metals and Ca2+among alkaline earth metals have the smallest oxygen ionic migration energies[25, 27]and their doping can effectively restrain the electronic con- ductivity. Theoretical[9]and experimental[28, 29]studies showed that Ca2+and Sm3+co-doping could better improve the ionic conductivity. Effects of different oxygen vacancy and doping concentrations on the distributions of oxygen vacancies, dopants and Ce3+of the CeO2systems are investigated.Murgida’s study[30]showed that the oxygen vacancy concen- tration affected the distribution of Ce3+and excess electrons preferred to be localized in the cation sites such that the mean Ce3+coordination number was maximized, and two vacancies were inclined to be second-neighboring. For doped CeO2-δ, our and other studies found that dopants preferred to occupy the nearest neighbor (NN) and next-nearest neighbor (NNN) positions relative to the oxygen vacancy[20, 25]. Independent with oxygen vacancy and doping concentrations, Ce3+is distributed around the nearest neighbor oxygen vacancy[30-32].

    However, a systematically theoretical study on Ce3+/Ce4+electronic properties of CeO2with dif- ferent oxygen vacancy and doping concentrations is absent. As is well known, Ca and Sm doping can effectively restrain the reduction of Ce4+to Ce3+and the doped CeO2has the largest ionic conductivity. Hence, in order to better understand the effects of different oxygen vacancy and Ca-, Sm-doping concentrations on the electronic structures (Ce3+/Ce4+) of CeO2systems, in the work, we select various numbers of oxygen vacancies or Ca and Sm dopants in the same supercell to obtain a series of vacancy and doping concentrations. Ultimately, this work would plot transitional area of Ce4+to Ce3+and the Ce3+/Ce4+change ratiounder different oxygen vacancy and doping concentration conditions.

    2 Models and computational details

    2. 1 Models

    CeO2has a fluorite-type structure (3space group) with one formula unit per primitive unite cell[25]. In this work, we considered a number of oxygen vacancies or dopants of Ca2+and Sm3+to produce various oxygen vacancy and doping con- centrations in a 2×2×2 supercell, namely, SmCaCe1-x-yO2-δsystems with various,and(= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125 and 0.250;= 0.0312, 0.0625, 0.125, 0.250 and 0.50) were considered, see Table 1. When the doping concentration is larger than 0.30, SmCaCe1-x-yO2-δsystems were not doping but alloying ones. However, for convenience with description in the work, we would unify them to name as doping ones.

    Doped atoms are uniformly distributed in a 2×2×2 supercell to obtain systems with various doping concentrations. Hooper’s study[33]on Sm-doped CeO2systems found that the dopant-vacancy interac- tion was a hybrid NN/NNN mixture distribution as the Sm3+concentrations increased and more NN distributions were the most favored. Our previous studies found that the first oxygen vacancy (V1) was the nearest to the dopant (NN)[20, 25]. Here, the same structure model is used. For the CeO2systems where the number of the oxygen vacancy nearest to one Sm3+is more than one, these vacancies are chosen according to the rule of the NN distribution, namely, the second oxygen vacancy nearest to one Sm3+is introduced and named as V2. Thus, V1and V2would have three distinct position relationships in the cube of eight coordinated O2-for one Sm3+, namely, the side one in Fig. 1a, the face diagonal one in Fig. 1b and the body diagonal one in Fig. 1c. Calculation results show that the structures with the face diagonal relationship between V1and V2are the most stable, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. For Ca-doped CeO2systems, the models where Ca2+has a NN or NNN distribution relationship with one oxygen vacancy are considered.

    Fig. 1. Geometric structures of Sm0.25Ca0.25Ce0.5O2-δor Sm0.5Ce0.5O2-δsystems with V1and V2. Red spheres note O, white ones note Ce, and the pink ones note one Sm3+. There is a similar notation in the following figures

    2. 2 Computational details

    All calculations were performed by a Viennasimulation package (VASP)[34]. Ce55645, O22, Ca334and Sm55645were treated as valence electrons. Structures were relaxed until forces on each ion were below 0.02 eV/? and the total energy was converged within 1×10-4eV. A plane-wave cut off energy of 400 eV, a 3×3×3 Monkhorst-Pack k point mesh and a Gaussian smearing parameter of 0.20 eV were used.

    The standard DFT formulation usually fails to describe strongly the correlated electrons due to a deficient treatment of electron correlation. This limitation can be corrected by using a DFT + U method, where the introduction of a Hubbard parametermodifies the self-interaction error and enhances the description of the correlation effects[35]. This methodology has been widely used in reduced CeO2systems[6, 8, 32, 35]. Theoretical work showed that thevalue for Ce should be larger than 5.0 eV[25, 26, 34]. In this work, we used thevalue of 6.0 eV for Ce and-value of 8.0 eV and-value of 0.65 eV for Sm, consistent with the other work[35-47]. The exchange-correlation effects were described with the Perdew Burke Ernzerhof (PBE) functional within the generalized gradient approximation (GGA)[36].The calculated crystal lattice constant from the GGA +method is 5.48 ?, in agreement with the experiment value of 5.41 ?[48].

    The formation energies of oxygen vacanciesVofor CeO2-δsystems,Vo-Smfor SmCeO2-δsystems andVo-CaSmfor SmCaCeO2-δsystems can be defined as

    where[] and[] are total energies of pure or doped CeO2systems with and without oxygen vacancies, respectively.[O2] is the energy of one O2molecule set in a 10? × 10? × 10? supercell, andis the number of oxygen vacancies.

