• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling*

    2021-07-30 07:37:28ShuTaoZhao趙書濤XinPengLiu劉鑫鵬RuiLi李瑞HuiJieGuo國慧杰andBingYan閆冰
    Chinese Physics B 2021年7期
    關(guān)鍵詞:李瑞

    Shu-Tao Zhao(趙書濤) Xin-Peng Liu(劉鑫鵬) Rui Li(李瑞) Hui-Jie Guo(國慧杰) and Bing Yan(閆冰)

    1Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes,School of Physics and Electronic Science,Fuyang Normal University,Fuyang 236037,China

    2Institute of Atomic and Molecular Physics,Jilin University,Changchun 130012,China

    3Department of Physics,College of Science,Qiqihar University,Qiqihar 161006,China

    Keywords: SH,MRCI+Q,potential energy curves,spin-orbit coupling

    1. Introduction

    The SH molecule plays a crucial role in the fields of environmental sciences, life sciences, and astrophysics. The SH is of great importance in fossil fuel combustion processes and naturally occurring reactions generating sulfurous pollutants.[1,2]There are a large number of SH functional proteins in the human body, which play an important role in stabilizing protein conformation and maintaining protein activity.[3]In astrophysics, due to the relatively high content of sulfur in the universe, some researchers have carried out experimental observations on SH in space.[4,5]Therefore, the study of molecular structure and molecular spectrum of SH has important reference significance for future research.

    In the experiment,numerous scholars have measured the spectrum of SH. In 1950, the SH was first spectroscopically detected,and the dissociation energies and vibration frequencies of the molecule were obtained by Porter.[6]Ramsay[7]reported the dissociation energy of ground state X2Π and an initial set of spectroscopic constants by using flash photolysis.Later, based on the results of Ramsay’s research, the (2, 0)bands of the A2Σ+-X2Π system of SH were recorded.[8]The absorption spectrum of SH was observed by the flash photolysis in the vacuum ultraviolet. Morrow[9]observed the transition from the X2Π to seven excited states in the vacuum ultraviolet absorption spectrum,and four of these excited states were associated with a Rydberg series.After that,Schniederet al.[10]improved the spectrum technology and obtained the accurate dissociation energy(3.71±0.07 eV)of the ground state X2Π. Pathaket al.[11]again photographed the (0, 0) band of SH by the emission spectrum of the low-pressure diffusion flame of the mixed gas burning in potassium vapor, and also detected the(0, 0)and(0, 1)band systems of the isotope SD for the first time. The molecular beam laser-induced fluorescence (LIF) experiment of SH was carried out by Ubachset al.,[12]and rotationally dependent predissociation was analyzed from linewidth measurements. In 1995, Ramet al.[13]obtained a more precise set of molecular constants, including the SOC effect through Fourier transform infrared spectroscopy. Subsequently,Milan[14]assigned high excited states below the lowest ionization limit via the two-photon excitation spectra, and Rydberg-valence interaction was used to identify the finer detail of electronic structures. Later,Wheeleret al.[15,16]investigated the predissociation mechanism of A2Σ+state of the SH by employing the technique of cavity ringdown spectroscopy. For SH,linewidth measurements for rovibrational levels of the A2Σ+were determined, and the variation of predissociation rates with respect to rovibrational quantum numbers were illuminated.

    Along with experimental studies, a number of theoretical studies were carried out to investigate the electronic structure and spectroscopy of SH. Hirstet al.[17]used the multireference single and double excitation configuration interaction (MRD-CI) method to calculate the electronic structure of X2Π and A2Σ+of SH. Based on the calculated vertical excitation energy, Hirst pointed out that the B2Σ state is2Σ-,which is also verified by Park’s computational results.[18]Later,Senekowitschet al.[19]obtained the transition probability of SH fromab initiocalculations and gave the dipole moments.It was also pointed out that the PECs of a4Σ-and A2Σ+intersect atR=3.1 a.u. Bruna[20]carried out MRD-CI studies on SH and obtained the spectroscopic constants and dipole moments(DM)of bound X2Π and A2Σ+.In 2001,Lee[21]utilized the effective valence shell Hamiltonian method to calculate the transition dipole moments (TDMs) between the X2Π and the excited states A2Σ+, B2Σ-, C2Δ and D2Π. And Resendeet al.[22]calculated the low-lying states of the SH associated with the three lowest dissociation limits H(2S)+S(3P,1D,1S)at the CASSCF-MRCI level. In 2008,the PECs of A2Σ+,a4Σ-,B2Σ-and b4Π were calculated by Briteset al.[23]by using MRCI method with aug-cc-pV6Z basis set,and their mutual SOC integrals were also determined.

