• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spectroscopy and scattering matrices with nitrogen atom:Rydberg states and optical oscillator strengths

    2022-04-12 03:48:48YuhaoZhu朱宇豪RuiJin金銳YongWu吳勇andJianguoWang王建國(guó)
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳勇王建國(guó)

    Yuhao Zhu(朱宇豪) Rui Jin(金銳) Yong Wu(吳勇) and Jianguo Wang(王建國(guó))

    1Key Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China

    2Center for Free-Electron Laser Science,DESY,Hamburg 22607,Germany

    3HEDPS,Center for Applied Physics and Technology,Peking University,Beijing 100084,China

    Keywords: eigenchannel R-matrix,oscillator strengths

    1. Introduction

    Atomic energy levels and optical oscillator strengths,particularly for Rydberg states, are crucial physical parameters in many physics fields, e.g., astrophysical spectroscopy,[1-3]diagnostic analysis of plasma,[4,5]quantum information processing[6-8]and so on. Specifically speaking,optical oscillator strengths between energy states are important for the understanding of energy balance and the rate of radiative decay in various types of astrophysical and laboratory plasma.[9-11]With the determination of line intensity ratios, the electron temperature, electron density and elemental abundances in plasma are indicated. In some special plasma environments,the radiation of Rydberg states cannot be neglected, e.g., the hot dense plasma.[12,13]Higher requirements are put forward for the richness of atomic energy levels and optical oscillator strengths. Although experimental measurements in spectroscopy have already made large promotion, they still cannot completely avoid absolute discrepancies. Therefore, precise theoretical calculations need play an indispensable role in atomic energy levels and optical oscillator strengths.

    While traditional atomic structure calculation methods,such as the configuration interaction[14](CI) method and many-body perturbation theory[15](MBPT),are generally believed that the computational costs are too expensive for Rydberg states. Fortunately, there is a correlative relationship between the atomic energy levels and corresponding electronion collision processes in terms of the analytical continuation property of the short-range scattering matrices.[16-18]Depending on this property, the eigenchannel based on a relativistic R-matrix(R-R-Eigen)[19-21]could provide the required atomic data mentioned above with adequate precision. In the scenario of an R-R-Eigen,a half-collision model where it could be regarded as an ion in low-lying excited states combined with an incident electron in the bound orbital or the continuum orbital composes the atomic system.Whatever in the bound or continuum energy regions,the short-range scattering matrices for the multi-channel process can be calculated accurately. One can extract the needed physical parameters in multi-channel quantum defect theory(MQDT)[22-26]from the scattering matrices,i.e.,the eigenchannel phase and transformation matrix. Due to the analytical continuation of the scattering matrices, MQDT parameters vary smoothly as a function of energy. It is sufficient for us to calculate the scattering matrices with a minority of energy points in order to obtain good MQDT parameters for the entire energy of interest. By employing the MQDT,all energy level positions in discrete energy regions will be predicted without missing anyone. Furthermore,various electron dynamics processes in atomic systems can be calculated using MQDT parameters (i.e., scattering matrices) checked by precise spectroscopy measurements, such as those of scatter,optical absorption,and radiation.

    Nitrogen is one of the most abundant elements found both on Earth and in the atmospheres of stars with huge demand for spectral line diagnosis. As an open-shell element, nitrogen also is extremely useful for plasma modeling. Previous research works[27-33]on the nitrogen atom have mainly studied the electronic structures and transitions for low-lying energy states because of the correlation effect of electrons. However, we are able to stretch the energy region to the extent of high Rydberg states with high precision and less computational costs using R-R-Eigen. In this work,the nitrogen atom has been investigated for the specific partial waveJπ=1.5+(+represents even parity). The present paper is organized as follows.The MQDT parameters of the selected physical channels are obtained in Subsection 2.1. The discrete energy levels of the major Rydberg series are calculated in Subsection 2.2.In Subsection 2.3,we calculate the optical oscillator strengths for the transition between the ground state and parts of the Rydberg series. The partial theoretical energy levels and corresponding optical oscillator strengths are exhibited in detail.Finally,the paper ends with a short summary.

    Table 1. Physical channels with corresponding eigenchannels for N system with Jπ =1.5+ symmetry.

