• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication of WO3/TiO2 Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3 Decoration①

    2018-03-12 08:38:21WANGDnPANXioYngWANGGungToYIZhiGuo
    結(jié)構(gòu)化學(xué) 2018年2期

    WANG Dn PAN Xio-Yng WANG Gung-To YI Zhi-Guo

    ?

    Fabrication of WO3/TiO2Heterostructures for Efficiently Photocatalytic Gaseous Hydrocarbons Degradation: Origin of Photoactivity and Revisit the Role of WO3Decoration①

    WANG Dana, bPAN Xiao-Yanga②WANG Guang-TaobYI Zhi-Guoa②

    a(350002)b(453007)

    Efficient oxidation of gaseous small molecular hydrocarbons under mild conditions remains a significant but challenging task to date. Here we report that WO3decoration can obviously improve the performance of TiO2(P25) toward the photocatalytic oxidation of several small molecular hydrocarbons (C2H6, C3H8and C2H4) under simulated solar light irradiation. Among the WO3/TiO2heterostructures, the 10wt%WO3/TiO2nanocomposite shows the best photoactivities, which can efficiently oxidize C2H6, C3H8and C2H4within 15, 9 and 8 minutes, respectively under simulated sunlight with a light intensity of 200 mW/cm2. By strong contrast, a decreased photoactivity of TiO2by coupling with WO3is observed when investigating the performance of photocatalysts toward the degradation of methylene blue (MB) in liquid phase. The opposing effect of WO3decoration on the performance of TiO2is thoroughly investigated, and it is found that the improved photoactivities for gaseous hydrocarbon degradation is ascribed to the enhanced oxygen adsorption, resulting from WO3decoration rather than efficient charge separation within the WO3/TiO2heterostructures.

    WO3, TiO2, photocatalytic, hydrocarbons;

    1 INTRODUCTION

    Air pollution caused by automobile exhaust is one of the major problems in urban areas[1]. Although most of the vehicles have been equipped with emission reduction systems[2], tailpipe emission from vehicles still contains high concentrations of light hydrocarbon pollutants (C2H6, C3H8, C2H4, etc.). Up to 80% of the emitted hydrocarbons is produced in the first 60 to 90 s following a cold-start because of the catalytic converter’s inability to oxidize hydro- carbons at low temperature (between 473 to 573 K)[3]These hydrocarbon pollutants in air have adverse effect on our health by reacting with NOunder solar light irradiation to form a more toxic photochemical smog[4]. Although thermocatalytic technique and adsorption method have been used to remove these pollutants, it still remains a challenge to effectively eliminate these hydrocarbon pollutants at ambient temperature because of their high C–H bond energy and weak molecule polarity[5, 6]. Therefore, it is necessary to develop an effective strategy to remove these hydrocarbon pollutants.

    In recent years, tremendous efforts have been devoted to developing heterogeneous photocatalysts for hydrocarbon purification at room temperature[1-3, 6-9], which utilize sunlight as a green and free energy source[10-12]. By far the most studied material is TiO2, as it is considered to represent the most suitable photocatalyst, in view of its effectiveness and stabi- lity against photocorrosion[11, 13-20]. However, the application of TiO2photocatalyst is limited by its insufficient visible light absorption and low quantum efficiency, owing to its wide bandgap and fast charge recombination[11]. To deal with these problems, one effective strategy is to couple TiO2with narrow- band-gap semiconductors (CdS, Fe2O3, WO3, etc) with matched band structure[21-26].

    Tungsten oxide (WO3) is a-type semiconductor with relatively small bandgap (g= 2.6 eV) and strong oxidizing power of photoexcited holes[27], which makes it a promising photocatalyst for hydro- carbon pollutant treatment. In addition, due to the matched band structure of TiO2and WO3, the photogenerated electrons of TiO2can be directly transferred to WO3[28], which was assumed to facile- tate the charge separation and thus may enhance the photoactivity of TiO2[29-31]. Under such assumption, the fabrication of WO3/TiO2nanocomposite has attracted much attention in the field of photo- catalysis[25, 28-33]. However, it seems there is paradox in the interpretation of the role of WO3decoration on the performance of TiO2as several studies have demonstrated that WO3decoration would result in decreased photoactivities of TiO2[26, 32], although electron transfer from TiO2to WO3is observed in WO3/TiO2nanocomposite[26]. Therefore, it is necessary to clarify the role of WO3decoration on the performance of TiO2and thus understand the origin of these inconsistent results.

    In this work, WO3/TiO2nanocomposites are pre- pared by a wet-impregnation method, which shows much higher photoactivities than those of TiO2(P25) toward gas-phase degradation of C2H6, C3H8and C2H4. By strong contrast, a deactivation of TiO2photocatalyst by coupling with WO3is observed when testing photoactivities of the as-synthesized samples for methylene blue oxidation in liquid phase. Further investigation revealed that the entirely different role of WO3decoration on the performance of TiO2is attributed to the different reaction mechanisms involved in these reactions. In the gaseous hydrocarbon photooxidation, the enhancement of photoactivities of TiO2is attributed to the improved oxygen adsorption resulting from WO3decoration rather than enhanced charge separation by WO3/TiO2heterostructures.

    2 EXPERIMENTAL

    2. 1 Chemicals and materials

    Degussa P25 was purchased from Hulls Cor- poration, Germany. Analytically pure ammonium tungstate hydrate ((NH4)10H2(W2O7)6), ammonium oxalate ((NH4)2C2O4),-butyl alcohol (C4H9OH) and methylene blue (C16H18ClN3S) were purchased from Sinopharm Chemical Reagent Co., Ltd. All chemicals were used as received without further purification.

    2. 2 Synthesis

    To obtain the WO3/TiO2heterojunctions with different weight percentage of WO3, a modified impregnation method was employed. First, a certain amount (0.0579 g, 0.0956 g, 0.1222 g, 0.15 g, 0.1941 g, or 0.4714 g) of (NH4)10H2(W2O7)6was dissolved in 300 mL of deionized water with constant stirring to form a clear solution. Then 1 g of TiO2(P25) was added into the above solution and dispersed by ultrasonic treatment to obtainuniform suspension. After stirring for 12 h, the suspension was dried in a water bath at 363 K with constant stirring. After grinding in a mortar, the dried samples were then heat-treated in a muffle furnace at a rate of 5 K/min up to 723 K and dwelled for 90 minutes in air atmosphere.

