【摘要】 背景 血尿酸(SUA)升高導致的高尿酸血癥(HUA)已被證實是慢性腎臟?。–KD)發(fā)生發(fā)展的獨立危險因素,但國內關于老年人SUA水平與CKD發(fā)生發(fā)展關聯的隊列研究較少。目的 探討中國長壽地區(qū)老年人基線SUA水平及其變化與CKD發(fā)病風險及估算的腎小球濾過率(eGFR)變化關聯。方法 2021年12月—2022年5月,基于中國老年健康影響因素跟蹤調查(CLHLS)子隊列——老年健康生物標志物隊列研究(HABCS),選取2012、2014年接受健康體檢并采集生物醫(yī)學指標的老年人為研究對象,收集基線及隨訪期老年人年齡、性別、血壓、血脂、血糖等生物醫(yī)學指標。采用Cox比例風險回歸模型分析不同SUA水平與CKD發(fā)病風險關聯;采用Spearman秩相關和廣義線性模型分別分析老年人基線SUA水平與基線eGFR的相關性及老年人SUA水平變化與eGFR變化的相關性。結果 共納入研究對象981名,中位年齡79(70,88)歲,HUA患病率為6.8%(67/981),累積隨訪2 029人年,中位隨訪2.05年,CKD新發(fā)病例共179例,隨訪期間CKD累積發(fā)病率為18.2%〔95%CI(15.9%,20.8%)〕,發(fā)病密度88.22/1 000人年〔95%CI(76.24/1 000人年,101.41/1 000人年)〕。以SUA四分位數分組為因變量的Cox比例風險回歸模型分析結果顯示,與基線SUA最低四分位數組(Q1)相比,最高四分位數組(Q4)老年人CKD發(fā)病風險的HR值為2.08〔95%CI(1.27,3.41),P=0.004〕。以SUA水平為因變量的Cox比例風險回歸模型分析結果顯示,基線SUA水平每升高10 μmol/L,老年人CKD發(fā)病風險增加4%(Plt;0.001)。以是否患HUA為因變量的Cox比例風險回歸模型分析結果顯示,與基線未患HUA老年人相比,患HUA老年人CKD發(fā)病風險增加,HR值為2.00〔95%CI(1.20,3.24),P=0.007〕。老年人基線SUA中位數為270.60(223.10,325.90) μmol/L,
基線eGFR中位數為84.07(73.08,98.38) mL·min-1·(1.73 m2)-1,Spearman秩相關分析結果顯示,二者呈負相關(rs=-0.363,Plt;0.001)。廣義線性模型分析結果顯示,老年人基線SUA水平每升高10 μmol/L,基線eGFR下降
0.897 mL·min-1·(1.73 m2)-1(Plt;0.001)。本研究隨訪期間老年人ΔSUA中位數為-3.55(-40.60,31.90) μmol/L,ΔeGFR中位數為3.49(-8.13,15.89) mL·min-1·(1.73 m2)-1,Spearman秩相關分析結果顯示,二者呈負相關(rs=-0.355,Plt;0.001)。廣義線性模型分析結果顯示,隨訪期間老年人SUA水平每升高10 μmol/L,伴隨老年人eGFR下降1.027 mL·min-1·(1.73 m2)-1(Plt;0.001)。結論 老年人SUA水平升高與新發(fā)CKD風險增加及eGFR的降低相關。
【關鍵詞】 慢性腎臟??;高尿酸血癥;腎小球濾過率;老年人;隊列研究;長壽地區(qū)
【中圖分類號】 R 681.1 【文獻標識碼】 A DOI:10.12114/j.issn.1007-9572.2023.0001
【引用本文】 張鵬,高鷹,楊洪喜,等. 中國長壽地區(qū)老年人血尿酸水平與慢性腎臟病發(fā)病風險研究[J].中國全科醫(yī)學,2023,26(31):3884-3889,3907. DOI:10.12114/j.issn.1007-9572.2023.0001. [www.chinagp.net]
ZHANG P,GAO Y,YANG H X,et al. Association between serum uric acid level and the risk of chronic kidney disease among the elderly in longevity areas of China[J]. Chinese General Practice,2023,26(31):3884-3889,3907.