    2. Theoretical methods and calculation results

    2.1. Calculation of the MQDT parameters

    The construction of the nitrogen atom system is from the model of an electron collision with a nitrogen cation. The wavefunction of the N+1 system (i.e., ion with an electron)is solved by a method that seems like a traditional relativistic R-matrix.[34-37]In the inner region, the scattering system is treated as the bound state, i.e., the CI expansion of the internal wavefunction,since there is a strong exchange and correlation effects between the scattering electron and the target electrons. On the other hand, the incident electron is in the long-range multipole potential field of the target in the outer region. We can obtain the exact wavefunction of the electrons by neglecting the exchange and correlation effects. The inner and outer wavefunctions are connected by the R matrix to construct the total wavefunction of the N+1 system.Thus,we can derive the reaction matrices (K matrices) from the N+1 electron wavefunction defined on a certain boundary in the reaction zone. The electron wavefunction in the R-R-Eigen is as follows:

    wherenpandncare the number of physical and computational channels, andΘjis the corresponding radial wavefunctions of the N+1 electron system. Note that the definitions of the channels are different from the traditional R-matrix.[38]For theithphysical channel,the regular and irregular Coulomb wavefunctions,fi(rN+1,E)and gj(rN+1,E),modified by the appropriate long-range polarization interactions,cover the entire set of the one-electron orbitals, with both negative and positive energy.[23]The scattering matricesSijare extracted from the reaction matricesKij. We transform the wavefunction into an eigenchannel representation and the short-range scatter matrices with a specific total angular momentum and parityJπare diagonalized as follows:

    where the eigenchannel phaseμαandnp×nporthogonal transformation matrixUiαare the main parameters in MQDT.The transformation matrix between the eigenchannels and physical channelsUiαcan usually be characterized as Eulertype angles[16,22]θk,k=1,...,np(np-1)/2.

    We take account of 12 physical channels in the scattering matrices calculation of N withJπ= 1.5+symmetry.As the scattering energy varies from the bound-state energy region to the continuum-state energy region, the number of physical channels increases gradually rises from the mathematical properties of the Coulomb wavefunctions,[39]i.e., 2,5, 8, and 12 channels are in the four different energy regions, respectively. More specifically, in the energy region of-0.225 Ry to-0.125 Ry, there are two physical channels,namely,N+(3P1)s1/2and N+(3P2)s1/2. In the energy of-0.125 Ry to-0.06 Ry,there are five physical channels with three additional channels,namely,N+(3P0)d3/2,N+(3P1)d3/2,N+(3P1)d5/2. Three extra channels in the eight physical channels energy region of-0.06 Ry to 0.08 Ry are N+(3P2)d3/2,N+(3P2)d5/2, N+(3P2)g7/2, respectively. The 12 physical channels with four additional channels, i.e., N+(1D2)s1/2,N+(1D2)d3/2,N+(1D2)d5/2,N+(1D2)g7/2,are in the final energy region of 0.08 Ry to 0.18 Ry. For better identification of physical channels, we list all 12 physical channels(JJnotation) with their corresponding eigenchannels (LSnotation)in Table 1. Due to the number of physical channels equal to the eigenchannels in each independent energy region,there are four transformation matricesUiαwith the same dimension as the number of eigenchannels,which are represented by 1,10,28, 66 Euler-type angles in the four energy regions respectively.

    The MQDT parametersUiαandμαvarying via the energy are shown in Fig. 1(a) and 1(b), respectively. As we see, the MQDT parametersμαandUiαvary as functions of the energy smoothly over the whole energy region, which substantially reflects the analytical continuation property of the scattering matrices. Evidently,all of the connections between the identical channels in the adjacent energy regions belong to the type-I connection with weak interchannel interactions.[20]Based on the analytical continuation property of scattering matrices,all discrete energy levels can be obtained without missing anyone in the framework of the MQDT in the next section.

    Fig. 1. Eigen-quantum defects μα, Euler angles θk for Uiα matrix in the Jπ =1.5+ symmetry of N.The dashed red lines indicate the connection position of different channel regions. The zero energy of abscissa represents the first ionization threshold of 3P0 and all the ionization thresholds of N are plotted with the dashed blue lines. Note that the labels of channels on the right are only for eigen-quantum defectsμα.

    2.2. Calculation of the discrete energy levels

    In order to obtain the discrete energy levels,we briefly introduce the MQDT. The energy eigenfunctions are expressed as the linear combination of eigenchannel wavefunctions,i.e.,

    whereCiαis the cofactor of the elementFiαof the determinant|Fiα|, and the choice of indexiis arbitrary. The solutions to Eqs.(5)and(6), i.e., discrete sets of the numbersνi, provide discrete energy levels of the perturbed Rydberg series.

