• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecule opacity study on low-lying states of CS

    2022-10-26 09:46:04RuiLi李瑞JiqunSang桑紀群XiaoheLin林曉賀JianjunLi李建軍GuiyingLiang梁桂穎andYongWu吳勇
    Chinese Physics B 2022年10期
    關(guān)鍵詞:吳勇李瑞李建軍

    Rui Li(李瑞) Jiqun Sang(桑紀群) Xiaohe Lin(林曉賀) Jianjun Li(李建軍)Guiying Liang(梁桂穎) and Yong Wu(吳勇)

    1Department of Physics,College of Science,Qiqihar University,Qiqihar 161006,China

    2National Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    3Faculty of Foundation,Space Engineering University,Beijing 101416,China

    4School of Data Science and Artificial Intelligence,Jilin Engineering Normal University,Changchun 130052,China

    5HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: CS,transition dipole moment,opacity,excited state

    1. Introduction

    The CS molecule is of great interest since it plays a key role in atmospheric and astrophysical circumstances, which draws great attention from researchers.[1–5]The molecule has been detected in the diffuse clouds, dense clouds, molecular clouds, interstellar clouds, comets, carbon-rich stars and other galaxies. In the atmospheric and astrophysical investigations, the opacity between low-lying states are used to determine species,isotopic abundances and number densities in the environment.Thereby,spectroscopic properties of CS provide worthwhile information to an extensive understanding for the intermediate processes occurred in the upper atmosphere.CS molecule and sulfur-containing molecules in the stratosphere are also related to formation of sulfate aerosols,which may lead to acid rain effect and global climate change.[6]Hence,electronic structure and transition properties of the CS molecule have been continually arising interest in the past several decades.

    The large numbers of astronomical detections of CS and the key role in the Earth’s atmosphere have motivated a great deal of experimental studies. In experiment, the wavelength region of CS ranges from the microwave to ultraviolet (UV).In 1934,the pioneer work of main A1Π–X1Σ+transition was performed by Crawfordet al.[7]Later,the rotational spectrum of CS was firstly detected by Mockler and Bird.[8]The rotational spectrum of CS was also photographed by Lovas and Krupenie, and dipole moments and rotational constants were fitted by experimental results.[9]The experimental spectrum in the millimeter region was observed by Bogeyet al.,[10,11]and the spectroscopic constants of the X1Σ+state were obtained.More recently, the investigation in the wide wavelength region was extensively studied by Kimet al.[12]and Gottliebet al.,[13]and the accurate frequencies of rotational transitions were provided in their studies.

    The first work in the infra-red wavelengths was carried out by Todd,[14]who detected theν=2–0 vibration–rotation band of the X1Σ+state of CS.Subsequently,the investigation of the infra-red region was extended by Winkelet al.[15]and Burkholderet al.,[16]and high resolution of theν=1–0 absorption band and theν=1–0“hot”band for the X1Σ+state were measured. On the basis of vibration–rotation and pure rotation spectrum in preceding experimental data, Conxon and Hajigeorgiou determined accurate spectroscopic potential energy curve (PEC). Then, the spectroscopic constant of the X1Σ+state was improved by Ramet al.,[17]who determined the spectroscopic constant from Δν=1 vibration–rotation bands up toν= 9–8. Recently, Ueharaet al.[2]measured Δν= 1 transitions of the X1Σ+state withν ≤7 to a better precision than Ramet al.Pauloseet al.[1]used the spectroscopically-determined PEC and dipole moment to present vibration–rotation line lists.

    A series of UV band (A1Π–X1Σ+, A′1Σ+–X1Σ+, a3Π–X1Σ+, and so on) were extensively studied by different research groups. Bergeman and Cossart[18,19]observed a number of spin-allowed (A1Π–X1Σ+) and spin-forbidden (a3Π–X1Σ+,d3Δ–X1Σ+,and e3Σ-–X1Σ+)transition bands,and the interaction between those low-lying excited states were discussed in detail. The A1Π–X1Σ+band system was recorded by Mahonet al.,[20]and electronic transition moment of the A1Π–X1Σ+transition were estimated by the corresponding experimental result. The emission spectrum of A′1Σ+–X1Σ+was photographed by Dornh¨oferet al.[21]employing timeresolved fluorescence technique,and the transition property of A′1Σ+–X1Σ+was analyzed.

    On the theoretical side, the electronic structure and transition properties of CS have been investigated by different theoretical method. Robbe and Schamps[22]used SCF-CI approach to calculated electronic structure, wavefunction and dipole moment of valence state of CS.Later,the PEC of X1Σ+state were determined by Wilson[23]by using diagrammatic many-body perturbation theory. Ornellas[24]determined accurate PECs of X1Σ+and A1Π states by utilizing MRCI method,and the transition dipole moment of the A1Π–X1Σ+transition were evaluated. The structures for triplet states (a3Π, d3Δ,a′3Σ+and e3Σ-)were studied by Hochlaf using CASSCF and MRCI method.[25]

    As discussed above, the CS molecule has been studied widely by different research group. However, the existing computations of CS molecule are dominantly concentrated on structures of several electronic states.Regarding the large state density and interaction of low-lying states,the accurate calculations of electronic structure and spectroscopic properties of CS still remain sparse. As far as we know,the only spectrum simulation is the vibration–rotation line lists computations of the X1Σ+state of CS by Pauloseet al.[1]In this work,we carry out high-level MRCI study on the low-lying states of CS.The PECs,dipole moments and transition dipole moments are evaluated at the MRCI level of theory,and then vibration–rotation line between low-lying states are calculated at different temperature conditions.