    3 RESULTS AND DISCUSSION

    3. 1 Geometric structures

    Model structures with the lowest energies are obtained.The V1-Sm3+-V2structures where there is a diagonal position relationship of the face between V1and V2both nearest to Sm3+have the lowest energy configurations, consistent with the case of pure CeO2systems with double oxygen vacancies[8]. The introduction of Sm3+, Ca2+and oxygen vacancies into CeO2can produce obvious geometric distortions, consistent with the other work[25]. Geometric struc- tures of CeO1.9688, Sm0.0312Ce0.9688O1.9688, Sm0.0312Ce0.9688O1.9375, Sm0.0312Ca0.0312Ce0.9376O1.9688and Sm0.0312Ca0.0312Ce0.9376O1.9375systems as examples are displayed in Fig. 2. Geometric struc- tures of SmCaCe1-x-yO2-δwith other oxygen vacancy and doping concentrations have a similar geometric distortion.

    It is well known that the oxygen vacancy is an area of effective positive potential, hence, the neighboring O2-move toward the vacancy, and the neighboring Ce4+move away from the vacancy. From Fig. 2a of the CeO1.9688system, we can see that three of four O2-near the oxygen vacancy move toward it and another O2-moves away from it. From the following electronic structures (see detail discussion on electronic structures), it is known that this O2-is bridged by two Ce3+which have larger negative potential than that of Ce4+. From Fig. 2b of the Sm0.0312Ce0.9688O1.9688system, it is similar to the CeO1.9688system in Fig. 2a and the difference is that one of two Ce3+is Sm3+, namely, the neighboring O2-move toward the vacancy, and the neighboring Ce4+and Sm3+move away from the vacancy. From Fig. 2c of the Sm0.0312Ce0.9688O1.9375system, we can see that the movements of four O2-toward two vacancies and two O2-toward Sm3+resulted from the common attraction of V1and V2to O2-, namely, an O2-bridged by Sm3+and Ce3+is not repelled, different from the systems with one oxygen vacancy. From Fig. 2d of the Sm0.0312Ca0.0312Ce0.9376O1.9688system, four O2-near the oxygen vacancies can be driven toward the vacancy and the neighboring Ce4+move away from the vacancy. The Sm0.0312Ca0.0312Ce0.9376O1.9375system in Fig. 2e is similar to the Sm0.0312Ce0.9688O1.9375system in Fig. 2c.

    Fig. 2. Optimized geometric structures of the CeO1.9688(a), Sm0.0312Ce0.9688O1.9688(b), Sm0.0312Ce0.9688O1.9375(c), Sm0.0312Ca0.0312Ce0.9376O1.9688(d) and Sm0.0312Ca0.0312Ce0.9376O1.9375(e) systems. Arrow directions indicate moving ones of ions

    3. 2 Oxygen vacancy formation energies

    Oxygen vacancy formation energies ofVofor CeO2-δsystems,Vo-Smfor SmCe1-xO2-δsystems andVo-CaSmfor SmCaCe1-x-yO2-δsystems are listed in Table 1.Vomonotonously increases with increasing, see Table 1 and Fig. 3. For SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems, we can find thatVo-Smwith a certainandVo-CaSmwith certainandare large asislarge, and bothwith a certainare small asorand y are large, see Table 1 and Fig. 3. It need point out that the introduction of Ca and Sm makes the oxygen vacancy spontaneously form, similar to Fergus’s study on the Sm-doped CeO2systems[49].

    Table 1. Oxygen Vacancy Formation Energies (Unit: eV) of EVo for CeO2-δ, EVo-Sm for SmxCe1-xO2-δ andEVo-CaSm for SmxCayCe1-x-yO2-δ

    Fig. 3. Variation ofVo,Vo-Sm, andVo-CaSmasof corresponding CeO2-δSmCe1-xO2-δandSmCaCe1-x-yO2-δsystems

    3. 3 Electronic structures

    When oxygen vacancies in CeO2are formed, the Ce4state is split into two states: an empty Ce4emptystate and an occupied defect Ce3+4fullstate at the range of O2and Ce4empty, consistent with our previous[25]and the other work[32], see Fig. 4. Total electronic densities of states (DOS), partial electronic densities of states (PDOS) and localization electronic densities of states (LDOS) from the defect state of Ce3+for various SmCaCe1-x-yO2-δsystems with different,andare calculated, as shown in Figs. 4 and 5.

    3. 3. 1 Excess electron distribution

    From the PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems in Fig. 4a, we can see that a new peak appears at the range of –1.2~0 eV for CeO1.9688, CeO1.9375, CeO1.875systems and –0.80~0.60 eV for the CeO1.75system, respectively, which are fully occupied by Ce3+electrons. Compared to the PDOS of Ce4state for the CeO1.75system, the Fermi level of the other systems approximately shift up by 0.50 eV, due to the decrease of oxygen vacancy concentration. Excess electrons arise from the oxygen vacancy and are localized on the-level traps of its neighbor Ce, which can be visually recognized from the corresponding LDOS of the defect Ce3+state in Fig. 4b-e. These are consistent with theoretical studies for CeO1.9843, CeO1.9687, CeO1.9375and CeO1.875[43]and CeO2(111), (110) and (100) surfaces[50].

    Fig. 4. DOS of the CeO2systems and PDOS of Ce4state for CeO1.9688, CeO1.9375, CeO1.875and CeO1.75systems (a) and the corresponding LDOS (b)-(e) of the defect peaks. The isosurface is shown in green and is set to 0.05 e/?. Here, one primitive cell of various CeO2-δsystems with a 2 × 2 × 2 supercell is shown

    From the PDOS of Ce4state for SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems, see Fig. 5a, similar to CeO2-δsystems mentioned above, a new peak appears in the range of O2~Ce4empty. From the corresponding LDOS of the defect Ce3+state, see Fig. 5c-j, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δsystems[5, 26, 30, 32]. For the Sm0.0312Ce0.9688O1.9375system, see Fig. 5j, there are two oxygen vacancies in the 2×2×2 supercell, so they should induce four charge-compensation cations. However, the calculated result finds that there are three, maybe due to the existence of V1-Sm3+-V2structure with a face diagonal position relationship in lower reduced atmosphere and then doped Sm3+can restrain the reduction of Ce4+.