    2.3 Sample characterization

    The crystalline structure of the sample was analy- zed by X-ray diffraction (XRD, Rigaku Miniflex II) equipment with Curadiation at a scan step of 0.02o. UV-visible diffuse reflectance spectra were collected by a Peking Elmer Lamda 900 UV/VIS/NIR spectrometer equipped with an integrating sphere. BaSO4was used as the reflec- tance standard. The morphology, composition and microstructure of the samples were investigated by high-resolution transmission electron microscopy (TEM, JEM-2010) with an energy-dispersive X-ray (EDX) analysis attachment. The X-ray photoelectron spectroscopy (XPS) was employed to characterize the chemical states of the sample. The surface areas of the samples were measured by a TriStar II 3020-BET/BJH surface area analyzer. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS) studies were performed on a spectrometer Nexus FT-IR (Thermo Nicolet) by using a diffuse reflectance attachment equipped with a reaction chamber. 128 single beam spectra had been co-added at a resolution of 4 cm?1and the spectra were presented as Kubelka-Munk function referred to adequate background spectra. The background and samples spectra were taken (the average of accumulated 32 scans) over the frequency range of 4000~600 cm?1. O2temperature-programmed desorption measurements were performed on Micromeritics AutoChem II 2920 instrument con- nected to a MKS cirrus mass spectrum. Before measurement, the catalyst powder (0.1 g) was heated in a He flow and kept at 423 K for 60 min, and then cooled to 333 K and flowed with O2for 60 min. After that, the O2flow was replaced by He flow for 60 min to remove any un-adsorbed O2. The TPD results were recorded at a heating rate of 10 K/min. The O2desorbed was measured quantitatively by mass spectrum. The photoluminescence (PL) spectra of the photocatalysts were obtained by a Varian Cary Eclipse spectrometer with an excitation wavelength of 325 nm.

    2. 4 Photocatalytic activity test

    The photocatalytic oxidation of gaseous hydro- carbons was carried out in a homemade fixed-bed pyrex reactor of 450 ml capacity (see Fig. S1) and a flow-bed quartz reactor (28mm × 18mm × 1mm, see Fig. S2), respectively. All experiments were conducted at atmospheric pressure and room temperature. In a typical fixed-bed reaction: the as-obtained sample (0.2 g) was spread uniformly on the bottom of the reactor. Then, the reactor was flushed with N2repeatedly to remove water and CO2that were adsorbed on the catalyst and the inwall of reactor. Subsequently, 5 mL of O2and 90 μL of hydrocarbons were injected into the reactor by micro-syringe, respectively. The initial concentration of hy- drocarbons is 200 ppm (Volume). Prior to the irradiation, the reactor was kept in the dark for 2 h to ensure the establishment of an adsorption-desorption equilibrium between the photocatalyst and reactants. Then, the reactor was irradiated by a 300 W Xe lamp. The Xe spectrum is provided in Fig. S3. At a certain time interval, 4 mL of gas was sampled from the reactor and analyzed by a gas chromatography (GC9720 Fuli) equipped with a HP-Plot/U capillary column, a molecular sieve 13X column, a flame ionization detector (FID) and a thermal conductivity detector (TCD). The degradation percentage of hydrocarbons is indicated as C/C0. Here C is the concentration of hydrocarbons at certain reaction time, and C0is the initial concentration of hydro- carbons.

    A typical flow-bed reaction was carried out as follows: the sample was placed in a quartz reactor, and then the mixed gas consisted of 78.9% N2and 21.1% O2, and small quantity of hydrocarbon gases (about 200 ppm) was flowed through the samples and analyzed directly by the gas chromatography (GC9720 Fuli). Before illumination, the flowing carrier gas was used to expel CO2and other species adsorbed on the surface of the catalysts. During the reaction, a 300 W Xe lamp was used to provide simulated solar light.

    The methylene blue (MB) photooxidation in liquid phase was carried out as follows: 30 mg of pho- tocatalyst was dispersed into 60 mL of MB solution (20 ppm) in a quartz vial. The resulting suspension was stirred in the dark for 1 h to ensure the establishment of an adsorption-desorption equili- brium between the sample and reactant. Then the reaction system was irradiated by a 300 W Xe lamp (CEL-HXF300) system (800>>300 nm). As the reactions proceed, 3 mL of the suspension was taken at a certain time interval and was centrifuged to remove the catalyst. Afterwards, the residual amount of MB in the solution was analyzed on the basis of its characteristic optical absorption at 660 nm, using a UV/Vis/NIR sepectrophotometer (Perking Elmer Lambada 900) to measure the change of MB concentration with irradiation time based on Lambert-Beer’s law. The percentage of degradation is denoted as/C. Hereis the absorption of MB solution at each irradiation time interval of the main peak of the absorption spectrum, andCis the absorption of the initial concentration when the adsorption-desorption equilibrium was achieved.

    3 RESULTS AND DISCUSSION

    3. 1 Characterization of photocatalysts

    The XRD patterns of the as-synthesized samples are shown in Fig. 1. For the blank WO3synthesized by calcination of ammonium tungstate hydrate, all the diffraction peaks can be indexed to the monoclinic phase (PDF # 71-2141) of WO3[34]. The commercial available TiO2(P25) consists of anatase and rutile phases. The presence of WO3in the 5wt%WO3/TiO2, 8wt%WO3/TiO2and 10wt%WO3/TiO2samples does not result in new XRD peaks, which may be ascribed to the even distribution and low WO3content in these samples[35]. When the addition ratio of WO3reaches 12%, 15% and 30%, besides the typical diffraction peaks of TiO2, additional peaks of WO3can be identified on these samples.

    Fig. 1. XRD patterns of the blank WO3,TiO2 (P25) and WO3/TiO2 nanocompositeswith different WO3 weight ratios

    The morphology and microstructure of the WO3/TiO2nanocomposite are investigated by TEM analysis. As shown in Fig. 3a and Fig. S5a, b, the average particle size of 10%WO3/TiO2nanocom- posite is determined to be 24 nm. The HRTEM image in Fig. 3b displays distinct lattice fringe of TiO2(101) facets (0.35 nm). In addition, the typical lattice spacing of 0.17 nm corresponding to the (–331) facet of WO3can also be identified in the HRTEM image. EDX analysis in Fig. 3c reveals the existence of Ti, W and O elements. Elemental mapping analysis (Fig. 3d-g) indicates that the Ti, W and O elements have uniform distribution, indicating that WO3is homogeneously decorated on the surface of TiO2.