    Utilizing the smooth MQDT parameters, we can solve Eqs. (5) and (6) to obtain the energy levels that can be compared with the precision spectroscopic measurements to correct scattering matrices. In our case of the nitrogen atom withJπ=1.5+,three thresholds are involved in the interested energy region leading to three principal quantum numbersν3P0,ν3P1,ν3P2.For the atomic system with more than two ionization thresholds,one can adopt a projected high dimensional quantum-defect graph (symmetrized), i.e., JHANGZ plot, to show the results of the graphic method. More precisely, we use the energy constraint from Eq.(5)to project the problem of three-dimensional solution of Eq. (6) (i.e., three unknown variables) to an advisable two-dimensional subspace through selecting arbitrary two of the three principal quantum numbers(ν3P0,ν3P1,ν3P2) as known variables. In this calculation, it is appropriate to select a two-dimensional plot withν3P0versus-ν3P1as a way of physical understanding. Thus, theν3P1is the known variables with unknown variablesν3P0,ν3P2to scan the energy ofν3P1. Effective principal quantum numbers are projected out in Eq.(6)with the following energy constraint:

    whereqis the target charge andIis the ionization threshold.

    In Fig.2(JHANGZ plot),one can see that the seven differently colored branch curves determined by mixing coefficientAαof the eigenchannel wavefunction represent the different eigenchannel effective phase shifts solved by Eq. (6).There are four quasi-horizontal differently colored branch curves, including black, red, orange and purple, which represent channels with3P0d3/2(4F),3P1s1/2(4P),3P2d3/2(4P),3P2d5/2(2P),respectively. On the other hand,three quasiperiodic resonant colored branch curves,blue,pink and green,represent channels with3P1d3/2(4D),3P1d5/2(2D),3P2s1/2(2P),respectively.The dashed lines are the Rydberg relationship between the projected ionization thresholds3P0and3P1.What is more,the crossing points between the dashed lines of the Rydberg relationship and solid curves of the seven colored branch curves are the theoretical energy level positions for the relevant eigenchannel.We have labeled the theoretical energy levels with various symbols, i.e., black circle, red triangle, blue five-pointed star,pink pentagon,green square,orange inverted triangle and purple rhombus, representing each eigenchannel determined by the corresponding color, respectively. The abscissa is the principal quantum number identified by Eq. (5)for the different eigenchannel. It is noted that discrepancies of tunnel depth in the multi-electronic system result in diverseνof s wave and d wave channels(decided by the different types of the incident continuous electron). For the condition of N withJπ=1.5+symmetry, the 65 experimental values in the NIST[40]and corresponding existing theoretical values under these projection thresholds are labeled in Fig. 2. Compared with available experimental data, the precision of the shortrange scattering matrices is estimated to be within 2%. In this framework, one can systematically obtain all energy levels without missing anyone by employing the MQDT, rather than calculating energy levels one by one like in traditional methods.

    Fig.2. Projected high-dimensional quantum-defect graph. Quantum-defect-ν3P0 (mod 1)versus ν3P1 plot of N Jπ =1.5+ partial wave. The dashed cyan lines are the Rydberg relationship between the two ionizations of 3P0 and 3P1. The differently colored solid curves indicate F=0,i.e., Eq.(6). The crossing points between the solid curves and dashed lines are the positions of theoretical energy levels. The corresponding energy level positions are labeled with different types of symbols. i.e.,black circles are d wave4F,red triangles are s wave4P,blue five-pointed stars are d wave 4D,pink pentagons are d wave 2D,green squares are s wave 2P,orange inverted triangles are d wave 4P and purple rhombuses are d wave 2P. All theoretical energies results are indicated as solid symbols, and available experimental energies are presented by the open symbols for comparison. Note that the energy grid at the top is not equidistant,but increasingly dense.

    2.3. Optical oscillator strengths

    After obtaining the exact eigenchannel wavefunction,optical absorption and radiation of atomic systems can be investigated. The optical oscillator strengths (OOSs) ofn-th state could be derived from the mixing coefficient for the different channel via

    We calculate the OOS of N for the transition between the ground state and a portion of the Rydberg series which have the sameLSnotation. It is noted that computational costs of the energy levels and OOSs for highly excited states are considerably less than for conventional methods.[14,15]In Table 2,the calculation results are listed,including the principal quantum number of the projected ionization thresholdν3P1, theoretical energy levels,experiments energy levels from NIST[40]and the length and velocity values of the oscillator strengths for the transition between the ground state4So3/2and Rydberg series with the terms4P3/2and2P3/2. The theoretical energy levels generally coincide with the experiments with a precision of better than one percent. To our knowledge, we only found calculations[27,28,31]that reported OOS for relevant fine structures with the configurations 2s22p23s and 2s22p23d in the transition conditions of4So3/2-4P3/2and4So3/2-2P3/2. As we see, the discrepancies between our theoretical results and others[28,31]in the condition of configuration 2s22p23s with transition of4So3/2-4P3/2are within 10%. However,the conditions of the configurations 2s22p23s and 2s22p23d with transition of4So3/2-2P3/2are more than 10%,which may result from the different expansions of wavefunctions. Precisely,the basis sets in our method are a group of scattering channel wavefunctions, others[28,31]have usually employed the traditional atomic orbital basis sets. We also found that there are few experimental and other theoretical results in highly excited states for comparison. As a matter of fact, it is an enormous challenge for experiments and traditional methods to study the optical oscillator strengths of the Rydberg states near the ionization threshold. Further experimental and theoretical studies on the OOSs of Rydberg states are necessary. As for the scenario of R-R-Eigen, a specific N+1 system channel can be ascertained in advance based on the principle of scattering. We can accurately obtain a series of bound states of this channel and corresponding dynamics conveniently through energy determination. Namely,the complete basis of the total electronic wavefunction is formed by the wavefunctions of different scattering channels.