    In order to better restrain excess electrons, SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5 ) systems with various,andare explored. From the DOS of Fig. 5b of SmCaCe1-x-yO2-δsystems, we can see that, except for the Sm0.0625Ca0.0625Ce0.875O1.875system, SmCaCe1-x-yO2-δsystems have no Ce3+. In other words, in order to avoid the existence of Ce3+,andmust be respectively larger than 0.0625 as= 0.125 ormust be smaller than 0.125 as== 0.0625. For a series of SmCaCe1-x-yO2-δsystems, from their corresponding LDOS of the defect Ce3+state in Fig. 5c-k, we can see that excess electrons arise from oxygen vacancies and are localized on-level traps of their neighbor Ce, like the case of CeO2-δ[5, 26, 30, 32].

    Fig. 5. PDOS of Ce4states for the SmCe1-xO2-δ(0.0312≤≤0.25, 0.0312≤≤0.5) systems (a) and DOS of SmCaCe1-x-yO2-δ(0.0312≤≤0.25, 0.0312≤≤0.25, 0.0312≤≤0.5) systems (b) and the corresponding LDOS (c)~(k) of the defect peaks. Oxygen vacancies are represented by V1and V2. The isosurface is shown in green and set to 0.05 e/?

    3. 3. 2 Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratio k forSmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    In order to visually understand transitional area of Ce4+to Ce3+for the SmCaCe1-x-yO2-δsystems with various oxygen vacancy and doping concentrations, their transitional areas of Ce4+to Ce3+for the SmCe1-xO2-δ(Fig. 6a) and the SmCaCe1-x-yO2-δsystems (Fig. 6b) are plotted.

    Fig. 6. Transitional area of Ce4+to Ce3+and Ce3+/Ce4+change ratiofor SmCe1-xO2-δand SmCaCe1-x-yO2-δsystems with different oxygen vacancy and doping concentrations

    From Fig. 6a, we can see that no Ce3+exists for the SmCe1-xO2-δsystems with≥ 0.167 and≤0.0833 and Ce3+exists for the SmCe1-xO2-δsystems with≤ 0.0312 and≥ 0.0312,≤ 0.0625 and≥ 0.0625,≤ 0.125 and≥ 0.125,≤ 0.167 and≥ 0.166, and≤ 0.250 and≥ 0.250. For the SmCaCe1-x-yO2-δsystem as y ≠ 0, the substitution of Ce4+by Ca2+makes two excess electrons and the substitution of Ce4+by Sm3+makes one excess electron. Based on the case, for convenience of totally reflecting the effect of the doping concentration on the transition ratio of Ce4+to Ce3+, the doping effect of one Ca2+is transformed to that of two Sm3+, in which the ionic radius of doping Ca2+andSm3+is omitted, and its corres- ponding transitional area of Ce4+to Ce3+is plotted in Fig. 6b. From Fig. 6b, we can see that no Ce3+exists for the SmCaCe1-x-yO2-δsystems with≥0.0936 and≤ 0.0625,≥0.334 and≤ 0.166,≥0.375 and≤ 0.250, and≥0.750 and≤ 0.50 and Ce3+exists for the SmCaCe1-x-yO2-δsystems with≤ 0.187 and≥ 0.125.

    The Ce3+/Ce4+change ratioin SmCe1-xO2-δsystems with various oxygen vacancy and doping concentrations are studied, as shown in Fig. 6c. From Fig. 6c, we can see thathas obvious monotonous increase with increasing the vacancy concentration, and the introduction of Sm3+reduces,such as Sm0.0312Ce0.9688O1.9375, Sm0.0625Ce0.9375O1.875, Sm0.125Ce0.875O1.75, Sm0.166Ce0.834O1.668and Sm0.25Ce0.75O1.5systems, namely, the introduction of Sm3+restrains the reduction of Ce4+to Ce3+It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3, because of no unoccupied defect states between the occupied Ce3+states and the unoccupied Ce4empty, see Fig. 5a, in accordance with other theoretical work[51-53].

    4 CONCLUSION

    In this work, the influence of Sm3+single-doping or Ca2+and Sm3+co-doping, oxygen vacancies and their concentrations on the geometric and electronic structures of SmCaCe1-x-yO2-δsystems are studied. Results for the geometric structures show that the V1-Sm3+-V2structures where there is a position relationship of diagonal of the face between V1and V2both nearest to Sm3+are easily obtained, in agreement with the case of pure CeO2systems. Study for electronic structures finds that the oxygen vacancies are contributed to excess electrons and these electrons are localized on-level traps of its neighbor Ce for the SmCaCe1-x-yO2-δsystems. The Ce3+/Ce4+change ratiois related with the dopant and oxygen vacancy concentrationsIn addition, the existence of V1-Sm3+-V2structure with face diagonal position relationship in lower reduced atmosphere maybe makes the doped Sm3+restrain the reduction of Ce4+. It need be pointed out that Sm0.25Ce0.75O1.5system can be thought of as Sm-doped Ce2O3.

    (1) Brett, D. J. L.; Atkinson, A.; Brandon, N. P.; Skinner, S. J. Intermediate temperature solid oxide fuel cells.2008, 37, 1568–1578.

    (2) Ruiz, T. E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Oxygen ion diffusivity, surface exchange and ionic conductivity in single crystal Gadolinia doped Ceria.1998,113, 565–569.

    (3) Park, S.; Vohs, J. M.; Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell.()2000, 404, 265–267.