    Fig. 2. UV-visible diffusive reflectance spectra of the blank WO3, TiO2(P25)and WO3/TiO2nanocomposites with different WO3weight ratios

    Fig. 3. TEM (a) and HRTEM images (b) of the 10wt%WO3/TiO2nanocomposite; EDX spectrum of the 10wt%WO3/TiO2nanocomposite (c); high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) image (d) and elemental mapping patterns of Ti (e), W (f) and O (g)

    3.2 Photocatalytic degradation of hydrocarbons

    The performance of WO3/TiO2nanocomposites is initially investigated by photocatalytic degradation of ethane (C2H6) under simulated solar light irradiation. Notably, C2H6is very stable because of its weak polarity as well as the inert C–C and C–H bonds[37]. As shown in Fig. 4a and b, WO3/TiO2nanocom- posites exhibit much higher photoactivities for C2H6oxidation than those of blank WO3and TiO2(P25). In particular, 10wt%WO3/TiO2demonstrates the highest C2H6oxidation rate among these samples, which is 5.3 times higher than that of blank TiO2(P25) (Table S1). This result indicates that the addition ratio of WO3is crucial to optimize the photoactivity of the nanocomposite. The highest photoactivity of 10wt%WO3/TiO2is in accordance with its highest surface area (Table S1). This result suggests that the surface area of catalyst can obviously affect the photoactivity, that is, the larger surface area of photocatalyst is beneficial for provi- ding more active sites for the reaction.

    To examine the efficiency of WO3/TiO2nanocom- posite, we also investigated the photoactivities of 10wt%WO3/TiO2toward propane (C3H8) and ethylene (C2H4) degradation under simulated solar light irradiation (Fig. 4c-f). It is clearly shown that the blank WO3exhibits almost no photoactivities for the oxidation of these hydrocarbons. In contrast, 10wt%WO3/TiO2shows much higher photoactivities for C3H8and C2H4oxidation than those of the blank TiO2(P25), indicating the beneficial effect of WO3/TiO2heterostructure for achieving efficient photocatalytic performance. It is worth noting that both C3H8and C2H4can be efficiently removed within 10 minutes under the simulated solar light illumination (300<<800 nm). In addition, after 5 times recycling photocatalytic test, the performance of used sample remains similar to those of the fresh sample (Fig. S6-c).

    Fig. 4. Photocatalytic degradation of C2H6over blank WO3, TiO2(P25) and WO3/TiO2nanocomposites under simulated solar light illumination (300<<800 nm) (a); Pseudo-first-order kinetics analysis of photocatalytic reaction over the samples (b); Photocatalytic degradation of C3H8(c, d), C2H4(e, f) over the TiO2(P25), WO3and 10wt%WO3/TiO2nanocomposite under simulated solar light illumination (300<<800 nm)

    The photoactivites of 10wt%WO3/TiO2nanocom- posite for C2H6, C3H8and C2H4oxidation were further investigated in a flow mode under simulated solar light irradiation. In this mode, the sample was put in a quartz reactor with nitrogen-oxygen (20% O2/N2) as carrier gas and hydrocarbons (C2H6, C3H8or C2H4) as reactant gas. The flowing rate was kept at 10 ml/min. The intensity of the simulated sunlight on the catalyst surface was approximately 200 mW/cm2measured using a calibrated thermopile detector. Before light irradiation, CO2in the reaction system was removed by flowing carrier gas. As shown in Fig. 5a-c, when the lamp is turned on, the amount of hydrocarbons decreases rapidly. Simultaneously, the concentration of CO2increases quickly to a constant value. When the light is turned off, the concentration of CO2rapidly decreases to zero. Meanwhile, the amount of hydrocarbons comes back to a constant value. These results indicate that the hydrocarbons (C2H6, C3H8and C2H4) degradation is truly driven by a photocatalytic process. In addition, it is worth noting that the mineral ratios of C2H6, C3H8and C2H4are all determined to be ~100%, indicating that the 10wt%WO3/TiO2nanocomposite is highly efficient for complete oxidation of these hydrocarbon pollutants.

    Fig. 5. Photocatalytic degradation of C2H6(a), C3H8(b) and C2H4(c) over 10wt%WO3/TiO2under simulated solar light irradiation in a flow mode

    In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS) was utilized to fur- ther investigate possible intermediate species during the photocatalytic reactions. As shown in Fig. 6a-c, characteristic IR modes for the hydrocarbons (C2H6, C3H8and C2H4) can be clearly identified on the surface of 10wt%WO3/TiO2, indicating that these hydrocarbons are successfully adsorbed onto the surface of the catalysts. Under the simulated solar light irradiation, the intensity of the band assigned to(C–H) of C2H6, C3H8or C2H4decreases with increasing the irradiation time (Fig. 6a-c)[38], whereas the bands assigned to the characteristic modes of CO2at 2360 and 2340 cm-1gradually grow[39]. These results indicate that these hydrocarbons are oxidized to CO2during the photocatalytic reactions. In addition, the typical(C=O) adsorption bands at 1700~1730 cm-1for carbonyls appear under the simulated solar light irradiation, indicating that the intermediate species (carbonyl compounds) may form during the photocatalytic reaction[40].

    Fig. 6. In situ diffuse reflectance Fourier transform infrared spectroscopy (DRFTIS)spectra on 10wt%WO3/TiO2during the photocatalytic C2H6(a), C3H8(b), C2H4(c)degradation under simulated solar light irradiation (300<<800 nm)

    3. 3 Origin of the enhanced catalytic activity of WO3/TiO2

    To understand the origin of the enhanced pho- tocatalytic activity of WO3/TiO2heterostructure, pho- toluminescence (PL) analysis was utilized to inves- tigate the charge separation process. As shown in Fig. 7a, 10wt%WO3/TiO2nanocomposite shows similar PL intensity to that of TiO2(P25), suggesting that WO3decoration does not promote the charge separa- tion in TiO2, although the charge transfer from TiO2to WO3is thermodynamically favorable. Even if the charge transfer from TiO2to WO3is successful, the electrons transferring from TiO2would be trapped at the W5+sites, thus they cannot be efficiently transferred to the O2molecules (Fig. 7b)[28], which is evidenced by XPS analysis. As shown in Fig. S7a, the XPS peak of W 4for the fresh 10wt%WO3/TiO2nanocomposite is symmetric, indicating fully coordinated W6+ions. However, a shoulder 1.1 eV at the right of the main W 4peak appears after the photocatalytic reactions, indicating the creation of W (V) species on the surface (Fig. S7b)[34]. These W (V) species are stable even when exposed to air for several days, suggesting that molecular oxygen is difficult to oxidize the W (V) species. Therefore, the enhanced photoactivity of WO3/TiO2nanocomposite cannot be explained by the constantly employed scenario that involves charge separation by forming WO3/TiO2heterojunction. Notably, the creation of W (V) species on the surface of WO3/TiO2nanocom- posite does not have harmful effect on the perfor- mance of the photocatalyst, since no deactivation is observed on the WO3/TiO2nanocomposite (Fig. S6a-c).