    2. Theoretical method

    In the present work,the MOLPRO package[26]is used to calculate the PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule. All the calculations are done in theC2vgroup, which is subgroup ofC∞vpoint group for CS molecule. The corresponding relationship for the irreducible representations ofC2vandC∞vgroup are Σ+to A1,Σ-to A2,Π to B1+B2and Δ to A1+A2. For the C and S atoms,the contracted augmented correlation-consistent polarized quintuple zeta aug-cc-pwCV5Z-DK basis sets[27–29]is adopted. Within the internuclear distance range of 0.975–6.0 ?A,the molecular orbitals of the X1Σ+state are computed by the Hartree–Fock approach. In order to balance molecular orbitals applied in the subsequent calculations of electronic correlation, we utilize the state-averaged complete active space self-consistent field (SA-CASSCF)[30,31]approach to optimize the preceding Hartree–Fock molecular orbitals. In the SA-CASSCF calculations, all the 12 singlet and triplet Λ–S states, which are two1Σ+, one1Σ-, two1Π, one1Δ,two3Σ+, one3Σ-, two3Π and one3Δ, are taken into account simultaneously. The active space in the SA-CASSCF calculations is constructed by 8 molecular orbitals, which associates with C 2s2p and S 3s3p atomic orbitals. In theC2vgroup, the active space is denoted as (4,2,2,0), in which ten electrons are spread across 8 molecular orbitals. Subsequently, by employing the calculated CASSCF energies as reference values, the energies of the 12Λ–S states are determined by internally contracted multireference configuration interaction method[32,33](MRCI+Q) (including Davison size-extensivity correction).[34]The scalar relativistic effect is taken into account through third-order Douglas–Kroll and Hess integrals.[35,36]The PECs are presented by linking the energy points of Λ–S states via taking into account the noncrossing rule.

    Under the Born–Oppenheimer approximation condition,the electronic Schr¨odinger equation of diatomic molecules can be written as

    in which ?Heis Hamiltonian of theNelectrons of diatomic molecules,Ψe(r,R) andEe(R) are the eigen-function and eigen-energy,respectively.

    whereZaandZbare the charge number of nucleus A and B.

    On the basis of calculated energies of electronic states,the eigenvalues and wave functions of vibration–rotation states can be obtained by solution of radical nuclear Schr¨odinger equation

    whereν′andJ′are vibrational and rotational quantum numbers,αis fine-structure constant,ωυ′j′,υ′′j′′is transition frequency between different vibration–rotation levels,SJ′J′′is the line strength,D(R)is the transition dipole moment,andφJ′,J′′is H¨onl–London factor. The H¨onl–London factorφJ′J′′is defined as

    The expressions of formulas(1–6)can be found in Ref.[36].

    Molecular opacity is computed with integrated line strengths,[37]which is given by

    in which Einstein’s coefficientsAis obtained from Eq. (4),ΔE′′is the energy gap of the correlated two states,his the Plank constant,cis the speed of light in vacuum,kis the Boltzmann constant,EV′J′,00is the excitation energy of the lower state in cm-1,and the total internal partition functionQ(T)is defined by summing up concerned electronic state weighed by the Boltzmann factor utilizing

    whereTis temperature in environment andTiis the excitation energy of electronic stateiand become zero for the ground state(i=1).

    3. Result and discussion

    3.1. Potential energy curves, spectroscopic constants and vibrational levels

    The 12Λ–S states associated with the lowest dissociation limit(C(3P)+S(3P))of CS are evaluated at aug-cc-pwCV5ZDK/MRCI+Qlevel of theory. The PECs of the 12Λ–S states are presented in Fig.1. For the sake of visual clarity,we display the singlet Λ–S states and triplet Λ–S states in panels(a)and (b), respectively. And then, we use numerical method to calculate nuclear Schr¨odinger equations to determine spectroscopic constants. For the convenience of comparison, our calculated spectroscopic constants,including transition energyTe,vibrational frequencies(ωeandωexe),equilibrium distanceReand dissociation energyDe,are listed in Table 1,along with the data of previous experimental and theoretical investigations. The spectroscopic constants of electronic states can be served as an effective method to check the precision of electronic structure computation.