    (4) Molinari, M.; Parker, S. C.; Sayle, D. C.; Islam, M. S. Water adsorption and its effect on the stability of low index stoichiometric and reduced surfaces of ceria.2012, 116, 7073–7082.

    (5) Kullgren, J.; Hermansson, K.; Castleton, C. Many competing ceria(110) oxygen vacancy structures: from small to large supercells.2012, 137, 044705.

    (6) Allen, J. P.; Watson, G. W. Occupation matrix control of- and-electron localisations using DFT +.2014, 16, 21016–21031.

    (7) Steele, B. C. H. Appraisal of Ce1-yGdO2-y/2electrolytes for IT-SOFC operation at 500 ℃.2000, 129, 95–110.

    (8) Ismail, A.; Hooper, J.; Giorgi, J. B. A DFT + U study of defect association and oxygen migration in samarium-doped ceria.2011, 13, 6116–6120.

    (9) Suparna, B.; Parukuttyamma, S. D.; Dinesh, T. S. M.; Krishnakumar, M. Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: unique effect of calcium Co-doping.2007, 17, 2847–2854.

    (10) Wang, F. Y.; Cheng, S.Gd3+and Sm3+co-doped ceria based electrolytes for intermediate temperature solid oxide fuel cells.2004, 6, 743–746.

    (11) Kim, N.; Kim, B. H.; Lee, D. Effect of co-dopant addition on properties of gadolinia-doped ceria electrolyte.2000, 90, 139–143.

    (12) Mori, T.; Yamamura, H. Preparation of an alkali-element or alkali-earth-element-doped CeO2-Sm2O3system and its operation properties as the electrolyte in planar solid oxide fuel cells.1998, 6, 175–179.

    (13) Van, H. J.; Horita, T.; Kawada, T.; Sakai, N.; Yokokawa, H.Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte.1996, 86, 1255–1258.

    (14) Yang, N.; Belianinov, A.; Strelcov, E. Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films.2014, 8, 12494–12501.

    (15) Ruiz-Trejo, E.; Sirman, J. D.; Baikov, Y. M.; Kilner, J. A. Nanoparticles and nanoceramics of Y-doped CeO2.1998, 113, 565–571.

    (16) Yoshida, H.; Deguchi, H.; Miura, K. Investigation of the relationship between the ionic conductivity and the local structures of singly and doubly doped ceria compounds using EXAFS measurement.2001,140, 191–199.

    (17) Andersson, D. A.; Simak, S. I.; Skorodumova, N. V.Optimization of ionic conductivity in doped ceria.2006, 103, 3518–3521.

    (18) Yin, Y. H.; Li, S. Y.; Zhu, W.; Xia, C. R. Research on calcium-doped ceria used in intermediate-temperature SOFCs anodes.2005, 03, 317–322.

    (19) Mogensen, M.; Lindegaard, T.; Hansen, U. R. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2.1994, 141, 2122–2126.

    (20) Wei, X.; Pan, W.; Cheng, L. Atomistic calculation of association energy in doped ceria.2009, 180, 13–17.

    (21) Frayret, C.; Villesuzanne, A.; Pouchard, M.; Matar, S.Density functional theory calculations on microscopic aspects of oxygen diffusion in ceria-based materials.2005, 101, 826–839.

    (22) Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations.2009, 11, 3241–3249.

    (23) Grinter, D. C.; Ithnin, R.; Pang, C. L.; Thorton, G. Defect structure of ultrathin ceria films on Pt(111): atomic views from scanning tunneling microscopy.2010, 114, 17036–17041.

    (24) Nolan, M.; Fearon, J. E.; Watson, G. W. Oxygen vacancy formation and migration in ceria.2006, 177, 3069–3074.

    (25) Jia, G. X.; Hao, W. X.; Pan, F.; Yang, J. C.; Zhang, Y. F. Electronic structures and oxygen ion migration energies of metal doped CeO2systems: a DFT+study.2013, 71, 1668–1675.

    (26) Wu, T. W.; Jia, G. X.; Bao, J. X.; Liu, Y. Y.; An, S. L. Electronic structures and oxygen ion migrations of the CaO or BaO and Sm2O3co-doped CeO2System: A DFT + U Study.2016, 32, 1363–1369.

    (27) Yahiro, H.; Eguchi, K.; Arai, H. Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell.1989, 36, 71–75.

    (28) Kumar, A.; Devi, P. S.; Maiti, H. S.A novel approach to develop dense lanthanum calcium chromite sintered ceramics with very high conductivity.2004, 16, 5562–5563.

    (29) Banerjee, S. P.; Devi, S. Sinter-active nanocrystalline CeO2powder prepared by a mixed fuel process: effect of fuel on particle agglomeration.2007, 9, 1097–1107.

    (30) Murgida, G. E.; Ferrari, V.; Ganduglia, P. M. V. Ordering of oxygen vacancies and excess charge localization in bulk ceria: a DFT + U study.2014, 90, 115120/1–10.

    (31) Zhang, C.; Michaelides, A.; King, D. A.; Jenkins, S. J. Oxygen vacancy clusters on ceria: decisive role of ceriumelectrons.2009, 79, 075433/1–11.

    (32) Graciani, J.; Antonio, M.; Márquez, J. J.; Plata, Y. O.; Norge, C.; Meyer, H. A.; Claudio, M.; Zicovich, W.; Javier, F. S. Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: the case of CeO2and Ce2O3.2011, 7, 56–65.

    (33) Hooper, J.; Ismail, A.; Giorgi, J. B. Computational insights into the nature of increased ionic conductivity in concentrated samarium-doped ceria: a genetic algorithm study.2010, 12, 12969–12972.

    (34) Kresse, G.; Furthmüller, J. Efficiency oftotal energy calculations for metals and semiconductors using a plane-wave basis set.. 1996, 6, 15–50.