    Fig. 7. Photoluminescence spectra of the TiO2(P25), WO3and 10wt%WO3/TiO2nanocomposite (a);proposed charge transfer process over WO3/TiO2nanocomposite under simulated solar light irradiation (b)

    In previous studies, it was shown that WO3is much more acidic than TiO2[25], which has higher affinity for chemical species having unpaired electrons[25]. Therefore, the adsorption of oxygen with unpaired electrons on the catalyst surface is investigated by temperature programmed desorption (TPD), as shown in Fig. 8. As compared to TiO2(P25), the O2desorption peak of 10wt%WO3/TiO2shows higher intensity and is shifted to higher temperature. These results indicate that WO3decoration facilitates more oxygen adsorption and enhances the interaction between oxygen and the catalyst surface. Since molecular oxygen is the pre- dominant oxidant during the photocatalytic degra- dation of gaseous hydrocarbons (Fig. S8), the enhan- ced oxygen adsorption can improve the photoactivity of TiO2.

    Fig. 8. O2temperature programmed desorption profiles of TiO2(P25) and 10wt%WO3/TiO2

    In addition, the enhanced visible light absorption by WO3decoration (Fig. 2) may also contribute to the enhancement of the photoactivities of WO3/TiO2nanocomposite. To study the possible contributions of enhanced visible light absorption on the perfor- mance of photocatalyst, we also investigated the performance of WO3/TiO2nanocomposite under UV and visible light irradiation. As shown in Fig. 9a-c, the 10wt% WO3/TiO2nanocomposite shows obvious photoactivities towards the degradation of C2H6, C3H8and C2H4under visible light irradiation. However, the visible light photoactivities of 10wt% WO3/TiO2are much lower than that of 10wt% WO3/TiO2under UV and simulated solar light irradiation. Moreover, it is found that the UV light photoactivities of the sample are similar to the photoactivity of 10wt% WO3/TiO2under simulated solar light irradiation. These results suggest that the enhanced visible light absorption by WO3decoration does facilitate activation of the WO3/TiO2nanocomposite under visible light irradiation, but it does not have an obvious influence on the perfor- mance of the photocatalyst under simulated solar light irradiation.

    Fig. 9. Photocatalytic degradation of C2H6(a), C3H8(b) and C2H4(c) over the 10wt%WO3/TiO2nanocomposite under UV light (300<<380 nm), visible light (420<<800 nm)and simulated solar light (300<<800 nm) illumination

    Notably, an obviously decreased photoactivity of TiO2(P25) by coupling with WO3is observed on the WO3/TiO2nanocomposites toward photocatalytic degradation of methylene blue in liquid phase (Fig. S9). To understand this phenomenon, con- trolled experiments were further conducted. As shown in Fig. S10, the addition of ammonium oxalate (AO) scavenger for photoexcited holes signi- ficantly suppresses the photocatalytic reac- tion[41]. A similar and obvious inhibition phenome- non for photocatalytic reaction is also observed when the scavenger of-butyl alcohol (TBA) for hydroxyl radicals is added[41]. These results indicate that the photogenerated holes and hydroxyl radicals play important roles during the liquid phase methylene blue photodegradation. By contrast, when the reaction system is saturated with N2to expel the dissolved oxygen in the solution, the photoactivity of 10wt%WO3/TiO2is almost not changed, indicating that molecular oxygen is not the primary oxidant during the liquid phase reaction. Therefore, the enhanced oxygen adsorption caused by WO3decora- tion has few effects on the methylene blue photo- degradation. Since the photoexcited electrons in the conduction band of WO3can be hardly scavenged by molecular oxygen, these electrons would recombine with the photogenerated holes or reduce W6+to form W5+(Fig. 7b). As a result, the photoactivity of WO3/TiO2is lower than pure TiO2(P25), which is consistent with the previous report[32].

    4 CONCLUSION

    In conclusion, our results suggest that the influe- nce of WO3decoration on the performance of TiO2is strongly dependent on the mechanism of photo- catalytic reactions. For different photocatalytic reac- tions, the WO3decoration may have opposite effects on the performance of TiO2. For gaseous hydrocar- bon degradation (C2H6, C3H8and C2H4), molecular oxygen is the predominant oxidant. Since WO3decoration could enhance the oxygen adsorption, the photoactivities of TiO2are enhanced by WO3decora- tion, whereas for MB degradation in liquid phase, photogenerated holes and hydroxyl radicals are the primary oxidants. Under such a condition, the elec- trons on the conduction band of WO3would either recombine with the photogenerated holes or react with W6+to form W5+and thus decrease the perfor- mance of TiO2.

    (1) Hüsken, G.; Hunger, M.; Brouwers, H. J. H. Experimental study of photocatalytic concrete products for air purification.2009, 44, 2463-2474.

    (2) Enterkin, J. A.; Setthapun, W.; Elam, J. W.; Christensen, S. T.; Rabuffetti, F. A.; Marks, L. D.; Stair, P. C.; Poeppelmeier, K. R.; Marshall, C. L. Propane oxidation over Pt/SrTiO3nanocuboids.2011, 1, 629-635.

    (3) Heck, R. M.; Farrauto, R. J. Automobile exhaust catalysts.2001, 221, 443-457.

    (4) Li, Y.; Cai, Y.; Chen, X.; Pan, X.; Yang, M.; Yi, Z. Photocatalytic oxidation of small molecule hydrocarbons over Pt/TiO2nanocatalysts.2016, 6, 2760-2767.

    (5) Choudhary, T. V.; Banerjee, S.; Choudhary, V. R. Catalysts for combustion of methane and lower alkanes.2002, 234, 1-23.

    (6) Schmale, J.; Shindell, D.; von Schneidemesser, E.; Chabay, I.; Lawrence, M. Air pollution: clean up our skies.2014, 515, 335-337.

    (7) Chen, X.; Huang, X.; Yi, Z. Enhanced ethylene photodegradation performance of g-C3N4–Ag3PO4composites with direct Z-scheme configuration.2014, 20, 17590-17596.

    (8) Keller, N.; Ducamp, M. N.; Robert, D.; Keller, V. Ethylene removal and fresh product storage: a challenge at the frontiers of chemistry. Toward an approach by photocatalytic oxidation.2013, 113, 5029-5070.

    (9) Long, P.; Zhang, Y.; Chen, X.; Yi, Z. Fabrication of YBi1-xVO4solid solutions for efficient C2H4photodegradation.2015, 3, 4163-4169.

    (10) Fox, M. A.; Dulay, M. T. Heterogeneous photocatalysis.1993, 93, 341-357.

    (11) Fujishima, A.; Zhang, X. Titanium dioxide photocatalysis: present situation and future approaches.2006, 9, 750-760.

    (12) Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications.2011, 112, 1555-1614.