    As displayed in Fig.1,the Λ–S states 21Π,23Π and 33Σ+are qusibound states,and the A′1Σ+state has shallow potential well with a depth of 0.33 eV.The other 8 Λ–S states are typical bound states, which have potential well deeper than 2.40 eV.In Table 1, one can clearly see that our calculated spectroscopic constants of bound states are generally in good agreement with existing experimental results, as well as the previously available theoretical data. For the X1Σ+state, theωe,ωexe,BeandReare computed to be 1284.2 cm-1,6.35 cm-1,0.8179 cm-1and 1.5369 ?A, which differ from the latest experimental data by only 1 cm-1, 0.152 cm-1, 0.0021 cm-1and 0.0019 ?A.Our calculated dissociation energy of the X1Σ+state is 7.42 eV,which is only 0.01 eV smaller than experimental value of 7.43 eV.[36]Our calculated spectroscopic constant of the X1Σ+state has higher accuracy compared with the previously available theoretical results.[24,25]For the first excited state a3Π, our calculations present a deep well depthDeof 3.92 eV located at theReof 1.5724 ?A. The calculated value ofRe(1.5724 ?A) is more close to the experimental value of 1.5691 ?A, as compared with previous theoretical data. Our calculatedTeof a3Π (28328 cm-1) agrees well with existing theoretical work of 28173 cm-1,and our calculatedTeof a3Π differs by 1298 cm-1(5%) from previously available experimental data.[18]

    Fig.1. MRCI+Q potential energy curves for singlet and triplet states of CS along with internuclear distance R.

    Table 1. Spectroscopic constants of bound Λ–S states of CS.

    In addition,the previous experimental results in Refs.[18,36] exhibit a relative large difference (~600 cm-1), which may be caused by the experimental error originated from the perturbation of the nearby excited states (d3Δ, a′3Σ+and e3Σ-). Similar situations are found in excited states located at the excited energy range of 28000–40000 cm-1,which can also be explained by perturbation caused by a very high density of the excited states. Hence,more accurate spectral studies should be carried out to investigate the perturbations of the excited states. For the first singlet excited state A1Π,the dissociation energyDeis estimated to be 2.53 eV,which can hold 26 vibrational levels. Theωe,ωexeandBeare computed to be 1057.6 cm-1,10.2 cm-1and 0.7814 cm-1,which are in good accordance with the latest experimental data of 1077.23 cm-1,10.639 cm-1, and 0.7876 cm-1. TheReis evaluated to be 1.5725 ?A,which is more close to the latest experimental value of 1.566 ?A.[18]Our calculatedTediffer by less than 800 cm-1(2%)from the latest measurements.[18]For the second singlet excited state A′1Σ+,the well depth is computed to be 0.33 eV,which can only support 5 vibrational states. Good agreements are achieved for theωe,BeandRe. In our work, the calculated spectroscopic constants of A′1Σ+areωe=465.7 cm-1,Be=0.5016 cm-1andRe=1.9646 ?A, and the ones determined by Ref.[18]areωe=462.42 cm-1,Be=0.5114 cm-1andRe=1.944 ?A.Our MRCI+QcalculatedTeis 57245 cm-1,which differs by 1381 cm-1(2%) from most recent experimental value of 55864 cm-1.[18]Theωexeis calculated to be 8.70 cm-1,which is 1.242 cm-1larger than the experimental result of 7.458 cm-1.

    In the process of determining spectroscopic constants,the vibrational levels of the ground state and exited states are also obtained. In Tables 2 and 3, the vibrational energy gap between Δν=1 are presented for X1Σ+and A1Π/A′1Σ+states along with previously available theoretical and experimental data. For the the X1Σ+state, our calculated vibration levels gap forν ≤20 agree very well with the most recent experimental data,[2]the absolute differences are less than 2 cm-1(0.2%). In comparison with existing theoretical data,[38]our calculated accuracy of vibrational levels has obviously improvement,especially for theν ≥2 vibrational levels. For the A1Π state,the vibration levels gap forν ≤4 are computed to be 1037.6 cm-1, 1016.4 cm-1, 995.9 cm-1and 975.6 cm-1,which is only about~15 cm-1(2%) smaller than the latest experimental results.[20]In addition, our calculated vibration levels gap of A1Π state are closer to experimental data.

    Table 2. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the X1Σ+ state of CS.

    Table 3. The vibrational energy gap(Eν-Eν-1)(in cm-1)for the A1Π state of CS.

    4. Dipole moments and transition dipole moments

    The dipole moments and transition dipole moments of low-lying Λ–S states are computed by employing MRCI wave functions. The dipole moments curves for the singlet Λ–S states and triplet Λ–S states are presented in Figs. 2(a) and 2(b), respectively. As is well known, the vibration of dipole moment reflects the change of electronic configuration for Λ–S state. As displayed in Fig. 2, the extent of variation of dipole moments for A′1Σ+,21Π,33Σ+and 23Π are obviously large than that of other 8 Λ–S states. This phenomenon could be explained by the sharp vibration of electronic configuration of A′1Σ+, 21Π, 33Σ+and 23Π. As shown in Fig. 1, the A′1Σ+,21Π,33Σ+and 23Π are located at high excitation energy range of≥5700 cm-1, which form crossing point with high excited states. The crossing point of A′1Σ+, 21Π, 33Σ+and 23Π cause the sharp change for electronic configurations of those states, hence, the dipole moment curves of A′1Σ+,21Π, 33Σ+and 23Π change dramatically as compared with that of the other 8 Λ–S states. At the equilibrium distance(Re=1.5369 ?A)of the X1Σ+,the dipole moment is computed to be 0.77 a.u., which agree very well with available experimental data of 0.7704 a.u.[42]Both theoretical and experimental studied indicate the Cδ-Sδ+polarity of the CS molecule.At the equilibrium distanceRe=1.5725 ?A,the dipole moment of A1Π is estimated to be 0.29 a.u. As shown in Fig. 2, the dipole moments of all the Λ–S states approach to zero at large internuclear distance, indicating the dissociation products are neutral C and S atoms.