    (35) Delfina, G. P.; Alfredo, J.; Beatriz, I. Mn-doped CeO2: DFT + U study of a catalyst for oxidation reactions.2013, 117, 18063–18073.

    (36) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple.1996, 77, 3865–3867.

    (37) Castleton, C. W.; Kullgren, J.; Hermansson, K. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria.2007, 127, 244704/1–11.

    (38) Loschen, C.; Carrasco, J.; Neyman, K. M. Illas, F. First-principles LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter.2007, 75, 035115/1–8.

    (39) Nolan, M.; Parker, S. C.; Watson, G. W. Reduction of NO2 on ceria surfaces.2006, 110, 2256–2262.

    (40) Nolan, M.; Watson, G. W. The surface dependence of CO adsorption on ceria.2006, 110, 16600–16606.

    (41) Nolan, M.; Parker, S. C.; Watson, G. W. CeO2catalysed conversion of CO, NO2and NO from first principles energetics.2006, 8, 216–218.

    (42) Scanlon, D. O.; Galea, N. M.; Morgan, B. J.; Watson, G. W. Reactivity on the (110) surface of ceria: a GGA+study of surface reduction and the adsorption of CO and NO2.2009, 113, 11095–11103.

    (43) Keating, P. R. L.; Scanlon, D. O.; Watson, G. W. Intrinsic ferromagnetism in CeO2: dispelling the myth of vacancy site localization mediated superexchange.2009, 21, 405502/1–6.

    (44) Dudarev, S. L.;Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface.1998, 57, 1505–1517.

    (45) Larson, P. W.; Lambrecht, R. L.; Chantis, A. N.; Schilfgaarde, V. M. Electronic structure of rare-earth nitrides using the LSDA+approach: importance of allowing 4orbitals to break the cubic crystal symmetry.2007, 75, 045114/1–14.

    (46) Dorado, B.; Jomard, G.; Freyss, M.; Bertolus, M. Stability of oxygen point defects in UO2by first-principles DFT + U calculations: occupation matrix control and Jahn-Teller distortion.2010, 82, 035114/1–11.

    (47) Feng, J.; Xiao, B.; Wan, C. L.Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7(Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore.2011, 59, 1742–1760.

    (48) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations.1976, 13, 5188–5192.

    (49) Fergus, J. W. Recent developments in cathode materials for lithium ion batteries.2006, 189, 30–36.

    (50) Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria.2005, 595, 223–232.

    (51) Silva, D. G. L. F.; Ganduglia, P. M. V.; Sauer, J.; Bayer, V.; Kresse, G. Hybrid functionals applied to rare-earth oxides: the example of ceria.2007, 75, 045121/1–10.

    (52) Skorodumova, N. V.; Ahuja, R.; Simak, S. I.; Abrikosov, A.; Johansson, B.; Lundqvist, B. I. Electronic, bonding, and optical properties of CeO2and Ce2O3from first principles.2001, 64, 115108/1–9.

    (53) Andersson, D. A.; Simak, S. I.; Johansson, B.; Abrikosov, I. A.; Skorodumova, N. V. Modeling of CeO2, Ce2O3, and CeO2-xin the LDA+formalism.2007, 75, 035109/1–6.

    9 May 2017;

    8 August 2017

    10.14102/j.cnki.0254-5861.2011-1715

    ①the National Natural Science Foundation of China (No. 51474133) and Inner Mongolia Natural Science Foundation (No. 2016MS0513)