    So far,most of the studies of SH concentrate on the lowlying states. So,in this study,the electronic structure of lowlying states and Rydberg states (c4Σ-and F2Σ-) of SH are calculated by the MRCI method.In order to improve the accuracy, Davidson correction (+Q), scalar relativistic effect, CV electron correlation,and SOC effect are considered in the calculations. The above physical effects would affect the electronic structure of small molecules.[24-31]The PECs of 10 ΛS states related to the 5 lowest asymptotes are determined.The spectroscopic constants and the DMs are calculated. The phenomenon of curve crossing and avoided crossing are studied, and the predissociation mechanism is analyzed by using the SO matrix elements. The radiative lifetimes of A2Σ+and F2Σ-states are determined.

    2. Calculation method

    In this study, we use the MOLPRO program package[32]to calculate the electronic structure of the 10 Λ-S states corresponding to the 5 lowest asymptotes of the SH molecule.Before starting the calculation of the electronic structure of the SH molecule,we test the basis sets of S and H atoms. Finally,the Gaussian-type basis sets,aug-cc-pV5Z-DK[33],and aug-cc-pwCV5Z-DK[34,35]are chosen for H and S atoms, respectively.At a series of bond lengths in the range ofR=0.9-10.0 ?A, we use the multi-reference configuration interaction method (MRCI) to calculate the eigenvalue energy of 10 ΛS states. Utilizing the reference wavefunction determined by the complete active-space self-consistent field (CASSCF)[36]method,the eigenvalues of the 10 Λ-S states are calculated by MRCI[37]method. In CASSCF calculations, four a1, one b1,and one b2molecular orbitals are selected as active spaces.The energy calculated by MRCI does not include the sizeconsistency error. We introduce Davidson(+Q)[38]correction to consider the effect of higher electron excitation and eliminate size inconsistency error. In the MRCI calculation,the ten electrons in 1s2s2p shells are put into the closed shell,which are correlated via single and double excitations. That is to say,all the 17 electrons of SH are correlated in MRCI calculation,which is denoted as MRCI+CV result in this work.

    In order to reveal the relativistic effect on the modification of the electronic structure, the scalar relativistic effect is included through third-order Douglas-Kroll[39]and Hess electronic integral.[40]The SOC effect is calculated by the state interaction method utilizing the full Breit-Pauli operator(HBP),so the eigenvalues of Ω states are determined by diagonalizing ?HBP+ ?Helin the basis of Λ-S wavefunction. With the help of the avoided crossing principle,the PECs of Λ-S states and Ω states are plotted. Based on the calculated PECs,the spectroscopic constants of the bound states are determined by LEVEL program.[41]

    3. Results and discussion

    3.1. PECs of the 10 Λ-S states

    The 10 Λ-S states of SH are computed by MRCI+Q method. Figure 1 shows the PECs of those states correlating to the S(3P)+H(2S), S(1D)+H(2S), S(1S)+H(2S),S(5S)+H(2S) and S(3S)+H(2S) dissociation limits. The energy splits of1D-3P,1S-3P,5S-3P and3S-3P of S atom are 8818, 21814, 53523 and 57003 cm-1, which are in good agreement with the observed experimental results of 9043,21984, 52428 and 55135 cm-1.[42]From Fig. 1, it can be found that the potential wells of the 3 bound states A2Σ+,c4Σ-and F2Σ-are all located in the high-density areas of states, which make their PECs intersect with multiple repulsive states. The interaction between these electronic states may lead to predissociation.

    Fig.1. Potential energy curves of Λ-S states of SH.

    Table 1. Spectroscopic constants of Λ-S states of SH.

    The spectroscopic constants of SH are determined and displayed in Table 1. In order to illuminate the influence of various effects on the electronic structure, the electronic structure calculations are performed at different levels of MRCI+CV+Q+DK, MRCI+CV+DK and MRCI+CV+Q,and these calculation results are summarized in Table 1. The X2Π is mainly composed of the open-shell electronic configuration 1σ22σ23σ24σ25σ21π42π3(92.1%). Comparing the spectroscopic constants obtained by MRCI+CV+Q+DK and MRCI+CV+Q method, the values ofωe,ωeχeandDeat MRCI+CV+Q+DK level are reduced by 11 cm-1,0.9 cm-1and 0.0089 eV. When the Davidson correction and the DK effect are included,ωe,ωeχe,Be, andReare more close to the latest experimental results[13]of 2696 cm-1,48.74 cm-1, 9.6003 cm-1, and 1.3406 ?A. The dominant electronic configuration of the first excited state A2Σ+is 1σ22σ23σ24σ25σ11π42π4(90.1%), which corresponds to the single-electron excitation (5σ →2π) with respect to the electronic configuration of X2Π. Without the Davidson correction,Te,ωeandωeχeare computed to be 32980,1970 and 172.1 cm-1, differing from the corresponding measurements[8]by 1942, 10 and 74.5 cm-1. The results ofTe,ωeandωeχeexcluding DK effect were 31601, 2060 and 141.1 cm-1,differing from the experimental results[8]by 563, 80, 43.5 cm-1. After considering the Davidson correction and DK effect, the values ofTe,ωe,ωeχe,BeandReare offset from the experimental results by 683 cm-1(2.20%),6 cm-1(0.30%), 9.5 cm-1(9.73%), 0.0059 cm-1(0.07%)and 0.0021 ?A (0.15%), respectively. Furthermore, the spectroscopic parameters of the Rydberg states F2Σ-of SH are also calculated, whose values ofTe,ωe,ωexe,Be,ReandDeat MRCI+CV+Q+DK level are 60762 cm-1, 2700 cm-1,60.9 cm-1, 8.5135 cm-1, 1.4239 ?A and 3.3026 eV, respectively. As shown in Fig. 1, the PEC of c4Σ-exhibits a potential barrier atR= 2.2 ?A. The potential barrier of c4Σ-is due to the avoided crossing of higher excited states with4Σ-symmetry. The avoided crossing causes an obvious change of leading electronic configuration of c4Σ-. At the equilibrium distance, the leading electronic configuration of c4Σ-is 1σ22σ23σ24σ25σ16σ21π42π2(92.5%). AtR= 2.6 ?A, the leading electronic configuration of c4Σ-is changed into 1σ22σ23σ24σ25σ16σ21π42π2(34.6%), 1σ22σ23σ24σ25σ16σ17σ11π42π2(25.0%), and 1σ22σ23σ24σ25σ27σ11π42π2(19.8%),which exhibit obvious multi-configuration character.