    The transition dipole moments (TDMs) of spin-allowed singlet-singlet transition are given in Fig.3. For convenient of comparing, the previous TDM of A1Π–X1Σ+[24]determined by cc-PVQZ/MRSDCI level of theory are also displayed. As can be seen in Fig.3,the position of peak of TDM for A1Π–X1Σ+transition in our work and Ref.[24]are well consistent,which are both located atR=1.39 ?A.The peak value of TDM of A1Π–X1Σ+transition is 0.304 a.u., which is 0.028 a.u.larger than that in Ref.[24]. The maximum value(0.599 a.u.)of TDM of A′1Σ+–X1Σ+is located at 1.80 ?A.

    Fig.2. Dipole moment curves for singlet and triplet states of CS.

    Fig.3. Transition dipole moment curves of spin-allowed transition of CS.

    4.1. Opacity

    Fig.4. The total internal partition functions of CS along with the temperature T (in Kelvin).

    With the information of partition functions and vibration–rotation states,the molecular opacities for the X1Σ+,A1Π and A′1Σ+states are obtained from formula (7) at pressure of 100 atms for different temperatures. With the increasing of temperature and growing of density,the dissociation probability of molecule will be raised. However, the dissociation energy of X1Σ+(7.42 eV)is very large,so the dissociation probability of CS caused by thermal motion inT=4500 K is very small. In addition, the previous investigations also indicate that opacity and absorption spectrum in astrophysical field are mainly originated from molecule.[1,2]The calculated molecular opacities of X1Σ+, A1Π and A′1Σ+states of CS for the temperatures of 300 K,1000 K,1800 K,and 4500 K are displayed in Figs.5(a)–5(d),respectively. As presented in Fig.5,the spectra lie in a wide area of wavelengths,which range from UV to far-infrared. In the simulation of spectra, the spectral line is profiled utilizing a Lorentzian function with a width contributed from impact-broadening. As can be observed in Fig.5(a),there are three electronic bands attributed from three singlet states considered in this work, which associate with A′1Σ+–X1Σ+, A1Π–X1Σ+and X1Σ+–X1Σ+transitions from left to right,respectively.At low temperature of 300 K/1000 K and a pressure of 100 atms(see Figs.5(a)and 5(b)),different band systems are distinctly divided from each other. The band systems contributed from A′1Σ+–X1Σ+and A1Π–X1Σ+transitions appear at nearby 180 nm and 250 nm,which are located in wavelength range of short-wave UV.As for band system of X1Σ+–X1Σ+,there are two typical bands(fundamental vibrational transition and pure rotation transition), and the fundamental vibrational bands of Δν=1, 2 and 3 appear around 6.6 μm, 3.4 μm and 2.3 μm, while the pure rotation band of Δν=0 locates in wavelength of≥40 μm. It can be seen that the molecular opacities are very small in the 300–1500 nm wavelength range, which form a window area in the visible light(VIS)and near infrared(NIR)region. When the temperature increase(see Figs.5(c)and 5(d)),the cross section in the

    Fig.5. Opacity of CS generated by vibration–rotation transitions for a pressure of 100 atm and temperatures of T =300 K,1000 K,1800 K,and 4500 K.

    VIS and NIR window area is growing gradually,and the separation between different fundamental vibrational bands and different electronic bands become blurred, which are originated from the raised population on vibrational excited states and electronic excited state at high temperature. On the other hand, the cross section contributed from pure rotational transition decrease evidently because of the reduced populations on the X1Σ+, while the cross section originated from highly vibrational excited states are enhanced significantly.

    5. Conclusions

    In this work, accurate PECs of singlet and triplet states correlated with the lowest dissociation limit of CS molecule are computed with high-precision MRCI+Qlevel of theory.Based on calculated PECs, the spectroscopic constants and vibrational levels are evaluated by using accurate numerical method, which agree with the previous measurement. The opacities for the lowest three singlet states of CS are evaluated at a pressure of 100 atms for the temperatures of 300 K,1000 K,1800 K,and 4500 K.At the low temperatures of 300 K and 1000 K, the spectra contributed from electronic transitions (A′1Σ+–X1Σ+and A1Π–X1Σ+) are separated into distinct bands,and different vibrational bands caused by Δν=0,1, 2 and 3 of X1Σ+–X1Σ+transition are also found. With the increasing of the temperature, the populations on excited states are increased,which cause the superposition of different band transitions. Hence,the band boundaries of cross sections become blurred. This work provides accurate electronic structure and molecular opacity of CS.The present study will shed more light on the calculations of the high-precision molecular structures and opacity.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.11934004 and 12203106),Fundamental Research Funds in Heilongjiang Province Universities,China (Grant No. 145109127), and the Scientific Research Plan Projects of Heilongjiang Education Department, China(Grant Nos.WNCGQJKF202103 and DWCGQKF202104).