    ②E-mail: guixiao.jia@163.com

    久热爱精品视频在线9| 欧美亚洲 丝袜 人妻 在线| 女人被躁到高潮嗷嗷叫费观| 777久久人妻少妇嫩草av网站| 亚洲色图综合在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲天堂av无毛| 男女之事视频高清在线观看 | svipshipincom国产片| 日韩大码丰满熟妇| 免费观看人在逋| 男女无遮挡免费网站观看| 欧美人与性动交α欧美软件| 可以免费在线观看a视频的电影网站 | 日韩免费高清中文字幕av| 日本wwww免费看| 国产成人精品久久久久久| 亚洲国产精品国产精品| 欧美日韩av久久| 午夜日韩欧美国产| 久久久久人妻精品一区果冻| 精品福利永久在线观看| 丝瓜视频免费看黄片| 午夜福利影视在线免费观看| 免费av中文字幕在线| 最新的欧美精品一区二区| 国产伦理片在线播放av一区| 午夜精品国产一区二区电影| av卡一久久| 中文字幕色久视频| 久久久亚洲精品成人影院| 亚洲,欧美,日韩| 97在线人人人人妻| 青春草国产在线视频| 欧美 亚洲 国产 日韩一| 日日爽夜夜爽网站| 精品一区二区免费观看| 视频在线观看一区二区三区| 热99久久久久精品小说推荐| 老熟女久久久| 亚洲av综合色区一区| 9191精品国产免费久久| 亚洲精品国产色婷婷电影| 一级毛片电影观看| 99久久精品国产亚洲精品| 制服丝袜香蕉在线| 国产乱人偷精品视频| 欧美日韩av久久| 在现免费观看毛片| 国产在视频线精品| 日本爱情动作片www.在线观看| 天天操日日干夜夜撸| 黄片小视频在线播放| 免费看av在线观看网站| 日韩免费高清中文字幕av| 久久国产亚洲av麻豆专区| 男女高潮啪啪啪动态图| 国产97色在线日韩免费| 国产黄频视频在线观看| 狠狠婷婷综合久久久久久88av| 久久久久久久大尺度免费视频| 曰老女人黄片| 精品久久久精品久久久| 天天操日日干夜夜撸| 九色亚洲精品在线播放| 黑人欧美特级aaaaaa片| 一边亲一边摸免费视频| 日韩av在线免费看完整版不卡| 午夜免费男女啪啪视频观看| 国产深夜福利视频在线观看| 狂野欧美激情性bbbbbb| 中文字幕高清在线视频| 国产人伦9x9x在线观看| 最近最新中文字幕免费大全7| 大码成人一级视频| 亚洲人成电影观看| 在线天堂最新版资源| 五月开心婷婷网| 男女床上黄色一级片免费看| 免费少妇av软件| 女人被躁到高潮嗷嗷叫费观| av女优亚洲男人天堂| av国产精品久久久久影院| 大片电影免费在线观看免费| 久久久亚洲精品成人影院| 成人亚洲精品一区在线观看| 一区二区日韩欧美中文字幕| 亚洲精品国产av蜜桃| 亚洲欧美中文字幕日韩二区| 黄色毛片三级朝国网站| 国产片内射在线| 国产成人91sexporn| 汤姆久久久久久久影院中文字幕| 亚洲七黄色美女视频| 国产一区二区三区综合在线观看| av视频免费观看在线观看| 男人添女人高潮全过程视频| 欧美97在线视频| 亚洲伊人色综图| 亚洲欧美日韩另类电影网站| 欧美乱码精品一区二区三区| 亚洲欧美一区二区三区久久| 日韩免费高清中文字幕av| 一边摸一边抽搐一进一出视频| 99久久99久久久精品蜜桃| 啦啦啦视频在线资源免费观看| 久久青草综合色| 热re99久久国产66热| av国产久精品久网站免费入址| 综合色丁香网| 亚洲国产欧美在线一区| 观看av在线不卡| 亚洲精品,欧美精品| 欧美日韩视频精品一区| 欧美日韩视频精品一区| 日本av免费视频播放| 午夜福利在线免费观看网站| 国产伦理片在线播放av一区| 国产成人系列免费观看| 在线观看人妻少妇| 亚洲成人免费av在线播放| 久久精品熟女亚洲av麻豆精品| 午夜免费观看性视频| 日韩欧美一区视频在线观看| 国产日韩欧美在线精品| 免费黄频网站在线观看国产| 在线亚洲精品国产二区图片欧美| 看免费av毛片| 中文字幕色久视频| 国产精品偷伦视频观看了| 国产精品久久久人人做人人爽| 一本久久精品| 色婷婷av一区二区三区视频| 欧美激情极品国产一区二区三区| 日日啪夜夜爽| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻熟女乱码| 国产不卡av网站在线观看| 欧美精品亚洲一区二区| www.熟女人妻精品国产| 亚洲人成电影观看| 国产精品.久久久| 久久久久久久久久久免费av| 99精国产麻豆久久婷婷| 肉色欧美久久久久久久蜜桃| 亚洲欧美一区二区三区黑人| 国产有黄有色有爽视频| 人体艺术视频欧美日本| 国产在线视频一区二区| 亚洲在久久综合| 亚洲视频免费观看视频| 91精品三级在线观看| 亚洲成人av在线免费| 免费观看人在逋| 黄频高清免费视频| 男女免费视频国产| 久久久久久久久久久免费av| 黑丝袜美女国产一区| 久久久久久久久久久久大奶| 观看av在线不卡| 电影成人av| 哪个播放器可以免费观看大片| 爱豆传媒免费全集在线观看| 丰满迷人的少妇在线观看| 观看美女的网站| 啦啦啦在线观看免费高清www| 日韩伦理黄色片| 亚洲伊人色综图| 日韩制服丝袜自拍偷拍| 免费看不卡的av| avwww免费| 九草在线视频观看| 国产伦人伦偷精品视频| 久久精品国产亚洲av高清一级| 欧美精品一区二区大全| 亚洲精品久久久久久婷婷小说| 午夜老司机福利片| 黑人猛操日本美女一级片| 欧美日韩视频高清一区二区三区二| 一级毛片我不卡| 亚洲五月色婷婷综合| 国产一级毛片在线| 在线观看人妻少妇| 熟女av电影| 90打野战视频偷拍视频| 男的添女的下面高潮视频| 亚洲精品,欧美精品| 性少妇av在线| 黑人猛操日本美女一级片| av在线播放精品| av国产久精品久网站免费入址| www日本在线高清视频| 麻豆精品久久久久久蜜桃| 免费黄频网站在线观看国产| 亚洲在久久综合| 国产成人精品在线电影| 一级毛片黄色毛片免费观看视频| 制服丝袜香蕉在线| 亚洲精品自拍成人| 国产一区二区三区av在线| 少妇人妻 视频| 多毛熟女@视频| 久久影院123| 好男人视频免费观看在线| 老司机在亚洲福利影院| 美女国产高潮福利片在线看| 国产精品一区二区精品视频观看| 国产精品一二三区在线看| 晚上一个人看的免费电影| 日韩制服丝袜自拍偷拍| 