    Table 2. Energy levels and the length(L)and velocity(V)values of OOS for the transitions of 4So3/2-4P3/2 and 4So3/2-2P3/2 are listed. The ν3P1 is the principal quantum number for the state of corresponding Rydberg series.

    3. Summary

    With employing the R-R-Eigen method, we calculate the short-range scattering matrices of the e+N+system forJπ=1.5+symmetry which provided good MQDT parameters(μα,Uiα) in the energy region from-0.225 Ry to 0.18 Ry.The smoothness of the MQDT parameters(i.e.,the analytical continuation of scattering matrices)is guaranteed by selecting the appropriate physical channels in different energy regions.Additionally, the accuracy of our calculated MQDT parameters is determined to be within 2%. All the connections of the MQDT parameters in different energy regions belong to the type-I connection, which has weaker eigenchannels interactions compared with the type-II connection.[20]In the condition for multi-thresholds of the atomic system, we propose the JHANGZ plot to perform the final result of solving the MQDT equations in the discrete energy region. The JHANGZ plot shows theoretical energy level positions and experimental values for each channel systematically. The theoretical energy levels in the current work are within one percent discrepancy compared to the values of the NIST. According to the precise spectroscopy measurements,we could review the MQDT parameters to obtain more accurate results. Namely, given the analytical continuation property of scattering matrices,the smoothness of MQDT parameters in all energy regions is necessary. Thus,in order to ensure the smoothness of the MQDT parameters, the slope of the MQDT parameters varying with energy will not be distorted,only a small translation of the parameters as a whole. In this way,we shall improve the numerical accuracy of the results without destroying the analytical continuation property of scattering matrices.

    In our work, the relevant physical channels dipole matrix elementsDαand the mixing coefficient of the eigenchannel wavefunction are calculated to obtain the optical oscillator strengths. The optical oscillator strengths for the transitions between the ground state and Rydberg series with terms4P3/2and2P3/2are exhibited thoroughly. There is good agreement between other theoretical calculations and ours in the condition of the configurations 2s22p23s and 2s22p23d. The optical oscillator strengths could supply abundant information about the optical transition of highly excited states to help us understand the influence of the radiation on the energy balance of high energy levels in hot dense plasma. Moreover, we look forward to more experiments and theoretical calculations in further studies on the optical oscillator strengths of the Rydberg states.

    Acknowledgments

    Project supported by the Science Challenge Project(Grant No. TZ2016005), the National Key Research and Development Program of China (Grant Nos. 2017YFA0403200 and 2017YFA0402300), and the CAEP Foundation (Grant No. CX2019022). We thank the Institute of Applied Physics and Computational Mathematics for the supercomputing source.