    猜你喜歡
    吳勇李瑞李建軍
    椰子的身價
    木棍的長度
    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths
    吳勇書法作品
    李瑞
    Wimbledon Tennis
    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*
    等你
    當代音樂(2020年7期)2020-07-23 11:43:37
    Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography?
    藝術(shù)百家:李瑞
    電影文學(2017年12期)2017-12-26 10:59:30
    国产成人精品久久二区二区免费| 亚洲在线自拍视频| 亚洲av电影在线进入| 亚洲自偷自拍图片 自拍| 老熟女久久久| 免费观看a级毛片全部| 一区福利在线观看| 色老头精品视频在线观看| 天天操日日干夜夜撸| 一进一出抽搐gif免费好疼 | 麻豆乱淫一区二区| 99精品久久久久人妻精品| 国产欧美亚洲国产| 身体一侧抽搐| 久久热在线av| 91av网站免费观看| 久久国产乱子伦精品免费另类| 日韩免费高清中文字幕av| 女人精品久久久久毛片| 亚洲av熟女| 日韩精品免费视频一区二区三区| 97人妻天天添夜夜摸| 国产精品亚洲av一区麻豆| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| 亚洲欧洲精品一区二区精品久久久| 啪啪无遮挡十八禁网站| 热99久久久久精品小说推荐| 天天躁狠狠躁夜夜躁狠狠躁| 欧美不卡视频在线免费观看 | 国产精品98久久久久久宅男小说| 少妇猛男粗大的猛烈进出视频| av一本久久久久| 久久久久久亚洲精品国产蜜桃av| 成人黄色视频免费在线看| 精品福利永久在线观看| 国产成人精品在线电影| 亚洲av美国av| 女人高潮潮喷娇喘18禁视频| 身体一侧抽搐| 欧美精品啪啪一区二区三区| 99久久99久久久精品蜜桃| 久久ye,这里只有精品| 亚洲精品国产一区二区精华液| 久99久视频精品免费| 高清黄色对白视频在线免费看| 国产一区二区激情短视频| av视频免费观看在线观看| 久久国产精品男人的天堂亚洲| 国产精品国产高清国产av | 国产成人系列免费观看| 麻豆乱淫一区二区| 成年人午夜在线观看视频| 精品国产乱子伦一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 男女下面插进去视频免费观看| av天堂在线播放| 欧美人与性动交α欧美软件| 亚洲精品av麻豆狂野| 久久ye,这里只有精品| 国产97色在线日韩免费| 最新的欧美精品一区二区| 少妇被粗大的猛进出69影院| 久久精品aⅴ一区二区三区四区| 久久久久久免费高清国产稀缺| 亚洲国产欧美网| 久久人人爽av亚洲精品天堂| 女人被狂操c到高潮| 满18在线观看网站| 女性生殖器流出的白浆| 国产亚洲精品第一综合不卡| 国产乱人伦免费视频| 成人永久免费在线观看视频| 高潮久久久久久久久久久不卡| 成熟少妇高潮喷水视频| 久久久久久久精品吃奶| 少妇被粗大的猛进出69影院| 精品久久久久久,| 国产亚洲精品一区二区www | 9热在线视频观看99| av天堂久久9| 99精品久久久久人妻精品| 99香蕉大伊视频| 热99re8久久精品国产| 日本wwww免费看| 两人在一起打扑克的视频| 国产欧美日韩一区二区精品| 别揉我奶头~嗯~啊~动态视频| 免费不卡黄色视频| 午夜老司机福利片| 精品熟女少妇八av免费久了| 交换朋友夫妻互换小说| 午夜福利免费观看在线| 亚洲精品一二三| tube8黄色片| 久久久精品区二区三区| 亚洲色图av天堂| 亚洲熟女毛片儿| 欧美日韩av久久| 免费在线观看日本一区| 亚洲综合色网址| 狂野欧美激情性xxxx| 99久久综合精品五月天人人| 三级毛片av免费| 欧美日韩乱码在线| 视频区欧美日本亚洲| 欧美黑人欧美精品刺激| 国产av精品麻豆| 国产人伦9x9x在线观看| 人妻丰满熟妇av一区二区三区 | 在线十欧美十亚洲十日本专区| 欧美 亚洲 国产 日韩一| 超碰97精品在线观看| 国产淫语在线视频| 黄频高清免费视频| 在线观看日韩欧美| 欧美大码av| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩免费av在线播放| 精品亚洲成国产av| 精品人妻在线不人妻| 99精品欧美一区二区三区四区| 国产精品.