    (13) Zheng, Z.; Huang, B.; Meng, X.; Wang, J.; Wang, S.; Lou, Z.; Wang, Z.; Qin, X.; Zhang, X.; Dai, Y. Metallic zinc-assisted synthesis of Ti3+self-doped TiO2with tunable phase composition and visible-light photocatalytic activity.2013, 49, 868-870.

    (14) Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2nanocrystals leads to high photocatalytic efficiency.2011, 133, 16414-16417.

    (15) Pei, Z.; Ding, L.; Feng, W.; Weng, S.; Liu, P. Defect self-doped TiO2for visible light activity and direct noble metal anchoring.2014, 16, 21876-21881.

    (16) Zhu, Q.; Peng, Y.; Lin, L.; Fan, C. M.; Gao, G. Q.; Wang, R. X.; Xu, A. W. Stable blue TiO2-xnanoparticles for efficient visible light photocatalysts.2014, 2, 4429-4437.

    (17) Umezawa, N.; Ye, J. Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2.2012, 14, 5924-5934.

    (18) Li, K.; Gao, S.; Wang, Q.; Xu, H.; Wang, Z.; Huang, B.; Dai, Y.; Lu, J. In-situ-reduced synthesis of Ti3+self-doped TiO2/g-C3N4heterojunctions with high photocatalytic performance under LED light irradiation.2015, 7, 9023-9030.

    (19) Xiang, Q.; Yu, J.; Wang, W.; Jaroniec, M. Nitrogen self-doped nanosized TiO2sheets with exposed {001} facets for enhanced visible-light photocatalytic activity.2011, 47, 6906-6908.

    (20) Liu, G.; Yang, H. G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G. Q.; Cheng, H. M. Enhanced photoactivity of oxygen-deficient anatase TiO2sheets with dominant {001} Facets.2009, 113, 21784-21788.

    (21) Liu, S.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Synthesis of one-dimensional CdS@TiO2core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO2shell.2012, 4, 6378-6385.

    (22) Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. Constructing ternary CdS-Graphene-TiO2hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation.2012, 116, 18023-18031.

    (23) Lou, Z.; Li, F.; Deng, J.; Wang, L.; Zhang, T. Branch-like hierarchical heterostructure (Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor.2013, 5, 12310-12316.

    (24) DeKrafft, K. E.; Wang, C.; Lin, W. Metal-organic framework templated synthesis of Fe2O3/TiO2nanocomposite for hydrogen production.2012, 24, 2014-2018.

    (25) Papp, J.; Soled, S.; Dwight, K.; Wold, A. Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2photocatalysts.1994, 6, 496-500.

    (26) Tada, H.; Kokubu, A.; Iwasaki, M.; Ito, S. Deactivation of the TiO2photocatalyst by coupling with WO3and the electrochemically assisted high photocatalytic activity of WO3.2004, 20, 4665-4670.

    (27) Zheng, H.; Ou, J. Z.; Strano, M. S.; Kaner, R. B.; Mitchell, A.; Kalantar-zadeh, K. Nanostructured tungsten oxide – properties, synthesis, and applications.2011, 21, 2175-2196.

    (28) Zhao, D.; Chen, C.; Yu, C.; Ma, W.; Zhao, J. Photoinduced electron storage in WO3/TiO2nanohybrid material in the presence of oxygen and postirradiated reduction of heavy metal ions.2009, 113, 13160-13165.

    (29) Paramasivam, I.; Nah, Y. C.; Das, C.; Shrestha, N. K.; Schmuki, P. WO3/TiO2nanotubes with strongly enhanced photocatalytic activity.2010, 16, 8993-8997.

    (30) Smith, W.; Zhao, Y. Enhanced photocatalytic activity by aligned WO3/TiO2two-layer nanorod arrays.2008, 112, 19635-19641.

    (31) Ismail, A. A.; Abdelfattah, I.; Helal, A.; Al-Sayari, S. A.; Robben, L.; Bahnemann, D. W. Ease synthesis of mesoporous WO3-TiO2nanocomposites with enhanced photocatalytic performance for photodegradation of herbicide imazapyr under visible light and UV illumination.2016, 307, 43-54.

    (32) Dozzi, M. V.; Marzorati, S.; Longhi, M.; Coduri, M.; Artiglia, L.; Selli, E. Photocatalytic activity of TiO2-WO3mixed oxides in relation to electron transfer efficiency.2016, 186, 157-165.

    (33) Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H. W.; Chung, W. J.; Lee, W. I. Preparation of transparent particulate MoO3/TiO2and WO3/TiO2films and their photocatalytic properties.2001, 13, 2349-2355.

    (34) Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen-treated WO3nanoflakes show enhanced photostability.2012, 5, 6180-6187.

    (35) Martín, C.; Solana, G.; Rives, V.; Marcì, G.; Palmisano, L.; Sclafani, A. Physico-chemical properties of WO3/TiO2systems employed for 4-nitrophenol photodegradation in aqueous medium.1997, 49, 235-243.

    (36) Pan, J. H.; Lee, W. I. Preparation of highly ordered cubic mesoporous WO3/TiO2films and their photocatalytic properties.2006, 18, 847-853.

    (37) Brigden, C. T.; Poulston, S.; Twigg, M. V.; Walker, A. P.; Wilkins, A. J. J. Photo-oxidation of short-chain hydrocarbons over titania.2001, 32, 63-71.

    (38) H?gglund, C.; Kasemo, B.; ?sterlund, L.reactivity and FTIR study of the wet and dry photooxidation of propane on anatase TiO2.2005, 109, 10886-10895.

    (39) Khatri, R. A.; Chuang, S. S. C.; Soong, Y.; Gray, M. Carbon dioxide capture by diamine-grafted SBA-15: a combined fourier transform infrared and mass spectrometry study.2005, 44, 3702-3708.

    (40) van der Meulen, T.; Mattson, A.; ?sterlund, L. A comparative study of the photocatalytic oxidation of propane on anatase, rutile, and mixed-phase anatase-rutile TiO2nanoparticles: role of surface intermediates.2007, 251, 131-144.

    (41) Pan, X.; Xu, Y. J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2with oxygen vacancies for photocatalytic redox reactions under visible light.2013, 117, 17996-18005.