在线观看一区二区三区激情| 一区福利在线观看| www.av在线官网国产| 天天添夜夜摸| 久久99精品国语久久久| 国产精品亚洲av一区麻豆 | 中文字幕最新亚洲高清| 在线观看免费高清a一片| 精品少妇一区二区三区视频日本电影 | 99久国产av精品国产电影| 一级黄片播放器| 熟妇人妻不卡中文字幕| 午夜免费男女啪啪视频观看| 国产成人精品久久久久久| 人人妻人人澡人人看| 男女边吃奶边做爰视频| 在线观看免费高清a一片| 亚洲国产最新在线播放| 老司机亚洲免费影院| 国产一级毛片在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美成人精品一区二区| 国产精品av久久久久免费| 精品免费久久久久久久清纯 | 汤姆久久久久久久影院中文字幕| 国产成人91sexporn| 久久97久久精品| 97精品久久久久久久久久精品| 日日啪夜夜爽| 午夜免费男女啪啪视频观看| av.在线天堂| 免费在线观看黄色视频的| 777米奇影视久久| 亚洲国产欧美网| 国产成人欧美| 日韩一区二区视频免费看| 90打野战视频偷拍视频| 18在线观看网站| 美女主播在线视频| 亚洲精品国产色婷婷电影| 老司机影院成人| tube8黄色片| 精品国产一区二区三区久久久樱花| 90打野战视频偷拍视频| 久久性视频一级片| 亚洲成国产人片在线观看| 啦啦啦中文免费视频观看日本| 欧美日韩av久久| 国产深夜福利视频在线观看| 18禁国产床啪视频网站| 国产伦人伦偷精品视频| 日本午夜av视频| 成人国产麻豆网| 欧美中文综合在线视频| 国产精品熟女久久久久浪| 在线亚洲精品国产二区图片欧美| 天天影视国产精品| 国产又色又爽无遮挡免| 90打野战视频偷拍视频| 麻豆av在线久日| 亚洲国产av新网站| 免费av中文字幕在线| av福利片在线| 久久久亚洲精品成人影院| 亚洲伊人久久精品综合| 日日摸夜夜添夜夜爱| 韩国高清视频一区二区三区| 日本91视频免费播放| 十八禁网站网址无遮挡| 亚洲七黄色美女视频| 成人黄色视频免费在线看| 精品久久蜜臀av无| 高清不卡的av网站| 男人爽女人下面视频在线观看| 国产精品国产三级国产专区5o| 一个人免费看片子| 黄色视频不卡| 成人黄色视频免费在线看| 国产一区亚洲一区在线观看| 一本久久精品| 波多野结衣av一区二区av| 免费高清在线观看日韩| 视频区图区小说| 久久99热这里只频精品6学生| 亚洲精品日本国产第一区| 999久久久国产精品视频| 亚洲精品一二三| av在线观看视频网站免费| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 国产毛片在线视频| 一级,二级,三级黄色视频| 成人三级做爰电影| 色播在线永久视频| 99久久人妻综合| 岛国毛片在线播放| 久久久久精品久久久久真实原创| 天美传媒精品一区二区| a 毛片基地| 亚洲精品国产av蜜桃| 亚洲精品美女久久久久99蜜臀 | 男女无遮挡免费网站观看| 成人毛片60女人毛片免费| e午夜精品久久久久久久| 国产1区2区3区精品| 免费黄色在线免费观看| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品自产自拍| 中文精品一卡2卡3卡4更新| 王馨瑶露胸无遮挡在线观看| 国产欧美日韩一区二区三区在线| 人妻一区二区av| 最新的欧美精品一区二区| 久久久久人妻精品一区果冻| 国产精品久久久久久精品电影小说| 在线观看免费视频网站a站| 18在线观看网站| 久久午夜综合久久蜜桃| 日本欧美国产在线视频| 国产一区有黄有色的免费视频| 亚洲精品aⅴ在线观看| 午夜久久久在线观看| 黄网站色视频无遮挡免费观看| 免费看不卡的av| 亚洲人成电影观看| 亚洲伊人久久精品综合| 啦啦啦中文免费视频观看日本| 女的被弄到高潮叫床怎么办| 亚洲男人天堂网一区| 日本午夜av视频| 欧美少妇被猛烈插入视频| 亚洲精品成人av观看孕妇| 午夜福利乱码中文字幕| 伊人亚洲综合成人网| 国产精品三级大全| 最近2019中文字幕mv第一页| 国产精品香港三级国产av潘金莲 | 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 飞空精品影院首页| 欧美人与善性xxx| 亚洲av国产av综合av卡| 亚洲欧洲日产国产| 欧美日韩av久久| 日韩电影二区| 亚洲七黄色美女视频| 中国三级夫妇交换| 人妻人人澡人人爽人人| 十八禁高潮呻吟视频| 看十八女毛片水多多多| 亚洲美女视频黄频| 嫩草影院入口| av在线老鸭窝| 亚洲av欧美aⅴ国产| av一本久久久久| 亚洲国产欧美日韩在线播放| 男人添女人高潮全过程视频| 高清黄色对白视频在线免费看| 高清av免费在线| 国产精品免费视频内射| 久久av网站| 久久这里只有精品19| 五月天丁香电影| 久久天堂一区二区三区四区| 亚洲美女黄色视频免费看| 久久精品久久精品一区二区三区| 高清在线视频一区二区三区| 国产成人精品久久二区二区91 | 无限看片的www在线观看| 午夜福利视频在线观看免费| 国产在线免费精品| 黄片无遮挡物在线观看| 成人18禁高潮啪啪吃奶动态图| 免费黄色在线免费观看| 久久久久精品人妻al黑| 日韩一卡2卡3卡4卡2021年| 曰老女人黄片| 久久久久精品人妻al黑| 一区二区av电影网| 久久韩国三级中文字幕| 亚洲伊人色综图| 中文字幕人妻丝袜制服| 国产成人啪精品午夜网站| 亚洲欧美激情在线| 亚洲精品美女久久久久99蜜臀 | 两性夫妻黄色片| 日日爽夜夜爽网站| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| 看免费av毛片| 国产亚洲精品第一综合不卡| 日韩一本色道免费dvd| 日日摸夜夜添夜夜爱| 搡老岳熟女国产| 国产极品天堂在线| 久久精品久久精品一区二区三区| 亚洲成人免费av在线播放| 国产极品天堂在线| netflix在线观看网站| 欧美变态另类bdsm刘玥| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| 亚洲国产中文字幕在线视频| 国产精品久久久久久精品古装| 色网站视频免费| 