久久久| 女性生殖器流出的白浆| 19禁男女啪啪无遮挡网站| 久久香蕉国产精品| 成在线人永久免费视频| 在线永久观看黄色视频| 极品少妇高潮喷水抽搐| 亚洲精品在线美女| 日本黄色视频三级网站网址 | 色94色欧美一区二区| 国产精品一区二区在线观看99| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻丝袜一区二区| 精品国产一区二区三区四区第35| 中文亚洲av片在线观看爽 | 中文字幕人妻丝袜一区二区| av线在线观看网站| 亚洲三区欧美一区| ponron亚洲| 黄色 视频免费看| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 99国产精品免费福利视频| 天堂√8在线中文| 亚洲欧美一区二区三区黑人| 久久午夜亚洲精品久久| 首页视频小说图片口味搜索| 大片电影免费在线观看免费| 91精品国产国语对白视频| 国产精品乱码一区二三区的特点 | 欧美精品人与动牲交sv欧美| bbb黄色大片| 日韩免费高清中文字幕av| 国产又爽黄色视频| 久久久久国内视频| 啦啦啦视频在线资源免费观看| 国产在线一区二区三区精| 俄罗斯特黄特色一大片| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区| 美女高潮到喷水免费观看| 美女 人体艺术 gogo| 欧美乱色亚洲激情| 国产不卡av网站在线观看| 青草久久国产| 窝窝影院91人妻| 十八禁高潮呻吟视频| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕 | 性色av乱码一区二区三区2| 欧美另类亚洲清纯唯美| 欧美 日韩 精品 国产| 亚洲人成77777在线视频| 精品欧美一区二区三区在线| 亚洲三区欧美一区| 免费女性裸体啪啪无遮挡网站| 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频| 久久午夜综合久久蜜桃| ponron亚洲| 18禁美女被吸乳视频| www.熟女人妻精品国产| 国产日韩欧美亚洲二区| 桃红色精品国产亚洲av| 啦啦啦在线免费观看视频4| 无遮挡黄片免费观看| 国产一区二区三区综合在线观看| 免费高清在线观看日韩| 成年人午夜在线观看视频| 一本大道久久a久久精品| 一二三四在线观看免费中文在| 亚洲五月色婷婷综合| 老司机靠b影院| 精品国产超薄肉色丝袜足j| 一区二区三区国产精品乱码| 色老头精品视频在线观看| 一级毛片女人18水好多| 亚洲精品国产色婷婷电影| 亚洲精品久久午夜乱码| 欧美国产精品va在线观看不卡| 777久久人妻少妇嫩草av网站| 亚洲欧美日韩另类电影网站| 乱人伦中国视频| 老汉色av国产亚洲站长工具| 电影成人av| 色综合欧美亚洲国产小说| 好看av亚洲va欧美ⅴa在| 亚洲三区欧美一区| 日韩制服丝袜自拍偷拍| 免费在线观看完整版高清| 亚洲九九香蕉| 久久久久国内视频| 日韩欧美一区二区三区在线观看 | 久久久久久久精品吃奶| 国产单亲对白刺激| 黑人操中国人逼视频| 99国产精品一区二区三区| 国产深夜福利视频在线观看| 19禁男女啪啪无遮挡网站| 日韩有码中文字幕| 中文字幕av电影在线播放| 高清欧美精品videossex| 一级a爱视频在线免费观看| 大型黄色视频在线免费观看| 亚洲国产毛片av蜜桃av| 久久天堂一区二区三区四区| 一二三四社区在线视频社区8| 最新的欧美精品一区二区| 国产日韩一区二区三区精品不卡| 国产精品免费视频内射| 亚洲视频免费观看视频| 亚洲av第一区精品v没综合| 女人被狂操c到高潮| 脱女人内裤的视频| 国产精品影院久久| 午夜亚洲福利在线播放| 亚洲成国产人片在线观看| 亚洲精品久久午夜乱码| 欧美成人午夜精品| 欧美黄色片欧美黄色片| 亚洲人成77777在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 久久影院123| 老汉色∧v一级毛片| 精品一品国产午夜福利视频| 人成视频在线观看免费观看| 国产亚洲欧美98| av天堂久久9| 亚洲五月色婷婷综合| 亚洲第一av免费看| 国产一区二区激情短视频| 国产极品粉嫩免费观看在线| 99国产精品99久久久久| 新久久久久国产一级毛片| 国产免费av片在线观看野外av| 极品教师在线免费播放| 久久久国产成人精品二区 | 亚洲人成电影观看| 一进一出抽搐动态| 精品国内亚洲2022精品成人 | 精品亚洲成国产av| 深夜精品福利| 亚洲精品美女久久av网站| 母亲3免费完整高清在线观看| 久久草成人影院| 色综合婷婷激情| 日本黄色视频三级网站网址 | 在线观看免费午夜福利视频| 女人被狂操c到高潮| 亚洲欧美日韩高清在线视频| 国产精品一区二区精品视频观看| 国产男靠女视频免费网站| 少妇被粗大的猛进出69影院| 亚洲av日韩在线播放| 国产激情久久老熟女| 午夜免费鲁丝| 国产一区二区三区视频了| 国产免费现黄频在线看| 女人被狂操c到高潮| av不卡在线播放| 三上悠亚av全集在线观看| 亚洲国产看品久久| 女性生殖器流出的白浆| 两人在一起打扑克的视频| 美女福利国产在线| 国产精品综合久久久久久久免费 | 久9热在线精品视频| 在线国产一区二区在线| 国产男靠女视频免费网站| 亚洲av第一区精品v没综合| 国产亚洲欧美精品永久| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 