    7 June 2017;

    23 November 2017

    10.14102/j.cnki.0254-5861.2011-1748

    ① Supported by the National Key Project on Basic Research (No. 2013CB933203), the Strategic Priority Research Program of the Chinese Academy

    of Sciences (No. XDB20000000), the National Natural Science Foundation of China (No. 21607153, 21373224 and 21577143), the Natural Science Foundation of Fujian Province (No. 2015J05044), and the Frontier Science Key Project of the Chinese Academy of Sciences (QYZDB-SSW-JSC027)

    ②Pan Xiao-Yang, E-mail: xypan@fjirsm.ac.cn; Yi Zhi-Guo, E-mail: zhiguo@fjirsm.ac.cn

    欧美成人一区二区免费高清观看| 熟女电影av网| 国产在视频线精品| 夫妻午夜视频| 2018国产大陆天天弄谢| 精品一区二区免费观看| 精品久久久久久久久亚洲| 在线天堂最新版资源| 美女视频免费永久观看网站| 国产精品国产三级国产av玫瑰| 国产在线男女| 赤兔流量卡办理| 日本色播在线视频| 极品少妇高潮喷水抽搐| 欧美日韩视频高清一区二区三区二| 亚洲精品久久久久久婷婷小说| 亚洲精华国产精华液的使用体验| 一本久久精品| 又大又黄又爽视频免费| 国产免费又黄又爽又色| 色视频在线一区二区三区| 久久久久久九九精品二区国产| 99久久精品一区二区三区| 午夜激情久久久久久久| 成人美女网站在线观看视频| 18禁裸乳无遮挡免费网站照片| 午夜日本视频在线| 熟女av电影| 欧美xxxx性猛交bbbb| 美女高潮的动态| 久久久久久人妻| 干丝袜人妻中文字幕| 国产亚洲欧美精品永久| 国产伦理片在线播放av一区| 99热这里只有是精品在线观看| 美女xxoo啪啪120秒动态图| 少妇人妻 视频| 男女啪啪激烈高潮av片| 国产精品.久久久| 日韩免费高清中文字幕av| 我的女老师完整版在线观看| 日日啪夜夜撸| 国产高清不卡午夜福利| 久热这里只有精品99| 简卡轻食公司| 91在线精品国自产拍蜜月| 亚洲自偷自拍三级| 精华霜和精华液先用哪个| 国产黄片美女视频| 午夜免费观看性视频| 久久久a久久爽久久v久久| 亚洲精品第二区| 国产精品免费大片| 成人黄色视频免费在线看| 国产精品久久久久久久电影| 欧美日韩一区二区视频在线观看视频在线| 99精国产麻豆久久婷婷| 国产淫语在线视频| 嘟嘟电影网在线观看| 99热这里只有是精品在线观看| 亚洲国产精品成人久久小说| 一级毛片电影观看| 色哟哟·www| 少妇人妻 视频| 精品人妻偷拍中文字幕| 人妻一区二区av| 久久亚洲国产成人精品v| 尤物成人国产欧美一区二区三区| 国产亚洲一区二区精品| 少妇裸体淫交视频免费看高清| 一区二区av电影网| 自拍偷自拍亚洲精品老妇| av不卡在线播放| 只有这里有精品99| 直男gayav资源| 国产国拍精品亚洲av在线观看| av黄色大香蕉| 哪个播放器可以免费观看大片| 国产老妇伦熟女老妇高清| 黄片无遮挡物在线观看| 高清毛片免费看| 日韩一区二区三区影片| 亚洲国产精品专区欧美| 黄色配什么色好看| 极品教师在线视频| 国产精品嫩草影院av在线观看| 啦啦啦在线观看免费高清www| 国产乱人视频| 男女无遮挡免费网站观看| 下体分泌物呈黄色| 美女内射精品一级片tv| 99久久精品国产国产毛片| 国产成人精品一,二区| 久久精品国产亚洲网站| 免费在线观看成人毛片| 性色av一级| 国产爽快片一区二区三区| 国产乱人偷精品视频| 亚洲av成人精品一区久久| 亚洲丝袜综合中文字幕| kizo精华| 欧美人与善性xxx| 99国产精品免费福利视频| 国产一区二区三区综合在线观看 | 亚洲aⅴ乱码一区二区在线播放| 久久6这里有精品| 18禁在线无遮挡免费观看视频| 丰满少妇做爰视频| 国产精品久久久久成人av| av不卡在线播放| 久久精品久久久久久久性| 18禁动态无遮挡网站| 久久精品国产鲁丝片午夜精品| 久久精品熟女亚洲av麻豆精品| 国产成人精品一,二区| 国产精品人妻久久久久久| 亚洲在久久综合| 欧美最新免费一区二区三区| 久久久久久久久久人人人人人人| 22中文网久久字幕| 中文欧美无线码| 国产一区二区在线观看日韩| 精品午夜福利在线看| 一级二级三级毛片免费看| 最后的刺客免费高清国语| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 久久精品久久久久久久性| 欧美日韩亚洲高清精品| 国产精品伦人一区二区| 国产 一区 欧美 日韩| 欧美高清成人免费视频www| 日本黄色日本黄色录像| 人人妻人人澡人人爽人人夜夜| 国产免费福利视频在线观看| 高清黄色对白视频在线免费看 | 欧美最新免费一区二区三区| 亚洲av国产av综合av卡| 2022亚洲国产成人精品| 久久久久久九九精品二区国产| 欧美精品一区二区免费开放| 一区二区av电影网| 99热网站在线观看| 十分钟在线观看高清视频www | 国产精品一区二区性色av| 午夜福利在线观看免费完整高清在| 成人毛片a级毛片在线播放| av在线观看视频网站免费| av国产免费在线观看| 亚洲自偷自拍三级| 综合色丁香网| 我要看日韩黄色一级片| 亚洲伊人久久精品综合| 久久久亚洲精品成人影院| 国产成人freesex在线| 国产淫语在线视频| 在线亚洲精品国产二区图片欧美 | 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人片av| 亚洲精品国产av成人精品| 大码成人一级视频| 国产精品福利在线免费观看| 亚洲成人中文字幕在线播放| 777米奇影视久久| 欧美性感艳星| 毛片女人毛片| 热re99久久精品国产66热6| 欧美高清性xxxxhd video| 联通29元200g的流量卡| 伊人久久精品亚洲午夜| av在线蜜桃| 国产一区二区在线观看日韩| 日本vs欧美在线观看视频 | 