Association between Serum Uric Acid Level and the Risk of Chronic Kidney Disease among the Elderly in Longevity Areas of China ZHANG Peng1,GAO Ying2*,YANG Hongxi3,WAN Chunxiao1*
1.Department of Rehabilitation Medicine,Tianjin Medical University General Hospital,Tianjin 300052,China
2.Health Management Center,Tianjin Medical University General Hospital,Tianjin 300052,China
3.Department of Bioinformatics,School of Basic Medical Sciences,Tianjin Medical University,Tianjin 300070,China
*Corresponding authors:GAO Ying,Assistant professor;E-mail:gaoying301@tmu.edu.cn
WAN Chunxiao,Chief physician;E-mail:wcx2226@163.com
【Abstract】 Background Hyperuricemia(HUA) caused by elevated serum uric acid(SUA) has been shown to be an independent risk factor for the development and progression of chronic kidney disease(CKD). However,there are few cohort studies on the correlation of SUA level with the development and progression of CKD in the elderly of China. Objective To
explore the association of baseline SUA level and its changes with the risk of chronic kidney disease(CKD) and estimated glomerular filtration rate(eGFR) in the elderly in longevity areas of China. Methods Based on the Healthy Aging and Biomarkers Cohort Study(HABCS),a sub cohort of the Chinese Longitudinal Healthy Longevity Survey(CLHLS),the older adults who received physical examination and with biomedical indicators in 2012 and 2014 were selected as the study subjects from December 2021 to May 2022. The age,gender,blood pressure,blood lipids,blood glucose and other biomedical indicators were collected at baseline and follow-up period. Cox proportional hazards regression model was used to analyze the association of different SUA levels with the risk of CKD. Spearman rank correlation and generalized linear model analysis were used to analyze the association between baseline SUA level and baseline eGFR level and the linear correlation between changes in SUA level and eGFR changes "in the elderly,respectively. Results A total of 981 subjects were included in the study,with the median age of 79(70,88) years,the prevalence of HUA of 6.8%(67/981),the cumulative follow-up of 2 029 person-years and the median follow-up of 2.05 years,including 179 new cases of CKD,the cumulative incidence of CKD during the follow-up was 18.2%〔95%CI(15.9%,20.8%)〕,and the incidence density was 88.22/1 000 person-years〔95%CI(76.24/1 000 person-years,101.41/1 000 person-years)〕. Cox proportional hazards regression analysis with SUA quartile grouping as the independent variable showed that compared with the lowest quartile group of baseline SUA level(Q1),the HR value for the risk of CKD in the highest quartile group of baseline SUA level(Q4) was 2.08〔95%CI(1.27,3.41),P=0.004〕. Cox proportional hazards regression analysis with SUA level as the independent variable showed that,for every 10 μmol/L increase in baseline SUA level,the risk of CKD in the elderly increased by 4%(Plt;0.001). Cox proportional hazards regression analysis with HUA as the independent variable showed an increased risk of CKD in elderly with HUA compared to those without HUA,with the HR value of 2.00〔95%CI(1.20,3.24),P=0.007〕. The median baseline SUA was 270.60(223.10,325.90) μmol/L,the median baseline eGFR was 84.07(73.08,98.38) mL·min-1·(1.73 m2)-1 in the elderly. Spearman rank correlation analysis showed a negative correlation between the above two(rs=-0.363,Plt;0.001). The results of generalized linear model analysis showed that for every 10 μmol/L increase in baseline SUA level,the baseline eGFR decreased by 0.897 mL·min-1·(1.73 m2)-1(Plt;0.001). The median change of SUA level was -3.55(-40.60,31.90) μmol/L and the median change of eGFR was 3.49(-8.13,15.89) mL·min-1·(1.73 m2)-1 in the elderly during the follow-up period of this study,and Spearman rank correlation analysis showed a negative correlation between the above two(rs=-0.355,Plt;0.001). The results of the generalized linear model analysis showed that for every 10 μmol/L increase in SUA level in the elderly during the follow-up period,eGFR decreased by 1.027 mL·min-1·(1.73 m2)-1 in the elderly(Plt;0.001). Conclusion Elevated SUA level in the elderly is associated with an increased risk of CKD and a declined eGFR in China.