    猜你喜歡
    吳勇王建國(guó)
    椰子的身價(jià)
    Electron excitation processes in low energy collisions of hydrogen–helium atoms
    例談初中數(shù)學(xué)幾何圖形求證中輔助線的添加與使用
    吳勇書(shū)法作品
    M1 transition energy and rate in the ground configuration of Ag-like ions with 62 ≤Z ≤94
    王建國(guó):除開(kāi)諧音梗,還有點(diǎn)東西
    等你
    Characterization of a microsecond pulsed non-equilibrium atmospheric pressure Ar plasma using laser scattering and optical emission spectroscopy
    城里·城外——王建國(guó)油畫(huà)作品展
    柯川、吳勇中國(guó)畫(huà)作品
    h日本视频在线播放| 女生性感内裤真人,穿戴方法视频| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩高清专用| 免费人成视频x8x8入口观看| 亚洲人成伊人成综合网2020| 脱女人内裤的视频| 亚洲专区中文字幕在线| 色综合站精品国产| 女警被强在线播放| 91老司机精品| 黑人巨大精品欧美一区二区mp4| 色噜噜av男人的天堂激情| 观看美女的网站| 精品一区二区三区四区五区乱码| 怎么达到女性高潮| ponron亚洲| 中文字幕人妻丝袜一区二区| 又大又爽又粗| 伦理电影免费视频| 亚洲电影在线观看av| 日韩欧美一区二区三区在线观看| 欧美在线一区亚洲| 欧美一级毛片孕妇| 老熟妇乱子伦视频在线观看| 色噜噜av男人的天堂激情| 一个人免费在线观看电影 | 日本五十路高清| 久久久久久国产a免费观看| 中国美女看黄片| 亚洲avbb在线观看| 欧美日韩精品网址| 男人舔女人下体高潮全视频| 日本 欧美在线| 亚洲欧美精品综合久久99| 韩国av一区二区三区四区| 97碰自拍视频| 日韩欧美免费精品| 老司机福利观看| 亚洲自偷自拍图片 自拍| 国产av在哪里看| 噜噜噜噜噜久久久久久91| 成人av在线播放网站| 精品国产乱子伦一区二区三区| 夜夜看夜夜爽夜夜摸| 亚洲激情在线av| 成人无遮挡网站| 精品久久久久久成人av| 日本成人三级电影网站| 欧美黄色片欧美黄色片| 香蕉国产在线看| 99热这里只有是精品50| 久久久久久九九精品二区国产| 老汉色av国产亚洲站长工具| 精品熟女少妇八av免费久了| 日日夜夜操网爽| 午夜福利在线观看免费完整高清在 | 人妻丰满熟妇av一区二区三区| av天堂中文字幕网| 天堂动漫精品| 欧美成狂野欧美在线观看| xxx96com| 嫩草影视91久久| 成人特级av手机在线观看| 国产真实乱freesex| 99精品在免费线老司机午夜| 男人舔奶头视频| 露出奶头的视频| 久久久国产成人免费| 99热精品在线国产| 女人高潮潮喷娇喘18禁视频| 亚洲av熟女| 精品日产1卡2卡| 岛国在线观看网站| 久久中文看片网| 午夜免费激情av| 观看免费一级毛片| 免费在线观看影片大全网站| 少妇丰满av| 免费搜索国产男女视频| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽| 国产91精品成人一区二区三区| 桃红色精品国产亚洲av| 亚洲av中文字字幕乱码综合| 日韩成人在线观看一区二区三区| 色精品久久人妻99蜜桃| 日日夜夜操网爽| 亚洲av成人不卡在线观看播放网| 国产成人精品久久二区二区91| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 国产欧美日韩精品亚洲av| 欧美日韩一级在线毛片| 国产精品野战在线观看| 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 国产1区2区3区精品| 又粗又爽又猛毛片免费看| 露出奶头的视频| 国产97色在线日韩免费| 在线观看66精品国产| 国产91精品成人一区二区三区| 毛片女人毛片| 亚洲一区二区三区不卡视频| 色综合亚洲欧美另类图片| 又大又爽又粗| 在线国产一区二区在线| 午夜a级毛片| 这个男人来自地球电影免费观看| 麻豆一二三区av精品| 午夜福利在线在线| 亚洲精华国产精华精| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 亚洲欧美日韩卡通动漫| 午夜精品一区二区三区免费看| 久久久久久九九精品二区国产| 露出奶头的视频| 中出人妻视频一区二区| 白带黄色成豆腐渣| 亚洲精品色激情综合| 国产成人aa在线观看| 中文资源天堂在线| 色噜噜av男人的天堂激情| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久免费视频| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 性欧美人与动物交配| 老熟妇乱子伦视频在线观看| АⅤ资源中文在线天堂| 非洲黑人性xxxx精品又粗又长| 亚洲自偷自拍图片 自拍| www.