    The DMs of the 10 Λ-S states are calculated by MRCI method, which are plotted in Fig. 2. The DM of X2Π is 0.2797 a.u., which is consistent with the experimental result 0.2439 a.u.[43]The DM of A2Σ+has a peak value of 0.5631 a.u. atR= 1.6 ?A. In addition, the DM of a4Σ-,C2Δ,B2Σ-and E2Σ+have roughly the same changing trend,because their main electronic configurations are the same,all of them are 1σ22σ23σ24σ25σ26σ11π42π2. Because the main electronic configurations of b4Π and D2Π are both 1σ22σ23σ24σ25σ16σ11π42π3, their DMs also have a similar changing trend. As shown in Fig.2,the DM curves of the 10 Λ-S states have a common characteristic. The DM curves all return to zero at infinity,which indicates that the dissociation products of the molecule are neutral atoms. It should be noted that the DM curves of c4Σ-and F2Σ-tend to zero more slowly than those of the other eight electronic states, which may be caused by the Rydberg character of c4Σ-and F2Σstates.

    Table 2. The spectroscopic constants of low-lying Ω states of SH.

    Fig. 2. The dipole moments of Λ-S states of SH determined by the MRCI method.

    3.2. Spin-orbit coupling and predissociation

    Fig.3. An amplified view of the crossing region and the vibrational levels of A2Σ+,c4Σ- and F2Σ- states.

    As indicated above,the curves of A2Σ+,c4Σ-and F2Σstates cross with multiple repulsive states.The curve crossings and predissociation mechanisms of the SH system are studied.The curve crossings are spread over two areas for the PECs of Λ-S states. As shown in Fig. 3, the A2Σ+PEC crosses with the PECs of a4Σ-,B2Σ-and b4Π atR=1.7-2.1 ?A,with the energy range of 30000-40000 cm-1. And the second crossing region is located atR=1.3-1.7 ?A, with an energy range of 56000-66000 cm-1. In this area, the intersecting curves are c4Σ-with repulsive states E2Σ+,b4Π and D2Π,as well as F2Σ-states with repulsive states E2Σ+,b4Π and D2Π. These intersecting curves can provide many possible predissociation pathways.As shown in Fig. 3, in the first crossing area, the intercrossing points are located atν′≥1 of A2Σ+state;hence,theν′=0 of A2Σ+is unperturbed by nearby states. In the second crossing area, the intercrossing points are situated at the bottom of the potential well of c4Σ-and F2Σ-states, so all theν′≥0 vibrational states of the two states may be predissociated via crossed states. The predissociation pathways can be studied by means of SOC integral. Hence,the SO matrix elements between the interacting electronic states in the crossing area are calculated. The definitions of the schematic representation for the spin-orbit matrix elements are listed in Table 3.The variation of absolute values of the SO matrix elements with the internuclear distances is plotted in Fig.4.

    Table 3. Spin-orbit matrix elements between different Λ-S states of SHa).

    Fig. 4. Evolution of the values of spin-orbit matrix elements related to the A2Σ+,c4Σ- and F2Σ- states with the internuclear distance.