【Key words】 Chronic kidney disease;Hyperuricemia;Glomerular filtration rate;Aged;Cohort study;Longevity areas
慢性腎臟?。╟hronic kidney disease,CKD)已成為全球范圍內威脅健康的重要公共衛(wèi)生問題。我國18歲以上成人CKD患病率接近10.8%,患病人數約有1.19億,而人群知曉率卻只有12.5%[1]。65歲以上老年人已成為終末期腎病患者中增長最快、人數最多的人群[2-3]。且隨著我國人口老齡化程度加劇,高血壓、糖尿病及超重/肥胖等一系列慢性病高發(fā)導致CKD發(fā)病率呈逐年上升趨勢。因此,早發(fā)現和早干預CKD潛在危險因素對預防及延緩老年人CKD進展及減少其并發(fā)癥發(fā)生至關重要。血尿酸(SUA)是嘌呤核苷酸代謝的產物,約2/3的SUA經腎臟排泄[4]。SUA水平升高導致的高尿酸血癥(HUA)已被證實是CKD發(fā)生發(fā)展的獨立危險因素[5-7]。有研究顯示,SUA水平每升高1 mg/dL,CKD發(fā)病風險增加19%[8]。也有證據表明,降尿酸治療在延緩CKD進展中已獲得一定的臨床益處[9]。然而,仍有研究顯示SUA水平升高與CKD風險關聯不明顯[10-11]。以往研究都是基于成年人資料分析SUA水平與CKD風險關聯,目前國內關于老年人SUA水平與CKD發(fā)生發(fā)展相關的隊列研究較少。因此,本研究基于中國老年健康影響因素跟蹤調查(CLHLS)子隊列——老年健康生物標志物隊列研究(HABCS),分析中國長壽地區(qū)老年人基線不同SUA水平及其變化與CKD發(fā)病風險及估算的腎小球濾過率(estimated glomerular filtration rate,eGFR)變化情況的關聯,以期為我國老年人CKD防控管理提供科學依據。
1 對象與方法
1.1 研究對象 2021年12月—2022年5月,選取HABCS中接受健康體檢并采集生物醫(yī)學指標的老年人為研究對象。此隊列分別在2009、2012、2014年對8個健康長壽地區(qū)(包括山東省煙臺市萊州市、河南省商丘市夏邑縣、湖北省荊門市鐘祥市、湖南省懷化市麻陽縣、廣東省佛山市三水區(qū)、廣西壯族自治區(qū)桂林市永??h、海南省澄邁縣和江蘇省南通市如東縣)的≥65歲老年人進行健康體檢,采集及提取血常規(guī)、尿常規(guī)及血漿生化等生物醫(yī)學指標。由于2009年典型調查中并未采集老年人尿微量白蛋白(Ualb)及尿肌酐(Ucr),未能計算尿微量白蛋白肌酐比值(ACR),因此本研究將基線調查定為2012年的典型調查。納入標準:(1)基線SUA值完整;(2)基線血肌酐(Scr)值完整;(3)基線Ualb及Ucr值完整。排除標準:(1)基線eGFRlt;60 mL·min-1·(1.73 m2)-1;(2)基線ACR≥30 mg/g;(3)有慢性腎炎病史;(4)失訪。最終981名老年人納入隊列研究。本研究已獲得天津醫(yī)科大學總醫(yī)院倫理委員會倫理審批(審批號:IRB2022-WZ-118)。
1.2 數據收集 (1)一般資料:通過HABCS數據庫收集老年人的人口學特征(年齡、性別)、健康狀況和患病狀況(包括高血壓、糖尿病、腎臟疾病及HUA病史)。(2)體格檢查數據:包括BMI、腰圍、小腿圍、收縮壓(SBP)及舒張壓(DBP)。(3)生物醫(yī)學指標:收集包括空腹血糖(FBG)、糖化血清蛋白(GSP)、總膽固醇(TC)、三酰甘油(TG)、高密度脂蛋白膽固醇(HDL-C)、低密度脂蛋白膽固醇(LDL-C)、超敏C反應蛋白(hs-CRP)、超氧化物歧化酶(SOD)、維生素D3(VD3)、白細胞計數(WBC)、紅細胞計數(RBC)、血小板計數(PLT)、血尿素氮(BUN)、Scr、UAlb、Ucr、ACR、SUA、尿蛋白。
1.3 定義和診斷 SUA水平分類標準:(1)根據基線SUA水平進行四分位數分組,Q1為lt;223 μmol/L,Q2為223~270 μmol/L,Q3為271~325 μmol/L,Q4為≥326 μmol/L。(2)將基線SUA水平男性gt;420 μmol/L或女性gt;360 μmol/L,或有HUA病史定義為HUA[12]。參照2017年《慢性腎臟病篩查、診斷及防治指南》和美國腎臟病基金會“腎臟病預后質量倡議”,CKD的診斷標準為eGFRlt;60 mL·min-1·(1.73 m2)-1或ACR≥30 mg/g或基于醫(yī)學記錄新發(fā)診斷為CKD者[13-14]。采用適于中國人群的CKD-EPI(chronic kidney disease epidemiology collaboration)公式計算eGFR[15]。本研究終點事件為CKD的發(fā)生。