自偷自拍.com| 色播亚洲综合网| 国产高清三级在线| 2021天堂中文幕一二区在线观| 亚洲精品中文字幕一二三四区| 久久伊人香网站| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 首页视频小说图片口味搜索| 国产亚洲av高清不卡| 老汉色av国产亚洲站长工具| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 国产精品美女特级片免费视频播放器 | 精品国产三级普通话版| 久9热在线精品视频| 亚洲国产日韩欧美精品在线观看 | 91久久精品国产一区二区成人 | 久久久久久久久中文| 少妇人妻一区二区三区视频| 后天国语完整版免费观看| 色综合婷婷激情| 搡老岳熟女国产| 免费看十八禁软件| netflix在线观看网站| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区精品| 亚洲欧美日韩东京热| 丰满的人妻完整版| 亚洲欧美激情综合另类| 黑人巨大精品欧美一区二区mp4| 国产午夜精品久久久久久| 国产69精品久久久久777片 | 日本撒尿小便嘘嘘汇集6| 色综合婷婷激情| 伊人久久大香线蕉亚洲五| 在线永久观看黄色视频| 欧美日韩乱码在线| 精品无人区乱码1区二区| 级片在线观看| 搞女人的毛片| 久久精品人妻少妇| 久久精品影院6| 中亚洲国语对白在线视频| 最新在线观看一区二区三区| xxx96com| 欧美日韩综合久久久久久 | 少妇丰满av| 真人一进一出gif抽搐免费| 午夜日韩欧美国产| 久久久成人免费电影| 国产真实乱freesex| 亚洲va日本ⅴa欧美va伊人久久| 宅男免费午夜| 国产单亲对白刺激| 亚洲成人久久性| 观看美女的网站| 真实男女啪啪啪动态图| 欧美在线黄色| 美女 人体艺术 gogo| 色老头精品视频在线观看| 国产精品一区二区三区四区久久| 亚洲男人的天堂狠狠| 99久久久亚洲精品蜜臀av| 观看美女的网站| xxx96com| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 亚洲专区国产一区二区| 日韩欧美免费精品| 国产av麻豆久久久久久久| 精华霜和精华液先用哪个| 欧美乱妇无乱码| 国产熟女xx| 91麻豆精品激情在线观看国产| 99热6这里只有精品| 在线a可以看的网站| 久久久久久大精品| 级片在线观看| 少妇丰满av| 欧美日韩福利视频一区二区| 中文亚洲av片在线观看爽| 99国产综合亚洲精品| 成人18禁在线播放| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 日韩有码中文字幕| 夜夜看夜夜爽夜夜摸| 在线观看美女被高潮喷水网站 | 给我免费播放毛片高清在线观看| 好看av亚洲va欧美ⅴa在| 国产精品,欧美在线| 欧美黄色淫秽网站| 伊人久久大香线蕉亚洲五| 亚洲欧美一区二区三区黑人| 国产成人啪精品午夜网站| 曰老女人黄片| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 亚洲精品456在线播放app | 亚洲精品在线美女| 亚洲片人在线观看| 免费大片18禁| 99热6这里只有精品| 窝窝影院91人妻| 亚洲专区国产一区二区| www日本黄色视频网| 国产精品九九99| 亚洲九九香蕉| 一本一本综合久久| 91麻豆av在线| 国产毛片a区久久久久| 久久婷婷人人爽人人干人人爱| 日本 欧美在线| 日本在线视频免费播放| 亚洲欧美日韩东京热| 午夜免费成人在线视频| 淫秽高清视频在线观看| 国产亚洲欧美98| 国产成人精品久久二区二区免费| 精品电影一区二区在线| 亚洲国产欧美人成| 午夜激情欧美在线| 色综合婷婷激情| 欧美av亚洲av综合av国产av| а√天堂www在线а√下载| 国产v大片淫在线免费观看| 国产免费男女视频| 国产又色又爽无遮挡免费看| 男女视频在线观看网站免费| 99久久成人亚洲精品观看| 国产午夜福利久久久久久| 国产精品,欧美在线| 99久久精品国产亚洲精品| 欧美三级亚洲精品| 高清毛片免费观看视频网站| 国产精品1区2区在线观看.| 国产一区二区三区在线臀色熟女| 天堂av国产一区二区熟女人妻| 香蕉av资源在线| 特大巨黑吊av在线直播| 午夜福利18| 国产成人aa在线观看| 熟女电影av网| 精品久久久久久久末码| 网址你懂的国产日韩在线| 天天添夜夜摸| 麻豆一二三区av精品| 亚洲,欧美精品.