在线天堂中文资源库| 香蕉国产在线看| 精品国产国语对白av| 精品久久久久久,| 亚洲av日韩在线播放| 色尼玛亚洲综合影院| 国产精品98久久久久久宅男小说| 日本欧美视频一区| 成人亚洲精品一区在线观看| 国产极品粉嫩免费观看在线| 成人影院久久| 欧美 日韩 精品 国产| 啦啦啦 在线观看视频| 国产欧美日韩一区二区精品| 91九色精品人成在线观看| 在线永久观看黄色视频| 麻豆av在线久日| 99国产精品99久久久久| 国产蜜桃级精品一区二区三区 | 亚洲欧美日韩高清在线视频| 亚洲五月色婷婷综合| 1024香蕉在线观看| 欧美精品一区二区免费开放| 首页视频小说图片口味搜索| 看片在线看免费视频| 午夜福利欧美成人| 嫁个100分男人电影在线观看| 午夜免费鲁丝| 成人国产一区最新在线观看| 国产欧美亚洲国产| 精品无人区乱码1区二区| 久久久久国产精品人妻aⅴ院 | 大片电影免费在线观看免费| 黄色 视频免费看| av有码第一页| 久久香蕉激情| 国产成人啪精品午夜网站| 色婷婷久久久亚洲欧美| 香蕉丝袜av| av一本久久久久| 老熟妇仑乱视频hdxx| 欧美日韩乱码在线| 国产片内射在线| 久久久久久久国产电影| 国产伦人伦偷精品视频| 国内久久婷婷六月综合欲色啪| 每晚都被弄得嗷嗷叫到高潮| 国产精品自产拍在线观看55亚洲 | 日韩欧美一区视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产中文字幕在线视频| 丰满饥渴人妻一区二区三| 欧美激情 高清一区二区三区| 国产一卡二卡三卡精品| 亚洲一码二码三码区别大吗| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| avwww免费| 叶爱在线成人免费视频播放| 精品国产一区二区久久| 久久久久视频综合| 一本综合久久免费| 成年动漫av网址| tocl精华| 黑人操中国人逼视频| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| av电影中文网址| 国产精品免费一区二区三区在线 | 欧美日韩国产mv在线观看视频| 在线观看免费视频网站a站| 免费观看a级毛片全部| 久久久久国产精品人妻aⅴ院 | 精品少妇久久久久久888优播| 色在线成人网| 男女之事视频高清在线观看| 99久久99久久久精品蜜桃| 国产成人精品在线电影| 亚洲专区字幕在线| 交换朋友夫妻互换小说| 国产视频一区二区在线看| 最新的欧美精品一区二区| 麻豆乱淫一区二区| 波多野结衣一区麻豆| 国产一区二区三区视频了| 亚洲熟女精品中文字幕| 国产高清视频在线播放一区| 免费在线观看亚洲国产| 搡老岳熟女国产| 成熟少妇高潮喷水视频| 他把我摸到了高潮在线观看| 我的亚洲天堂| 欧美日韩中文字幕国产精品一区二区三区 | 日本黄色日本黄色录像| 日日摸夜夜添夜夜添小说| 久久久国产精品麻豆| 亚洲av成人一区二区三| 日本a在线网址| 美女国产高潮福利片在线看| 亚洲五月天丁香| 国产精品1区2区在线观看. | 一边摸一边抽搐一进一出视频| 亚洲黑人精品在线| 亚洲精品成人av观看孕妇| 午夜福利在线观看吧| 亚洲五月色婷婷综合| 国产精品成人在线| 亚洲 国产 在线| 久久久精品国产亚洲av高清涩受| tube8黄色片| 大片电影免费在线观看免费| 亚洲精品一二三| 怎么达到女性高潮| 亚洲人成77777在线视频| 看黄色毛片网站| 亚洲视频免费观看视频| 久久久久久久久久久久大奶| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 人人妻人人爽人人添夜夜欢视频| 国产精华一区二区三区| 国产亚洲精品一区二区www | 免费观看a级毛片全部| 国产精品电影一区二区三区 | 极品人妻少妇av视频| 国产激情欧美一区二区| 亚洲精品国产区一区二| 视频区欧美日本亚洲| aaaaa片日本免费| 欧美成人午夜精品| 99国产综合亚洲精品| 国内毛片毛片毛片毛片毛片| 国产一区二区激情短视频| 美女扒开内裤让男人捅视频| 下体分泌物呈黄色| 90打野战视频偷拍视频| 国产97色在线日韩免费| 免费在线观看影片大全网站| 精品国产一区二区三区久久久樱花| 淫妇啪啪啪对白视频| 久久久久久久国产电影| 18在线观看网站| 脱女人内裤的视频| 国产精品国产av在线观看| 国产欧美日韩一区二区精品| 欧美日韩瑟瑟在线播放| 美女高潮喷水抽搐中文字幕| 高清av免费在线| 老司机靠b影院| 久久精品亚洲av国产电影网| 成年版毛片免费区| 高清毛片免费观看视频网站 | 久久久久视频综合| 精品人妻在线不人妻| 成人18禁高潮啪啪吃奶动态图| 久热这里只有精品99| 久久久久久久久免费视频了| 亚洲精品一二三| 日日摸夜夜添夜夜添小说| 香蕉丝袜av| 亚洲av片天天在线观看| 欧美激情高清一区二区三区| 在线观看免费高清a一片| 国产伦人伦偷精品视频| 欧美日韩av久久| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 