1.4 統(tǒng)計學方法 應用Stata 13.0軟件進行統(tǒng)計分析。非正態(tài)分布的計量資料以中位數(下四分位數,上四分位數)〔M(P25,P75)〕表示,多組間比較采用Kruskal-Wallis H檢驗;分類變量以頻數和構成比表示,組間比較采用χ2檢驗。分別以SUA四分位數分組、SUA水平(連續(xù)變量)及是否患HUA為自變量,以CKD發(fā)病為因變量,采用Cox比例風險回歸模型分析老年人基線SUA水平與CKD發(fā)病風險關聯;以SUA四分位數組中值進行趨勢性檢驗。采用Spearman秩相關分別分析老年人基線SUA水平與基線eGFR的相關性及老年人SUA水平變化(ΔSUA=基線SUA-隨訪期SUA)與eGFR變化(ΔeGFR=基線eGFR-隨訪期eGFR)的相關性;采用廣義線性模型分別分析老年人基線SUA與基線eGFR的關聯及ΔSUA與ΔeGFR的關聯。所有檢驗均為雙側檢驗,以Plt;0.05為差異有統(tǒng)計學意義。
2 結果
2.1 研究對象基線特征 共納入研究對象981名,其中男548名(55.9%),中位年齡79(70,88)歲。HUA患病率為6.8%(67/981);其中男性HUA患病率為7.8%(43/548),女性HUA患病率為5.5%(24/433),兩者比較,差異無統(tǒng)計學意義(χ2=2.018,P=0.155)。累積隨訪2 029人年,中位隨訪2.05年(范圍1.0~4.0年),CKD新發(fā)病例共179例,隨訪期間CKD累積發(fā)病率為18.2%〔95%CI(15.9%,20.8%)〕,發(fā)病密度為88.22/1 000人年〔95%CI(76.24/1 000人年,101.41/1 000人年)〕。
基線時不同SUA水平老年人的性別、BMI、腰圍、小腿圍、SBP、GSP、TG、hs-CRP、VD3、WBC、PLT、Scr、Ucr、ΔSUA、ΔeGFR及新發(fā)CKD患者占比比較,差異有統(tǒng)計學意義(Plt;0.05),見表1。
2.2 老年人不同SUA水平與CKD發(fā)病風險的Cox比例風險回歸模型分析 模型1以是否患CKD為因變量(賦值:否=0,是=1),分別以SUA四分位數分組(賦值:Q1=1,Q2=2,Q3=3,Q4=4)、SUA水平(賦值:原值納入)及是否患HUA(賦值:否=0,是=1)為自變量,進行Cox比例風險回歸模型分析;模型2在各模型1基礎上調整年齡(賦值:連續(xù)變量)、性別(賦值:男=1,女=2)、BMI(賦值:原值納入)、腰圍(賦值:原值納入)、小腿圍(賦值:原值納入);模型3在各模型2基礎上調整SBP(賦值:原值納入)、DBP(賦值:原值納入)、FBG(賦值:原值納入)、GSP(賦值:原值納入)、TC(賦值:原值納入)、TG(賦值:原值納入)、HDL-C(賦值:原值納入)、LDL-C(賦值:原值納入)、hs-CRP(賦值:原值納入)、SOD(賦值:原值納入)、VD3(賦值:原值納入)、WBC(賦值:原值納入)、RBC(賦值:原值納入)、PLT(賦值:原值納入)及BUN(賦值:原值納入);模型4在各模型3基礎上調整高血壓病史(賦值:無=0,有=1)
及糖尿病病史(賦值:無=0,有=1)。以SUA四分位數分組為自變量的Cox比例風險回歸模型分析結果顯示,與基線SUA最低四分位數組(Q1)相比,最高分位數組(Q4)老年人CKD發(fā)病風險的HR值為2.08〔95%CI(1.27,3.41),P=0.004〕;且呈趨勢性增加(P趨勢=0.003)。以SUA水平為自變量的Cox比例風險回歸分析模型結果顯示,基線SUA水平每升高10 μmol/L,老年人CKD發(fā)病風險增加4%,Plt;0.001。以是否患HUA為自變量的Cox比例風險回歸模型分析結果顯示,與基線未患HUA老年人相比,患HUA老年人CKD發(fā)病風險增加,HR值為2.00〔95%CI(1.20,3.24),P=0.007〕,見表2。