    For A2Σ+state, the values of SO matrix elements of A2Σ+→a4Σ-and A2Σ+→B2Σ-at the crossing point are 54 cm-1and 57 cm-1. For the values of A2Σ+→a4Σ-and A2Σ+→B2Σ-, which are sufficient to induce certain predissociation. The repulsive state b4Π intersects with A2Σ+atR=2.06 ?A,in betweenν′=3 andν′=4. The crossing position between b4Π and A2Σ+is in good agreement with the result of Wheeleret al.[15]At the intersection point, the SO value of A2Σ+→b4Π is 130 cm-1, which can cause strong predissociation. Our conclusion is consistent with the experimental results of Bruna and Lee.[20,21]

    For the c4Σ-state, the SO matrix element of c4Σ-→E2Σ+at the crossing point is close to zero, which means that these predissociation pathways are forbidden. And the absolute values of SO matrix elements of c4Σ-→D2Π and c4Σ-→b4Π at the intersection point are 46 cm-1and 23 cm-1,so the pathway c4Σ-→D2Π can lead to weak predissociation, and the channel c4Σ-→b4Π is negligible. For the F2Σ-state, the absolute values of SO matrix elements of F2Σ-→E2Σ+, F2Σ-→D2Π and F2Σ-→b4Π at the curve crossing are 64,36 and 45 cm-1. From these,we can find that F2Σ-→E2Σ+could produce predissociation. However, the SOC of F2Σ-with D2Π states and F2Σ-with b4Π states are weakly,which can cause some disturbance to F2Σ-state.

    3.3. PECs of the 18 Ω states

    Considering the SOC effect,different Λ-S states with the same Ω components will be recombined, and 18 Ω states are generated from the 10 Λ-S states of SH.With the help of the avoided crossing principle,the PECs of 18 Ω states are drawn in Fig. 5. For the sake of clarity, we represent the states of Ω=1/2 and Ω=3/2,5/2 in Figs.5(a)and 5(b),respectively.In Fig.5,we can see that X2Π splits into X2Π1/2and X2Π3/2,the energy gap of which is 383 cm-1. The dissociation energiesDeof X2Π3/2and X2Π1/2are 3.7472 eV and 3.7042 eV,which are 0.0053 eV and 0.0483 eV below the value of X2Π,respectively. In addition, since the PEC of X2Π does not intersect with other electronic states,the values ofωe,ωexe,BeandReof X2Π3/2and X2Π1/2are basically the same as those of pure X2Π. Compared with the values of ground state X2Π,we can find theωe,ωeχe,BeandReof X2Π3/2are modified by 12 cm-1,1.8 cm-1,0.0015 cm-1and 0.0002 ?A.

    Fig.5. The PECs of the Ω states: (a)Ω=1/2,(b)Ω=3/2 and 5/2.

    The bound state A2Σ+crosses with the a4Σ-state nearR=1.75 ?A. Both the two states have Ω=1/2 component,so the PEC of Ω=(2)1/2 exhibits an avoided crossing point atR= 1.75 ?A. The main configuration of the Ω = (2)1/2 state before avoided crossing point (R ≤1.75 ?A) is A2Σ+,while the main configuration of it after avoided crossing point(R ≥1.80 ?A) is a4Σ-. Compared with pure A2Σ+, the values ofTe,ωe,BeandReof(2)1/2 do not change much,only 191 cm-1,60 cm-1,0.3171 cm-1and 0.0001 ?A,respectively.

    After including the SOC effect, the PECs of Ω = 1/2 states in the energy range of 34000-40000 cm-1form three avoided crossing points atR=1.75, 1.90 and 2.05 ?A, which are identified as Av-1, Av-2 and Av-3 in Fig.5. At the Av-1,the dominant Λ-S state of(2)1/2 changes from A2Σ+to a4Σ-.Similar to that,the main Λ-S state of(3)1/2 and(4)1/2 varies from A2Σ+to B2Σ-at the Av-2 and transform from A2Σ+to b4Π at the Av-3.

    3.4. Transition properties and radiative lifetimes

    The Einstein coefficient of spontaneous emission between the vibrational levelsν′andν′′is determined by the following equation:

    where ?νis the transition energy in cm-1,TDM is the averaged transition dipole moment in atomic unit,and(?ψν′ψν′′dr)2is the FCFs between vibrational levelsν′andν′′. And the radiative lifetimes of the vibrational levelν′for a given state are obtained by reciprocal of total Einstein coefficientAν′ν′′,whose unit is seconds,

    The calculated FCFs of A2Σ+-X2Π, F2Σ--X2Π and E2Σ+-X2Π transitions are listed in Table 4,and the FCFs change irregularly with the vibrational levelsν′andν′′.Due to the large difference between the equilibrium internuclear distances of E2Σ+and X2Π states,the FCF of E2Σ+-X2Π transition is obviously smaller than that of A2Σ+-X2Π and F2Σ--X2Π transitions. Compared with the experimental and theoretical results of the A2Σ+-X2Π transition in Table 4, it can be found that our calculation results are in good agreement with the experimental results of Johns,[44]and more accurate than the theoretical results of Bruna.[20]

    According to the calculated transition energies,FCFs and TDMs, the radiative lifetimes can be calculated by Eq. (2).The radiative lifetimes of A2Σ+and F2Σ-at vibrational levelν′=0-3 are listed in Table 5. It could be found our calculated 748 ns(ν′=0)of A2Σ+is in reasonable agreement with the previous measurements of 820±240 ns.[45]The radiative lifetimes of A2Σ+increase with the number of vibration level;this trend is the same as the result of Resendeet al.[22]The order of magnitude of the radiative lifetime of A2Σ+is 1000 ns,and that of F2Σ-is 1 ns,which is caused by the larger TDMs of F2Σ--X2Π transition.