| 一卡2卡三卡四卡精品乱码亚洲| 欧美+亚洲+日韩+国产| 青草久久国产| 国语自产精品视频在线第100页| 黄色视频,在线免费观看| 国产精品电影一区二区三区| 老汉色av国产亚洲站长工具| 午夜精品一区二区三区免费看| 黄色女人牲交| www.精华液| 午夜福利18| 一进一出抽搐动态| 国产午夜福利久久久久久| 日本 欧美在线| 人人妻人人看人人澡| 精品国产三级普通话版| 天天躁日日操中文字幕| 国内精品久久久久精免费| 97碰自拍视频| 哪里可以看免费的av片| 久久午夜亚洲精品久久| 国产精品电影一区二区三区| 国内少妇人妻偷人精品xxx网站 | 两个人看的免费小视频| 国产一级毛片七仙女欲春2| 国产亚洲欧美在线一区二区| 很黄的视频免费| 国产熟女xx| 一区福利在线观看| 日韩av在线大香蕉| 制服人妻中文乱码| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 久久久久精品国产欧美久久久| 少妇人妻一区二区三区视频| www国产在线视频色| 人人妻,人人澡人人爽秒播| 在线观看日韩欧美| 一进一出抽搐gif免费好疼| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 久久久精品欧美日韩精品| 国产1区2区3区精品| 一二三四社区在线视频社区8| 中文在线观看免费www的网站| 国产不卡一卡二| 久久久国产成人精品二区| 日韩欧美国产一区二区入口| 女警被强在线播放| 此物有八面人人有两片| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 日本一二三区视频观看| 日本黄色视频三级网站网址| 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸| 在线观看午夜福利视频| 九九在线视频观看精品| 高清毛片免费观看视频网站| 成年女人看的毛片在线观看| 国产欧美日韩一区二区精品| 久久久久久人人人人人| 国产美女午夜福利| 97碰自拍视频| 国产视频内射| 亚洲国产精品999在线| 首页视频小说图片口味搜索| 18禁黄网站禁片免费观看直播| 欧美黄色淫秽网站| www日本黄色视频网| 99久久综合精品五月天人人| 午夜a级毛片| 精品久久久久久成人av| 久久久成人免费电影| 国产视频内射| 成人国产一区最新在线观看| av片东京热男人的天堂| 日韩欧美精品v在线| 欧美色欧美亚洲另类二区| 精品人妻1区二区| 国产日本99.免费观看| 国产三级中文精品| 日本黄色片子视频| 美女午夜性视频免费| 午夜福利成人在线免费观看| 国产伦精品一区二区三区视频9 | 国产伦精品一区二区三区四那| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久精免费| 亚洲av成人av| 可以在线观看毛片的网站| 国产一区二区激情短视频| 天堂av国产一区二区熟女人妻| 琪琪午夜伦伦电影理论片6080| 国产欧美日韩精品一区二区| 天天添夜夜摸| 成人高潮视频无遮挡免费网站| 亚洲七黄色美女视频| 少妇熟女aⅴ在线视频| cao死你这个sao货| 久久香蕉精品热| 久久性视频一级片| 两个人的视频大全免费| 国内精品久久久久久久电影| 无遮挡黄片免费观看| 国产单亲对白刺激| 国产精品香港三级国产av潘金莲| 久久久久精品国产欧美久久久| 色吧在线观看| 国产激情欧美一区二区| 淫秽高清视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩卡通动漫| 国产视频一区二区在线看| 高清毛片免费观看视频网站| 午夜视频精品福利| 国产亚洲欧美98| 一级a爱片免费观看的视频| 色综合欧美亚洲国产小说| 午夜a级毛片| 精品久久久久久久久久久久久| 色吧在线观看| 一级毛片精品| 极品教师在线免费播放| 欧美日韩瑟瑟在线播放| a在线观看视频网站| 精品一区二区三区视频在线观看免费| 女警被强在线播放| 欧美av亚洲av综合av国产av| 色尼玛亚洲综合影院| 精品国产美女av久久久久小说| 男女那种视频在线观看| 19禁男女啪啪无遮挡网站| 少妇的逼水好多| 成在线人永久免费视频| 欧美精品啪啪一区二区三区| 麻豆av在线久日| 国产一级毛片七仙女欲春2| 国产成人aa在线观看| 欧美日本亚洲视频在线播放| 国产成人啪精品午夜网站| 国产精品,欧美在线| 99精品在免费线老司机午夜| 叶爱在线成人免费视频播放| 国产黄片美女视频| 欧美成狂野欧美在线观看| 18禁观看日本| 国产v大片淫在线免费观看| 国产伦精品一区二区三区视频9 | 欧美乱色亚洲激情| 99久久无色码亚洲精品果冻| 国产一区二区三区视频了| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影| www.