2.3 老年人基線SUA與基線eGFR關聯分析 老年人基線SUA中位數為270.60(223.10,325.90) μmol/L,基線eGFR中位數為84.07(73.08,98.38)"mL·min-1·(1.73 m2)-1,Spearman秩相關分析結果顯示,二者呈負相關(rs=-0.363,Plt;0.001)。以老年人基線eGFR(賦值:原值納入)為因變量,基線SUA為自變量(賦值:原值納入),多因素(模型1~模型4的變量調整及其賦值同2.2)廣義線性模型分析結果顯示,老年人基線SUA水平每升高10 μmol/L,基線eGFR下降0.897 mL·min-1·(1.73 m2)-1(Plt;0.001),見表3。
2.4 老年人SUA水平變化與eGFR變化關聯分析 本研究隨訪期間老年人ΔSUA中位數為-3.55(-40.60,31.90) μmol/L,ΔeGFR中位數為3.49(-8.13,15.89) mL·min-1·(1.73 m2)-1,Spearman秩相關分析結果顯示,二者呈負相關(rs=-0.355,Plt;0.001)。以老年人ΔeGFR為因變量(賦值:原值納入),ΔSUA為自變量(賦值:原值納入),經多因素(模型1~模型4的變量調整及其賦值同2.2)的廣義線性模型分析結果顯示,隨訪期間老年人SUA水平每升高10 μmol/L,伴隨老年人eGFR下降1.027 mL·min-1·(1.73 m2)-1(Plt;0.001),見表4。
3 討論
本研究基于CLHLS子隊列——HABCS,探討中國長壽地區(qū)老年人基線SUA水平及其變化與CKD發(fā)病風險及eGFR變化的關聯,結果發(fā)現老年人基線SUA水平升高及患HUA時,CKD發(fā)病風險增加,且eGFR隨SUA的升高而降低。
本研究結果顯示,老年人基線SUA水平最高四分位數組(≥326 μmol/L)CKD發(fā)病風險是最低四分位數組的2.08倍〔95%CI(1.27,3.41)〕,且基線SUA水平每升高10 μmol/L,老年人CKD發(fā)病風險增加4%,研究結果與以往研究發(fā)現相一致[16-18]。LAI等[16]通過隨訪追蹤425名70歲以上老年人CKD及腎功能變化情況發(fā)現,基線老年人SUA水平最高四分位數組(≥6.5 mg/dL)發(fā)生CKD的風險是最低四分位數組的6.79倍〔95%CI(3.45,13.75)〕。WU等[17]4年隨訪4 546名志愿者,結果發(fā)現SUA水平最高四分位數組
(gt;5.1 mg/dL)發(fā)生CKD的風險是最低四分位數組的2.73倍〔95%CI(1.65,4.50)〕。STORHAUG等[18]基于Troms?隊列評估總人群血尿酸與GFR的變化關聯,隨訪13年發(fā)現,基線SUA水平每升高1 mg/dL,腎功能不全風險增加16%〔95%CI(4%,29%)〕。
本研究結果發(fā)現,老年人基線SUA水平與老年人基線eGFR水平呈負相關,且隨訪4年期間老年人SUA水平每升高10 μmol/L,eGFR下降1.027 mL·min-1·(1.73 m2)-1〔95%CI(-1.23 mL·min-1·(1.73 m2)-1,-0.83 mL·min-1·(1.73 m2)-1〕。
LAI等[16]發(fā)現隨訪3年期間老年人基線SUA水平每升高1 mg/dL,eGFR降低1.25 mL·min-1·(1.73 m2)-1〔95%CI(-1.83 mL·min-1·(1.73 m2)-1,-0.67"mL·min-1·(1.73 m2)-1〕。TSAI等[19]研究結果顯示,較高的SUA水平與eGFR明顯快速下降和較高的腎衰竭風險有關,基線SUA水平每升高1 mg/dL,進展到腎功能衰竭的風險增加7%。YE等[20]也發(fā)現SUA水平升高與eGFR降低及新發(fā)CKD風險增加獨立相關。均與本研究結果相一致。
SUA水平升高與CKD風險增加有關的潛在病理學機制包括:(1)腎臟是SUA最主要的排泄器官,尿酸晶體可通過在腎臟沉積引起直接的腎臟毒性,從而導致腎功能降低[21];(2)SUA被內皮細胞吸收,通過抑制一氧化氮(NO)的產生和加速其降解來降低NO的水平,胞質和血漿黃嘌呤氧化酶又通過產生超氧化物來降低NO水平,因此,SUA水平升高會誘導腎內氧化應激和線粒體功能障礙,導致內皮細胞、平滑肌細胞、腎小管細胞受損,從而激活腎素-血管緊張素系統(tǒng)[22-23];(3)HUA可誘導腎小球前血管的小動脈病變,從而損害傳入小動脈的自身調節(jié)反應。同時,血小板粘附性增加,沉積后導致血管壁增厚,血流變紊亂,可引起管腔閉塞缺血。腎灌注不足是一種有效的血管活性和炎癥遞質刺激,可導致小管間質炎癥和纖維化[21,24],最終腎功能下降。