    Table 4. The FCFs of A2Σ+-X2Π,F2Σ--X2Π and E2Σ+-X2Π transitions.

    Table 5. Radiative lifetimes of A2Σ+ and F2Σ- states.

    4. Conclusion

    In this paper, the MRCI+Q method has been used to study the electronic states correlated with the five dissociation channels of the SH.In order to improve the calculation accuracy, the CV, Davidson correction, DK and SOC effects are considered in the calculation. Based on the PECs, the spectroscopic constants of the 10 Λ-S states are evaluated,and the influences of physical effects on spectroscopic properties are illuminated. At the intersection point, the absolute value of the SO matrix element between A2Σ+and b4Π is 130 cm-1,which can lead to strong predissociation. The possible predissociation channels c4Σ-and F2Σ-are also discussed. The Franck-Condon factors of spin-allowed transitions are determined, and the radiative lifetimes of A2Σ+and F2Σ-states are computed. Our investigations indicate that the SOC effect plays a vital role in the excited states of SH.

    猜你喜歡
    李瑞
    Molecule opacity study on low-lying states of CS
    畫家李瑞 守正創(chuàng)新
    —— 觀李瑞作品有感
    Ultra-broadband absorber based on cascaded nanodisk arrays
    李瑞
    Wimbledon Tennis
    M olecule opacitiesof X2Σ+,A2Π,and B2Σ+statesof CS+*
    藝術(shù)百家:李瑞
    饑餓營銷
    饑餓營銷
    饑餓營銷
    久久草成人影院| 亚洲精品久久久久久婷婷小说 | 免费观看a级毛片全部| 亚洲精品亚洲一区二区| 日韩精品有码人妻一区| 男女边吃奶边做爰视频| 女人十人毛片免费观看3o分钟| 中文精品一卡2卡3卡4更新| 中文资源天堂在线| 亚洲最大成人手机在线| 狠狠狠狠99中文字幕| 亚洲国产欧美在线一区| 久久99精品国语久久久| 最近2019中文字幕mv第一页| 日韩一区二区三区影片| 国产v大片淫在线免费观看| 亚洲国产精品国产精品| 99久久精品一区二区三区| 亚洲无线观看免费| 大话2 男鬼变身卡| 少妇丰满av| 日韩制服骚丝袜av| 99热网站在线观看| 舔av片在线| 国产黄色小视频在线观看| 一个人观看的视频www高清免费观看| 午夜福利在线观看吧| 精品一区二区三区视频在线| 99热这里只有是精品在线观看| 国产v大片淫在线免费观看| 国产又黄又爽又无遮挡在线| 国产亚洲av片在线观看秒播厂 | 免费播放大片免费观看视频在线观看 | 伊人久久精品亚洲午夜| 亚洲精品aⅴ在线观看| 波多野结衣高清无吗| 亚洲国产精品sss在线观看| 色噜噜av男人的天堂激情| 99久久中文字幕三级久久日本| 国产成人精品久久久久久| 只有这里有精品99| 国产一区二区在线av高清观看| 综合色丁香网| 国产精品嫩草影院av在线观看| 韩国av在线不卡| 人妻少妇偷人精品九色| 又爽又黄a免费视频| 精品久久久久久久人妻蜜臀av| 国产毛片a区久久久久| 国产一级毛片七仙女欲春2| 国产午夜精品久久久久久一区二区三区| 精品一区二区免费观看| 国产免费视频播放在线视频 | 在线观看一区二区三区| 亚洲av成人av| 一个人观看的视频www高清免费观看| 久久久久网色| 国产乱来视频区| 最近最新中文字幕大全电影3| 日韩在线高清观看一区二区三区| 国内精品美女久久久久久| 亚洲欧美精品专区久久| 亚洲欧洲日产国产| 久久精品国产自在天天线| 国产精品,欧美在线| 我要看日韩黄色一级片| 