熟女人妻精品国产| 国产黄a三级三级三级人| 午夜日韩欧美国产| 亚洲国产精品成人综合色| 午夜两性在线视频| 无人区码免费观看不卡| 美女大奶头视频| 日韩欧美在线二视频| 好男人在线观看高清免费视频| 全区人妻精品视频| 可以在线观看的亚洲视频| 精品久久久久久,| 国产精品 欧美亚洲| www.999成人在线观看| 国产1区2区3区精品| 日本免费a在线| 婷婷精品国产亚洲av| 亚洲色图 男人天堂 中文字幕| 神马国产精品三级电影在线观看| 欧美另类亚洲清纯唯美| 十八禁网站免费在线| 国产成人精品久久二区二区免费| 国产成人精品无人区| 日韩中文字幕欧美一区二区| 黄色片一级片一级黄色片| 国产一级毛片七仙女欲春2| 麻豆av在线久日| 一二三四在线观看免费中文在| 欧美激情在线99| 日本黄色视频三级网站网址| 国内精品久久久久久久电影| 久久亚洲精品不卡| 日日夜夜操网爽| 午夜亚洲福利在线播放| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 国产一区二区在线观看日韩 | 看黄色毛片网站| 精品免费久久久久久久清纯| 亚洲电影在线观看av| x7x7x7水蜜桃| 久久亚洲精品不卡| 久久中文字幕一级| 国内精品一区二区在线观看| 久久九九热精品免费| 又粗又爽又猛毛片免费看| 人妻久久中文字幕网| 日韩欧美三级三区| 久久精品国产综合久久久| 男女视频在线观看网站免费| 欧美一区二区精品小视频在线| 免费看日本二区| 国产精品,欧美在线| 日韩欧美在线乱码| 夜夜爽天天搞| 欧美一区二区精品小视频在线| 精品久久蜜臀av无| 99热只有精品国产| 亚洲无线观看免费| a在线观看视频网站| 神马国产精品三级电影在线观看| 色尼玛亚洲综合影院| 琪琪午夜伦伦电影理论片6080| 国内精品一区二区在线观看| 最近在线观看免费完整版| 精品久久久久久,| 真实男女啪啪啪动态图| 免费大片18禁| 亚洲 欧美 日韩 在线 免费| 欧美3d第一页| 五月玫瑰六月丁香| 日韩国内少妇激情av| 男插女下体视频免费在线播放| 国产av在哪里看| 级片在线观看| av在线天堂中文字幕| 在线观看66精品国产| 非洲黑人性xxxx精品又粗又长| 亚洲美女视频黄频| 看黄色毛片网站| 嫩草影院入口| 神马国产精品三级电影在线观看| 亚洲第一电影网av| 最近视频中文字幕2019在线8| 国产精品一区二区精品视频观看| 热99re8久久精品国产| avwww免费| 国产激情偷乱视频一区二区| 嫩草影院入口| 国产精品久久久久久亚洲av鲁大| 国内久久婷婷六月综合欲色啪| 久久久久久久午夜电影| 一个人看的www免费观看视频| 操出白浆在线播放| 草草在线视频免费看| 国产伦精品一区二区三区四那| 色播亚洲综合网| 亚洲专区中文字幕在线| 成人18禁在线播放| 欧美性猛交╳xxx乱大交人| 亚洲中文字幕日韩| 日本黄色片子视频| 五月玫瑰六月丁香| 757午夜福利合集在线观看| av女优亚洲男人天堂 | 天堂网av新在线| 狠狠狠狠99中文字幕| 一区二区三区高清视频在线| 蜜桃久久精品国产亚洲av| 久久久国产精品麻豆| 麻豆成人av在线观看| 亚洲人成伊人成综合网2020| 国产91精品成人一区二区三区| 搡老熟女国产l中国老女人| 久久性视频一级片| www日本黄色视频网| 国产精品野战在线观看| 18美女黄网站色大片免费观看| 亚洲真实伦在线观看| 最新美女视频免费是黄的| 欧美日韩乱码在线| 日韩欧美 国产精品| 国产久久久一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 亚洲精品美女久久av网站| 欧美日韩精品网址| 欧美色欧美亚洲另类二区| 深夜精品福利| 国产伦在线观看视频一区| 好男人在线观看高清免费视频| 国产精品香港三级国产av潘金莲| 久久久久久久久中文| 男人的好看免费观看在线视频| 少妇人妻一区二区三区视频| 可以在线观看毛片的网站| 亚洲欧美日韩卡通动漫| 国产三级中文精品| 黑人欧美特级aaaaaa片| 69av精品久久久久久| ponron亚洲| 中文字幕最新亚洲高清| 观看美女的网站| 国内少妇人妻偷人精品xxx网站 | 欧美性猛交黑人性爽| 九九在线视频观看精品| 亚洲欧美精品综合久久99| 亚洲av日韩精品久久久久久密| 中文亚洲av片在线观看爽| 精品午夜福利视频在线观看一区| 日韩三级视频一区二区三区| 老司机在亚洲福利影院| 夜夜夜夜夜久久久久| АⅤ资源中文在线天堂| av福利片在线观看| 亚洲人成伊人成综合网2020| 97超视频在线观看视频| 老熟妇乱子伦视频在线观看| 欧美色欧美亚洲另类二区| 免费高清视频大片| 三级男女做爰猛烈吃奶摸视频| 最新在线观看一区二区三区| 19禁男女啪啪无遮挡网站| 熟女电影av网| 欧美极品一区二区三区四区|