本研究仍有一些局限性:首先,本研究納入老年人群樣本量較少,可能會減弱SUA水平與CKD風險之間的因果關系;其次,本研究僅采用一次Scr和蛋白尿指標的測量值進行分析,對老年人中CKD真實發(fā)病狀況評估存在一定偏倚;最后,本研究中位隨訪時間為2.05年,相對較短,未能觀測到研究人群終末期腎病等事件,研究結果的外推性受限。因此,未來研究將拓寬觀測的終點事件,延長隨訪時間繼續(xù)關注老年人群中CKD的發(fā)病狀況。
綜上所述,本研究發(fā)現中國長壽地區(qū)老年人基線SUA水平升高及患HUA時會增加CKD發(fā)病風險,且老年人eGFR會隨SUA水平的升高而降低。因此,定期監(jiān)測老年人SUA水平,及早采取干預措施控制SUA水平以減緩未來eGFR下降的趨勢,對控制老年人CKD的發(fā)生發(fā)展有重要意義。
作者貢獻:張鵬負責數據的整理、分析及初稿撰寫;高鷹負責研究選題,對文章整體負責;楊洪喜負責數據分析;萬春曉負責文章質量控制及審校;所有作者確認了論文的最終稿。
本文無利益沖突。
參考文獻
ZHANG L X,WANG F,WANG L,et al. Prevalence of chronic kidney disease in China:a cross-sectional survey[J]. Lancet,2012,379(9818):815-822. DOI:10.1016/S0140-6736(12)60033-6.
AUCELLA F,CORSONELLO A,LEOSCO D,et al. Beyond chronic kidney disease:the diagnosis of renal disease in the elderly as an unmet need. A position paper endorsed by Italian Society of Nephrology(SIn) and Italian Society of Geriatrics and Gerontology(SIGG)[J]. J Nephrol,2019,32(2):165-176. DOI:10.1007/s40620-019-00584-4.
PERKOWSKA-PTASInSKA A,DEBORSKA-MATERKOWSKA D,DURLIK M. The current management of kidney disease in the elderly[J]. Minerva Med,2018,109(1):41-52. DOI:10.23736/S0026-4806.17.05351-4.
MAIUOLO J,OPPEDISANO F,GRATTERI S,et al. Regulation of uric acid metabolism and excretion[J]. Int J Cardiol,2016,213:
8-14. DOI:10.1016/j.ijcard.2015.08.109.
ZHANG L X,WANG F,WANG X Y,et al. The association between plasma uric acid and renal function decline in a Chinese population-based cohort[J]. Nephrol Dial Transplant,2012,27(5):1836-1839. DOI:10.1093/ndt/gfr597.
KAMEI K,KONTA T,HIRAYAMA A,et al. A slight increase within the normal range of serum uric acid and the decline in renal function:associations in a community-based population[J]. Nephrol Dial Transplant,2014,29(12):2286-2292. DOI:10.1093/ndt/gfu256.
JOHNSON R J,BAKRIS G L,BORGHI C,et al. Hyperuricemia,acute and chronic kidney disease,hypertension,and cardiovascular disease:report of a scientific workshop organized by the National Kidney Foundation[J]. Am J Kidney Dis,2018,71(6):851-865. DOI:10.1053/j.ajkd.2017.12.009.