成人免费观看视频高清| 欧美人与性动交α欧美软件| 18在线观看网站| 成年版毛片免费区| 后天国语完整版免费观看| 在线观看免费视频日本深夜| 亚洲色图 男人天堂 中文字幕| 人人妻,人人澡人人爽秒播| 中文字幕人妻熟女乱码| 亚洲第一av免费看| 一区二区三区精品91| 又紧又爽又黄一区二区| 黄色丝袜av网址大全| 黄色怎么调成土黄色| 精品乱码久久久久久99久播| 久久草成人影院| 国产日韩欧美亚洲二区| 国产精品久久视频播放| 亚洲一区中文字幕在线| 在线观看免费午夜福利视频| 久久影院123| 宅男免费午夜| 久久久精品国产亚洲av高清涩受| 纯流量卡能插随身wifi吗| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 亚洲美女黄片视频| 一级作爱视频免费观看| a级毛片黄视频| 久久99一区二区三区| 久久青草综合色| 成人精品一区二区免费| 亚洲国产精品sss在线观看 | 欧美中文综合在线视频| 亚洲熟女毛片儿| 久久亚洲真实| 精品国内亚洲2022精品成人 | 国产精品久久久人人做人人爽| 大香蕉久久成人网| 国产精品免费视频内射| 在线天堂中文资源库| 欧美日韩亚洲国产一区二区在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区91| 91老司机精品| 不卡一级毛片| 国产成人精品久久二区二区91| 欧美最黄视频在线播放免费 | 高清黄色对白视频在线免费看| 国产成人精品久久二区二区免费| 人人妻人人爽人人添夜夜欢视频| 50天的宝宝边吃奶边哭怎么回事| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 久久久久视频综合| 超碰97精品在线观看| 中文亚洲av片在线观看爽 | 一级,二级,三级黄色视频| 黄色毛片三级朝国网站| 丰满的人妻完整版| 18禁裸乳无遮挡免费网站照片 | 国产蜜桃级精品一区二区三区 | 日本一区二区免费在线视频| 国产免费男女视频| 日韩欧美三级三区| 一级毛片女人18水好多| 99在线人妻在线中文字幕 | 人人妻人人澡人人看| 王馨瑶露胸无遮挡在线观看| 国产免费av片在线观看野外av| 大香蕉久久成人网| 建设人人有责人人尽责人人享有的| 动漫黄色视频在线观看| av视频免费观看在线观看| 欧美成人免费av一区二区三区 | 欧美激情 高清一区二区三区| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 人人妻人人澡人人看| 亚洲av成人不卡在线观看播放网| 午夜福利在线观看吧| 在线观看免费视频日本深夜| 亚洲欧美一区二区三区黑人| 老司机在亚洲福利影院| 黑丝袜美女国产一区| 国产亚洲精品一区二区www | 午夜亚洲福利在线播放| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 好看av亚洲va欧美ⅴa在| www.999成人在线观看| 国产精品电影一区二区三区 | 日本撒尿小便嘘嘘汇集6| 中国美女看黄片| 精品福利永久在线观看| 免费人成视频x8x8入口观看| 欧美乱色亚洲激情| 高清黄色对白视频在线免费看| 欧美大码av| 欧美日韩黄片免| 视频在线观看一区二区三区| 欧美日韩瑟瑟在线播放| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 亚洲美女黄片视频| 香蕉国产在线看| 亚洲精品一卡2卡三卡4卡5卡| 日韩熟女老妇一区二区性免费视频| 免费久久久久久久精品成人欧美视频| 国产高清激情床上av| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 免费看a级黄色片| 高清黄色对白视频在线免费看| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 国产精品欧美亚洲77777| 国产在线一区二区三区精| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 国产精品偷伦视频观看了| 精品久久久精品久久久| 满18在线观看网站| 啦啦啦在线免费观看视频4| 日韩视频一区二区在线观看| 国内久久婷婷六月综合欲色啪| 美女高潮喷水抽搐中文字幕| 热99re8久久精品国产| 亚洲国产精品sss在线观看 | 久久久久久亚洲精品国产蜜桃av| 深夜精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费av片在线观看野外av| 国产成+人综合+亚洲专区| 午夜福利在线观看吧| tube8黄色片| 久久国产亚洲av麻豆专区| 国产精品一区二区在线观看99| 在线观看www视频免费| 国产精品免费大片| 午夜免费观看网址| 757午夜福利合集在线观看| 一进一出抽搐动态| 久久国产乱子伦精品免费另类| 中文字幕av电影在线播放| 免费看十八禁软件| 亚洲全国av大片| 国产高清国产精品国产三级| 黄色女人牲交|