亚洲内射少妇av| 久久 成人 亚洲| 熟女人妻精品中文字幕| 亚洲精品国产av蜜桃| 男女无遮挡免费网站观看| 国产成人精品福利久久| 高清黄色对白视频在线免费看 | 美女国产视频在线观看| 免费av中文字幕在线| 国产精品久久久久久av不卡| 色视频www国产| 高清毛片免费看| 在线精品无人区一区二区三 | 欧美成人a在线观看| 在线免费十八禁| 毛片女人毛片| 欧美 日韩 精品 国产| 亚洲三级黄色毛片| h日本视频在线播放| 亚洲精品自拍成人| 免费播放大片免费观看视频在线观看| 日韩av免费高清视频| 中国国产av一级| 日韩免费高清中文字幕av| 嘟嘟电影网在线观看| 国产一区有黄有色的免费视频| 亚洲国产日韩一区二区| 国产有黄有色有爽视频| 午夜福利在线观看免费完整高清在| 在线播放无遮挡| 亚洲精品国产成人久久av| 九色成人免费人妻av| 久久午夜福利片| 国产精品久久久久久精品古装| 久久久久久久大尺度免费视频| 少妇的逼水好多| 五月开心婷婷网| 亚洲真实伦在线观看| 少妇的逼好多水| 18禁裸乳无遮挡免费网站照片| 欧美日韩亚洲高清精品| 少妇的逼水好多| 男女免费视频国产| 精品久久久久久电影网| 亚洲伊人久久精品综合| 超碰av人人做人人爽久久| 男人爽女人下面视频在线观看| 99热这里只有精品一区| 18+在线观看网站| 人体艺术视频欧美日本| 少妇人妻一区二区三区视频| 国产精品三级大全| 97热精品久久久久久| 女的被弄到高潮叫床怎么办| 另类亚洲欧美激情| 两个人的视频大全免费| 中国三级夫妇交换| 国产成人a∨麻豆精品| 成人二区视频| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 亚洲欧洲国产日韩| 人人妻人人添人人爽欧美一区卜 | 夜夜爽夜夜爽视频| 99视频精品全部免费 在线| 草草在线视频免费看| 国产免费视频播放在线视频| 国产美女午夜福利| 国产精品麻豆人妻色哟哟久久| 性高湖久久久久久久久免费观看| 午夜福利高清视频| 日韩三级伦理在线观看| 大片免费播放器 马上看| 国产欧美日韩一区二区三区在线 | 国产av国产精品国产| 久久精品夜色国产| 精品一品国产午夜福利视频| 国产男女超爽视频在线观看| 少妇人妻一区二区三区视频| 精品一区在线观看国产| av女优亚洲男人天堂| 老女人水多毛片| 国产有黄有色有爽视频| 亚洲av男天堂| 亚洲欧美日韩卡通动漫| 建设人人有责人人尽责人人享有的 | 18禁裸乳无遮挡动漫免费视频| 亚洲欧美日韩卡通动漫| 国产无遮挡羞羞视频在线观看| 久热这里只有精品99| 欧美精品一区二区大全| 久久久国产一区二区| 99久国产av精品国产电影| 亚洲精品乱码久久久v下载方式| 九草在线视频观看| 我的女老师完整版在线观看| 最近手机中文字幕大全| 国产大屁股一区二区在线视频| 免费av不卡在线播放| 精品人妻视频免费看| 成人影院久久| 国产亚洲一区二区精品| 在线播放无遮挡| 欧美精品一区二区免费开放| 嫩草影院新地址| 成年免费大片在线观看| kizo精华| 亚洲精品,欧美精品| 黑人猛操日本美女一级片| 99热全是精品| 亚洲性久久影院| 欧美亚洲 丝袜 人妻 在线| 色哟哟·www| 国产亚洲一区二区精品| 国产成人一区二区在线| 日韩人妻高清精品专区| 亚洲内射少妇av| 少妇熟女欧美另类| h视频一区二区三区| 天天躁夜夜躁狠狠久久av| 国产亚洲午夜精品一区二区久久| 乱系列少妇在线播放| 高清不卡的av网站| 久久国产精品大桥未久av | 亚洲精品第二区| 国产亚洲av片在线观看秒播厂| 久久女婷五月综合色啪小说| 精品久久久久久久久亚洲| 又粗又硬又长又爽又黄的视频| 在线免费十八禁| 成人一区二区视频在线观看| 国产免费一级a男人的天堂| 精品久久久久久久久av| 国产成人aa在线观看| 亚洲av成人精品一区久久| 国产探花极品一区二区| 亚洲欧美精品专区久久| 在线观看美女被高潮喷水网站| 国产精品一区www在线观看| 国产亚洲av片在线观看秒播厂| 男的添女的下面高潮视频| 日韩欧美 国产精品| 男女边吃奶边做爰视频| 男人爽女人下面视频在线观看| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 国产精品免费大片| 国产精品久久久久成人av| av在线老鸭窝| 亚洲精品aⅴ在线观看| 有码 亚洲区| 人妻系列 视频| 中文资源天堂在线| 久久久亚洲精品成人影院| 一级二级三级毛片免费看| 欧美3d第一页| 一个人看的www免费观看视频| 久久久久视频综合| 99久久精品国产国产毛片| 亚洲三级黄色毛片| 婷婷色麻豆天堂久久| 美女xxoo啪啪120秒动态图| 国产精品国产三级国产专区5o| 十八禁网站网址无遮挡 | 男女边摸边吃奶| 丰满乱子伦码专区| 国产精品一二三区在线看| 久久久久久久久久成人| 亚洲激情五月婷婷啪啪| 一级毛片久久久久久久久女| 18禁动态无遮挡网站| 黑丝袜美女国产一区| 国产一区亚洲一区在线观看| 在线 av 中文字幕| 亚洲精品一二三| 亚洲伊人久久精品综合| 亚洲综合精品二区| 成年女人在线观看亚洲视频| 婷婷色麻豆天堂久久| 男男h啪啪无遮挡| 欧美一级a爱片免费观看看| 2022亚洲国产成人精品| 青青草视频在线视频观看| 麻豆乱淫一区二区| 国产欧美亚洲国产| 七月丁香在线播放| av女优亚洲男人天堂| 欧美老熟妇乱子伦牲交| 男女下面进入的视频免费午夜| 好男人视频免费观看在线| 观看免费一级毛片| 男人舔奶头视频| 啦啦啦中文免费视频观看日本| 伊人久久国产一区二区| 欧美精品人与动牲交sv欧美| 青春草亚洲视频在线观看| 国产视频内射| 人妻一区二区av| 国产伦精品一区二区三区视频9| 精品一区二区三区视频在线| 亚洲国产精品999| 又大又黄又爽视频免费| 国产精品嫩草影院av在线观看| 日日摸夜夜添夜夜添av毛片| 免费观看a级毛片全部| 一级毛片我不卡| 80岁老熟妇乱子伦牲交| 精品久久久久久久久亚洲| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 国产成人精品婷婷| 久久久久性生活片| 亚洲av二区三区四区| 亚洲自偷自拍三级| 日韩一区二区三区影片| 大香蕉久久网| 高清日韩中文字幕在线| 免费在线观看成人毛片| 日本黄色日本黄色录像| 爱豆传媒免费全集在线观看| 亚洲欧美日韩另类电影网站 | 国产真实伦视频高清在线观看| 一区二区三区乱码不卡18| 久久婷婷青草| av国产免费在线观看| 成年人午夜在线观看视频| 久久av网站| 国产精品国产三级国产av玫瑰| 国产美女午夜福利| 大香蕉久久网| 精品久久久久久久久av| 中文字幕制服av| 国产精品一区二区性色av| 一级毛片久久久久久久久女| 乱码一卡2卡4卡精品| 婷婷色麻豆天堂久久| 欧美成人a在线观看| 大又大粗又爽又黄少妇毛片口| av国产免费在线观看| 欧美日韩国产mv在线观看视频 | 日本vs欧美在线观看视频 | 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 97在线视频观看| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 国产成人a∨麻豆精品| 午夜视频国产福利| 黄片无遮挡物在线观看| 欧美成人一区二区免费高清观看| 日韩欧美一区视频在线观看 | www.