CAO X,WU L X,CHEN Z H. The association between elevated serum uric acid level and an increased risk of renal function decline in a health checkup cohort in China[J]. Int Urol Nephrol,2018,50(3):517-525. DOI:10.1007/s11255-017-1732-6.
LIU X M,ZHAI T T,MA R X,et al. Effects of uric acid-lowering therapy on the progression of chronic kidney disease:a systematic review and meta-analysis[J]. Ren Fail,2018,40(1):289-297. DOI:10.1080/0886022X.2018.1456463.
SRIVASTAVA A,KAZE A D,MCMULLAN C J,et al. Uric acid and the risks of kidney failure and death in individuals with CKD[J]. Am J Kidney Dis,2018,71(3):362-370. DOI:10.1053/j.ajkd.2017.08.017.
NACAK H,VAN DIEPEN M,QUREDHI A R,et al. Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with StageⅢ,Ⅳ andⅤ chronic kidney disease[J]. Nephrol Dial Transplant,2015,30(12):2039-2045. DOI:10.1093/ndt/gfv225.
中華醫(yī)學會內分泌學分會. 高尿酸血癥和痛風治療的中國專家共識[J]. 中華內分泌代謝雜志,2013,29(11):913-920. DOI:10.3760/cma.j.issn.1000-6699.2013.11.001.
National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease:evaluation,classification,and stratification[J]. Am J Kidney Dis,2002,39(2 suppl 1):s1-266.
上海慢性腎臟病早發(fā)現及規(guī)范化診治與示范項目專家組. 慢性腎臟病篩查診斷及防治指南[J]. 中國實用內科雜志,2017,37(1):28-34. DOI:10.19538/j.nk2017010108.
LEVEY A S,STEVENS L A,SCHMID C H,et al. A new equation to estimate glomerular filtration rate[J]. Ann Intern Med,2009,150(9):604-612. DOI:10.7326/0003-4819-150-9-200905050-00006.
LAI X X,GAO B,ZHOU G M,et al. The association between baseline,changes in uric acid,and renal failure in the elderly Chinese individuals:a prospective study with a 3-year follow-up[J]. Int J Endocrinol,2022,2022:4136373. DOI:10.1155/2022/4136373.
WU N W,XIA J,CHEN S,et al. Serum uric acid and risk of incident chronic kidney disease:a national cohort study and updated meta-analysis[J]. Nutr Metab(Lond),2021,18(1):94.
STORHAUG H M,TOFT I,NORVIK J V,et al. Uric acid is associated with microalbuminuria and decreased glomerular filtration rate in the general population during 7 and 13 years of follow-up:the troms? study[J]. BMC Nephrol,2015,16:210. DOI:10.1186/s12882-015-0207-1.
TSAI C W,LIN S Y,KUO C C,et al. Serum uric acid and progression of kidney disease:a longitudinal analysis and mini-review[J]. PLoS One,2017,12(1):e0170393. DOI:10.1371/journal.pone.0170393.
YE M,HU K,JIN J,et al. The association between time-mean serum uric acid levels and the incidence of chronic kidney disease in the general population:a retrospective study[J]. BMC Nephrol,2018,19(1):190. DOI:10.1186/s12882-018-0982-6.
SANCHEZ-LOZADA L G,LANASPA M A,CRISTOBAL-GARCFS M,et al. Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations[J]. Nephron Exp Nephrol,2012,121(3/4):e71-78. DOI:10.1159/000345509.
CHEN T K,KNICELY D H,GRAMS M E. Chronic kidney disease diagnosis and management:a review[J]. JAMA,2019,322(13):1294-1304. DOI:10.1001/jama.2019.14745.
HISATOME I,LI P,MIAKE J,et al. Uric acid as a risk factor for chronic kidney disease and cardiovascular disease:Japanese guideline on the management of asymptomatic hyperuricemia[J]. Circ J,2021,85(2):130-138. DOI:10.1253/circj.CJ-20-0406.
SANCHEZ-LOZADA L G,TAPIA E,SANTAMARFA J,et al. Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats[J]. Kidney Int,2005,67(1):237-247. DOI:10.1111/j.1523-1755.2005.00074.x.
(收稿日期:2023-02-03;修回日期:2023-05-29)
(本文編輯:張亞麗)