亚洲国产精品成人久久小说| 欧美成人精品欧美一级黄| 亚洲在线观看片| 亚洲无线观看免费| 永久免费av网站大全| 国产精品久久久久久久电影| 黄片无遮挡物在线观看| 中文精品一卡2卡3卡4更新| 免费看美女性在线毛片视频| 美女cb高潮喷水在线观看| 日韩av在线大香蕉| 最近2019中文字幕mv第一页| 国产精品永久免费网站| 久久久久免费精品人妻一区二区| 精品熟女少妇av免费看| av免费观看日本| 爱豆传媒免费全集在线观看| 久久午夜福利片| 久久精品夜色国产| 黄色欧美视频在线观看| 亚洲最大成人中文| 国产爱豆传媒在线观看| 热99在线观看视频| 91久久精品国产一区二区三区| 精品久久久久久久末码| 久久精品国产亚洲网站| 美女高潮的动态| 搡女人真爽免费视频火全软件| 床上黄色一级片| 国产一区二区在线av高清观看| 免费观看性生交大片5| 毛片女人毛片| 99热这里只有是精品在线观看| 国产乱来视频区| av在线老鸭窝| 国产免费视频播放在线视频 | 精品久久国产蜜桃| 欧美xxxx黑人xx丫x性爽| 99在线视频只有这里精品首页| 能在线免费观看的黄片| 久久久精品大字幕| 黄色一级大片看看| 国产精品无大码| av在线观看视频网站免费| 我的女老师完整版在线观看| 亚洲av熟女| 能在线免费观看的黄片| 日日干狠狠操夜夜爽| 久久精品综合一区二区三区| 国产精品国产三级专区第一集| 国产免费一级a男人的天堂| 熟妇人妻久久中文字幕3abv| 午夜视频国产福利| 可以在线观看毛片的网站| 亚洲成人av在线免费| 汤姆久久久久久久影院中文字幕 | 蜜臀久久99精品久久宅男| 美女黄网站色视频| 日本av手机在线免费观看| 欧美xxxx黑人xx丫x性爽| 久久人妻av系列| 一级爰片在线观看| 岛国毛片在线播放| 亚洲第一区二区三区不卡| h日本视频在线播放| 91精品伊人久久大香线蕉| 亚洲精品,欧美精品| 精品酒店卫生间| 成人毛片60女人毛片免费| 高清午夜精品一区二区三区| 国产一区二区在线观看日韩| 久久99热这里只频精品6学生 | 男女边吃奶边做爰视频| 国产精品综合久久久久久久免费| 国产高清国产精品国产三级 | 免费观看在线日韩| 哪个播放器可以免费观看大片| 亚洲自拍偷在线| 免费av毛片视频| 国产一区亚洲一区在线观看| 亚洲国产精品专区欧美| 哪个播放器可以免费观看大片| 国产三级在线视频| 色噜噜av男人的天堂激情| 国产精品福利在线免费观看| 深夜a级毛片| 成年女人永久免费观看视频| 成人性生交大片免费视频hd| 久久久久久久亚洲中文字幕| 亚洲成色77777| 国产精品国产高清国产av| 日韩精品青青久久久久久| av播播在线观看一区| 五月玫瑰六月丁香| 插阴视频在线观看视频| 午夜爱爱视频在线播放| 亚洲在线自拍视频| 亚洲经典国产精华液单| 亚洲精品aⅴ在线观看| 在线观看一区二区三区| 久久久精品欧美日韩精品| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 白带黄色成豆腐渣| 亚洲怡红院男人天堂| 亚洲av电影在线观看一区二区三区 | 在线播放无遮挡| 日本黄色视频三级网站网址| 亚洲美女视频黄频| 美女大奶头视频| 在线观看一区二区三区| 国产三级在线视频| 久久久午夜欧美精品| 国产精品一区二区性色av| 99久久精品热视频| 一本久久精品| 亚洲最大成人手机在线| 精品人妻一区二区三区麻豆| 国产精品1区2区在线观看.| eeuss影院久久| a级毛片免费高清观看在线播放| 男人和女人高潮做爰伦理| 日韩欧美国产在线观看| 永久免费av网站大全| 黑人高潮一二区| 嫩草影院入口| 日韩高清综合在线| 欧美色视频一区免费| 97人妻精品一区二区三区麻豆| 亚洲成人中文字幕在线播放| 亚洲av成人精品一二三区| 精品午夜福利在线看| 午夜亚洲福利在线播放| 亚洲欧美日韩卡通动漫| 亚洲国产最新在线播放| 一区二区三区乱码不卡18| 亚洲高清免费不卡视频| av女优亚洲男人天堂| 一级黄片播放器| 赤兔流量卡办理| 波多野结衣高清无吗| 亚洲最大成人av| 国产淫片久久久久久久久| 国产又黄又爽又无遮挡在线| 欧美人与善性xxx| 国产成人精品久久久久久| 看十八女毛片水多多多| 国产激情偷乱视频一区二区| h日本视频在线播放| 中文字幕av成人在线电影| 国产午夜精品久久久久久一区二区三区| 亚洲av男天堂| 丰满乱子伦码专区| 国产一区亚洲一区在线观看| 国产黄色小视频在线观看| 亚洲精品影视一区二区三区av| 麻豆成人午夜福利视频| 青春草国产在线视频| 亚洲国产成人一精品久久久| 欧美一级a爱片免费观看看| 亚洲成av人片在线播放无| 国产精品乱码一区二三区的特点| 日日摸夜夜添夜夜添av毛片| 女人久久www免费人成看片 | 国产视频首页在线观看| 天堂√8在线中文| 国产一区亚洲一区在线观看| 激情 狠狠 欧美| 国产精品三级大全| 男女国产视频网站| 国产黄a三级三级三级人| 淫秽高清视频在线观看| 亚洲精品影视一区二区三区av| 熟女人妻精品中文字幕| 