色视频.com| 黄色视频在线播放观看不卡| 亚洲色图av天堂| 精品一区在线观看国产| 高清在线视频一区二区三区| 22中文网久久字幕| 六月丁香七月| 人妻 亚洲 视频| 少妇人妻久久综合中文| 久久人人爽人人片av| 你懂的网址亚洲精品在线观看| 精品一区在线观看国产| 亚洲av在线观看美女高潮| 交换朋友夫妻互换小说| 91精品伊人久久大香线蕉| 99久久精品一区二区三区| 少妇丰满av| 97精品久久久久久久久久精品| 亚洲色图av天堂| 伦理电影免费视频| 国产乱人偷精品视频| 亚洲一区二区三区欧美精品| 欧美成人一区二区免费高清观看| 91精品一卡2卡3卡4卡| 黑人高潮一二区| 嘟嘟电影网在线观看| 中文天堂在线官网| 国产高清有码在线观看视频| 在线免费十八禁| 久久女婷五月综合色啪小说| 一级二级三级毛片免费看| 亚洲国产毛片av蜜桃av| 黄片wwwwww| 久久久久性生活片| 免费观看在线日韩| 亚洲欧美日韩卡通动漫| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 婷婷色av中文字幕| 亚洲精品aⅴ在线观看| 一区二区三区乱码不卡18| 亚洲欧美日韩东京热| 久久人人爽人人爽人人片va| 国产在线一区二区三区精| 久久精品人妻少妇| 中文字幕精品免费在线观看视频 | 尾随美女入室| 免费不卡的大黄色大毛片视频在线观看| 免费在线观看成人毛片| 亚洲第一区二区三区不卡| av在线播放精品| 欧美高清成人免费视频www| 丰满人妻一区二区三区视频av| 亚洲精品中文字幕在线视频 | 久久亚洲国产成人精品v| 97超视频在线观看视频| 蜜桃亚洲精品一区二区三区| 人妻夜夜爽99麻豆av| 成人无遮挡网站| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 久久久久久久久久久丰满| 日本av免费视频播放| 亚洲四区av| 亚洲色图av天堂| 久久青草综合色| 亚洲av中文字字幕乱码综合| 美女国产视频在线观看| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 春色校园在线视频观看| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 联通29元200g的流量卡| 国产成人91sexporn| 晚上一个人看的免费电影| 一区二区三区精品91| 日韩亚洲欧美综合| 九草在线视频观看| 日本爱情动作片www.在线观看| 久久久欧美国产精品| 国产亚洲午夜精品一区二区久久| 观看免费一级毛片| 亚洲综合色惰| 亚洲精品一区蜜桃| 少妇被粗大猛烈的视频| 超碰97精品在线观看| 中文字幕av成人在线电影| 亚洲国产精品成人久久小说| av天堂中文字幕网| 91精品伊人久久大香线蕉| 少妇的逼水好多| 亚洲国产欧美在线一区| 久久精品国产a三级三级三级| 国产精品成人在线| 欧美xxxx性猛交bbbb| 亚洲av欧美aⅴ国产| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 欧美zozozo另类| 国产探花极品一区二区| 欧美性感艳星| 蜜桃在线观看..| 国产精品免费大片| 日日啪夜夜爽| 日韩不卡一区二区三区视频在线| 秋霞在线观看毛片| 男的添女的下面高潮视频| 五月天丁香电影| 大话2 男鬼变身卡| 亚洲四区av| 99精国产麻豆久久婷婷| 欧美另类一区| 亚洲人成网站在线播| 日日啪夜夜撸| 欧美xxxx黑人xx丫x性爽| 国产一区有黄有色的免费视频| 少妇人妻 视频| 国产一级毛片在线| 亚洲精品自拍成人| 亚洲欧美日韩另类电影网站 | 国产成人精品婷婷| 日本欧美视频一区| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片| 99热国产这里只有精品6| 亚洲不卡免费看| 七月丁香在线播放| 国产乱人偷精品视频| 最新中文字幕久久久久| 狠狠精品人妻久久久久久综合| 国产真实伦视频高清在线观看| 国产一级毛片在线| 欧美bdsm另类| 中文字幕亚洲精品专区| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 少妇人妻久久综合中文| 精品人妻一区二区三区麻豆| 十分钟在线观看高清视频www | 欧美xxxx性猛交bbbb| av在线观看视频网站免费| 久久久久国产精品人妻一区二区| 两个人的视频大全免费| 人妻少妇偷人精品九色| 日本黄大片高清| 亚洲国产色片| 精品人妻偷拍中文字幕| 黄色视频在线播放观看不卡| 久久精品人妻少妇| 一级毛片我不卡| 美女脱内裤让男人舔精品视频| 丰满少妇做爰视频| 夜夜看夜夜爽夜夜摸| 日本一二三区视频观看| 交换朋友夫妻互换小说| 欧美xxxx性猛交bbbb| 国产精品福利在线免费观看| 国产精品伦人一区二区| 少妇被粗大猛烈的视频| av黄色大香蕉| 国产男人的电影天堂91| 欧美97在线视频| 国产精品国产三级国产av玫瑰| 国产成人精品一,二区| 国产亚洲欧美精品永久| 欧美变态另类bdsm刘玥| 欧美一区二区亚洲| 国产在线免费精品| 一区二区三区乱码不卡18| 身体一侧抽搐| 少妇 在线观看| 亚洲熟女精品中文字幕| 精品99又大又爽又粗少妇毛片| 日本vs欧美在线观看视频 | 中文字幕久久专区| 一边亲一边摸免费视频| 欧美日本视频| 观看美女的网站| 亚洲成色77777| 亚洲四区av| freevideosex欧美| 日本黄色片子视频| 日韩成人伦理影院| 久久97久久精品| av天堂中文字幕网| 色婷婷久久久亚洲欧美| 中文字幕av成人在线电影| 欧美3d第一页|