伦理电影免费视频| 乱人伦中国视频| 51午夜福利影视在线观看| 多毛熟女@视频| 亚洲精品国产区一区二| 色网站视频免费| 欧美另类一区| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 国产亚洲最大av| 嫩草影视91久久| 欧美精品一区二区大全| 免费观看性生交大片5| 三上悠亚av全集在线观看| 成年人免费黄色播放视频| 国产男人的电影天堂91| 国产精品蜜桃在线观看| 精品国产露脸久久av麻豆| 18禁裸乳无遮挡动漫免费视频| 欧美精品亚洲一区二区| 亚洲在久久综合| 日日撸夜夜添| 国产精品一区二区精品视频观看| 亚洲久久久国产精品| 国产精品秋霞免费鲁丝片| 老司机亚洲免费影院| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 老司机影院成人| 国产成人一区二区在线| 日韩不卡一区二区三区视频在线| 亚洲欧美清纯卡通| 久久久欧美国产精品| av福利片在线| 欧美国产精品va在线观看不卡| 欧美激情 高清一区二区三区| 天天躁夜夜躁狠狠久久av| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 超色免费av| 最近手机中文字幕大全| 1024香蕉在线观看| 亚洲av男天堂| 一区二区三区激情视频| 欧美激情高清一区二区三区 | 国产深夜福利视频在线观看| 美女大奶头黄色视频| 国产1区2区3区精品| 免费少妇av软件| 一区在线观看完整版| av不卡在线播放| 老汉色av国产亚洲站长工具| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 麻豆av在线久日| 午夜福利影视在线免费观看| 国产成人一区二区在线| 爱豆传媒免费全集在线观看| 亚洲精品成人av观看孕妇| 久久精品aⅴ一区二区三区四区| 国产 一区精品| 一区二区三区乱码不卡18| 国产精品麻豆人妻色哟哟久久| 成人手机av| 欧美日韩精品网址| videosex国产| 久久久久人妻精品一区果冻| 无遮挡黄片免费观看| 婷婷色综合大香蕉| 水蜜桃什么品种好| 丝袜美腿诱惑在线| 中文字幕av电影在线播放| 亚洲精华国产精华液的使用体验| 日韩大片免费观看网站| 国产欧美日韩一区二区三区在线| 亚洲精品视频女| 五月天丁香电影| 国产高清不卡午夜福利| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲 | 青草久久国产| 亚洲欧美精品综合一区二区三区| 天天添夜夜摸| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 国产精品秋霞免费鲁丝片| 免费看av在线观看网站| a级毛片在线看网站| 一本大道久久a久久精品| 99国产精品免费福利视频| 久久久精品94久久精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成电影观看| 国产精品久久久久久精品电影小说| 成人亚洲欧美一区二区av| 国产99久久九九免费精品| 亚洲欧美成人精品一区二区| 国产精品三级大全| 欧美97在线视频| 精品国产一区二区久久| 国产亚洲av高清不卡| 纵有疾风起免费观看全集完整版| av国产久精品久网站免费入址| 精品少妇黑人巨大在线播放| 国产片内射在线| 久久婷婷青草| 一本色道久久久久久精品综合| 九九爱精品视频在线观看| 制服诱惑二区| 日韩一区二区三区影片| 在线看a的网站| 国产在视频线精品| 亚洲av日韩精品久久久久久密 | 日韩av不卡免费在线播放| 久久久久精品性色| 免费观看人在逋| 亚洲婷婷狠狠爱综合网| 十八禁网站网址无遮挡| 久久久久精品国产欧美久久久 | 亚洲精品美女久久久久99蜜臀 | 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 欧美日韩国产mv在线观看视频| 看免费成人av毛片| 国产一区二区 视频在线| 日韩欧美一区视频在线观看| 久久久久视频综合| 十八禁高潮呻吟视频| 国产极品粉嫩免费观看在线| 如何舔出高潮| 欧美精品一区二区免费开放| av女优亚洲男人天堂| 黄频高清免费视频| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 国产1区2区3区精品| 看免费成人av毛片| 天美传媒精品一区二区| 国产一卡二卡三卡精品 | 超碰成人久久| 你懂的网址亚洲精品在线观看| 亚洲国产欧美网| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 十八禁网站网址无遮挡| 9色porny在线观看| 亚洲欧美成人精品一区二区| 精品一区在线观看国产| h视频一区二区三区| 欧美中文综合在线视频| 日韩一区二区视频免费看| 国产亚洲午夜精品一区二区久久| 精品一品国产午夜福利视频| www.精华液| 久热这里只有精品99| √禁漫天堂资源中文www| 两个人免费观看高清视频| 国产激情久久老熟女| 午夜福利乱码中文字幕| 国产亚洲午夜精品一区二区久久| 国产av一区二区精品久久| 欧美另类一区| 宅男免费午夜| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 成人18禁高潮啪啪吃奶动态图| 黄片小视频在线播放| 国产日韩一区二区三区精品不卡| 国产精品国产av在线观看| 久久久精品94久久精品| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久| 国产成人午夜福利电影在线观看| 搡老乐熟女国产| 男女床上黄色一级片免费看| 国精品久久久久久国模美| 色94色欧美一区二区| 女人爽到高潮嗷嗷叫在线视频| 国产熟女欧美一区二区| av不卡在线播放| 亚洲七黄色美女视频| 男人爽女人下面视频在线观看| 亚洲av欧美aⅴ国产| 99热全是精品| 一区在线观看完整版| 在线亚洲精品国产二区图片欧美| 成人国产麻豆网| 91成人精品电影| 色综合欧美亚洲国产小说| 80岁老熟妇乱子伦牲交| 丰满迷人的少妇在线观看| 亚洲在久久综合| 久久 成人 亚洲| 国产有黄有色有爽视频|