久久精品国产亚洲网站| 亚洲人成网站在线播| 国产伦精品一区二区三区四那| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲中文字幕日韩| 午夜福利在线在线| 深爱激情五月婷婷| 丰满少妇做爰视频| 欧美xxxx性猛交bbbb| 蜜桃久久精品国产亚洲av| 大又大粗又爽又黄少妇毛片口| 黄色配什么色好看| 尾随美女入室| 亚洲中文字幕一区二区三区有码在线看| 国产极品天堂在线| 3wmmmm亚洲av在线观看| 国产成人免费观看mmmm| 国产成人福利小说| 最近中文字幕高清免费大全6| 51国产日韩欧美| 观看免费一级毛片| 色尼玛亚洲综合影院| 国产精品麻豆人妻色哟哟久久 | 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 国产高潮美女av| 国产国拍精品亚洲av在线观看| 成人av在线播放网站| 天堂中文最新版在线下载 | 午夜精品在线福利| 又爽又黄a免费视频| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 亚洲天堂国产精品一区在线| 日韩av在线免费看完整版不卡| 麻豆国产97在线/欧美| 国产精品久久久久久av不卡| 精品无人区乱码1区二区| 久久精品国产鲁丝片午夜精品| 亚洲,欧美,日韩| 成年女人看的毛片在线观看| 国内揄拍国产精品人妻在线| 一边亲一边摸免费视频| 国产精品女同一区二区软件| 99久久精品国产国产毛片| 久久久色成人| 最近的中文字幕免费完整| 国产麻豆成人av免费视频| 欧美另类亚洲清纯唯美| 99热精品在线国产| 国产精品1区2区在线观看.| 免费无遮挡裸体视频| 日韩国内少妇激情av| 我的老师免费观看完整版| 亚洲欧洲国产日韩| 亚洲内射少妇av| av视频在线观看入口| 国产精品熟女久久久久浪| 春色校园在线视频观看| 欧美xxxx性猛交bbbb| 国产 一区 欧美 日韩| 亚洲精华国产精华液的使用体验| 精品少妇黑人巨大在线播放 | 大话2 男鬼变身卡| 亚洲欧美日韩无卡精品| 亚洲国产精品专区欧美| 在线观看美女被高潮喷水网站| 简卡轻食公司| 最近最新中文字幕大全电影3| 国产伦理片在线播放av一区| 99视频精品全部免费 在线| 免费观看在线日韩| 婷婷色综合大香蕉| 婷婷六月久久综合丁香| 偷拍熟女少妇极品色| 91久久精品国产一区二区成人| av女优亚洲男人天堂| 久久精品国产鲁丝片午夜精品| 别揉我奶头 嗯啊视频| 18禁动态无遮挡网站| a级毛色黄片| 久久人妻av系列| 老司机影院毛片| 欧美日韩综合久久久久久| 又粗又爽又猛毛片免费看| 国产一区亚洲一区在线观看| 一级毛片电影观看 | 国产女主播在线喷水免费视频网站 | 国产亚洲精品av在线| 国产高潮美女av| 搡女人真爽免费视频火全软件| 男人的好看免费观看在线视频| 国产伦精品一区二区三区四那| 黄片无遮挡物在线观看| 国产免费视频播放在线视频 | 久久久久久久久久久丰满| 国产精品综合久久久久久久免费| 亚洲精品色激情综合| 一边摸一边抽搐一进一小说| 99热这里只有是精品50| 国产精品国产高清国产av| 日韩欧美三级三区| 三级毛片av免费| 亚洲经典国产精华液单| 有码 亚洲区| 色尼玛亚洲综合影院| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 91aial.com中文字幕在线观看| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 国产一区二区三区av在线| 成人无遮挡网站| 国产精品电影一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲中文字幕一区二区三区有码在线看| 久久人人爽人人爽人人片va| 日本一二三区视频观看| 欧美高清成人免费视频www| 免费观看a级毛片全部| 欧美色视频一区免费| 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 成人二区视频| 边亲边吃奶的免费视频| 嫩草影院精品99| 国产大屁股一区二区在线视频| 亚洲精品日韩在线中文字幕| 成人无遮挡网站| 尾随美女入室| 五月玫瑰六月丁香| 国产91av在线免费观看| 中文字幕av成人在线电影| 亚洲五月天丁香| 国产色婷婷99| 免费观看a级毛片全部| 婷婷色av中文字幕| 亚洲自拍偷在线| 国产精品美女特级片免费视频播放器| 网址你懂的国产日韩在线| 国产一区二区在线av高清观看| 女人被狂操c到高潮| 日本黄大片高清| 69人妻影院| av专区在线播放| 欧美bdsm另类| 国产伦在线观看视频一区| 在线观看美女被高潮喷水网站| 伦精品一区二区三区| 69人妻影院| 伦理电影大哥的女人| 嫩草影院入口| 亚洲第一区二区三区不卡| 欧美色视频一区免费| 成人毛片a级毛片在线播放| 在线免费十八禁| 亚洲精品aⅴ在线观看| 国产美女午夜福利| 2022亚洲国产成人精品| 欧美成人精品欧美一级黄| 久久精品久久久久久噜噜老黄 | 精品一区二区免费观看| 亚洲在线自拍视频| 成人特级av手机在线观看| 中文资源天堂在线| 日日摸夜夜添夜夜爱| 国产精品一区二区在线观看99 | 国产人妻一区二区三区在| 男女啪啪激烈高潮av片| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 成人综合一区亚洲| 九九久久精品国产亚洲av麻豆| 2021少妇久久久久久久久久久| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 51国产日韩欧美| 久久久欧美国产精品| 久久精品影院6| 免费观看精品视频网站| 亚洲av电影在线观看一区二区三区 | 国产成人aa在线观看| 男人舔奶头视频| 国产中年淑女户外野战色| 你懂的网址亚洲精品在线观看 | 午夜精品一区二区三区免费看| 亚州av有码| 成人一区二区视频在线观看| a级毛片免费高清观看在线播放| 男女视频在线观看网站免费| 黄色一级大片看看| 亚洲精品国产av成人精品| 国产精品一区二区性色av| 亚洲婷婷狠狠爱综合网| 九草在线视频观看| 日韩强制内射视频| 日韩视频在线欧美| 国产视频首页在线观看| 欧美激情久久久久久爽电影| 免费观看的影片在线观看| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 亚洲精品久久久久久婷婷小说 | 婷婷色麻豆天堂久久 | 最近最新中文字幕免费大全7| 又黄又爽又刺激的免费视频.| 国产亚洲午夜精品一区二区久久 | 美女被艹到高潮喷水动态| 国产精品精品国产色婷婷| 国产探花极品一区二区| 欧美xxxx黑人xx丫x性爽| 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| 亚洲精品成人久久久久久| 级片在线观看| 欧美性猛交黑人性爽| 亚洲性久久影院| 国产精品久久久久久av不卡| 亚洲欧美精品自产自拍| 建设人人有责人人尽责人人享有的 | av免费在线看不卡| 国产午夜精品一二区理论片| 久久99热这里只频精品6学生 | 国产国拍精品亚洲av在线观看| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 国产亚洲av嫩草精品影院| 大香蕉久久网| 久久午夜福利片| 中文亚洲av片在线观看爽| 国产免费视频播放在线视频 | 中文欧美无线码| 久久精品国产亚洲网站| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| 亚洲经典国产精华液单| 亚洲av熟女| 九草在线视频观看| 2021少妇久久久久久久久久久| 神马国产精品三级电影在线观看| 亚洲国产成人一精品久久久| 国产精品一区二区三区四区久久| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区成人| 国产免费福利视频在线观看| 欧美丝袜亚洲另类| 精品久久久久久电影网 | 国产黄片视频在线免费观看| 亚洲国产高清在线一区二区三| 非洲黑人性xxxx精品又粗又长| 色噜噜av男人的天堂激情| 欧美一级a爱片免费观看看| 18禁在线播放成人免费| 熟女电影av网| 国产精品一二三区在线看| 亚洲精品日韩av片在线观看| 久热久热在线精品观看| 中文欧美无线码| 成人二区视频| 美女大奶头视频| av黄色大香蕉| 噜噜噜噜噜久久久久久91| 国产黄片美女视频| 亚洲人与动物交配视频| 热99在线观看视频| 精品久久久久久久人妻蜜臀av| 女人十人毛片免费观看3o分钟| 永久网站在线| 久久精品久久久久久久性| 七月丁香在线播放| 国产日韩欧美在线精品| 99在线人妻在线中文字幕| 日韩视频在线欧美| 亚洲国产欧美人成| 亚洲av中文字字幕乱码综合| or卡值多少钱| 精品不卡国产一区二区三区| 三级毛片av免费| 国产精品av视频在线免费观看| 秋霞伦理黄片| 男女视频在线观看网站免费| 久久精品人妻少妇| 久久精品国产亚洲av天美| 变态另类丝袜制服| 欧美不卡视频在线免费观看| 水蜜桃什么品种好| 亚洲怡红院男人天堂| 少妇的逼水好多| 卡戴珊不雅视频在线播放| 欧美一区二区精品小视频在线| 久热久热在线精品观看| 少妇的逼好多水| 国产毛片a区久久久久| 成人av在线播放网站| 在线观看一区二区三区| 亚洲av中文字字幕乱码综合| 好男人视频免费观看在线| 久久热精品热| 亚洲精品一区蜜桃| 中国国产av一级| 国产av码专区亚洲av| 日本黄色片子视频| 精品午夜福利在线看| 少妇熟女aⅴ在线视频| 国产淫片久久久久久久久| 少妇丰满av| 成人午夜精彩视频在线观看| 欧美xxxx黑人xx丫x性爽| 日本五十路高清| 精品久久久久久久久久久久久| 乱人视频在线观看| 日本-黄色视频高清免费观看| 一级av片app| 五月玫瑰六月丁香| 大香蕉久久网| 在线免费观看不下载黄p国产| 精品国产三级普通话版| 亚洲精华国产精华液的使用体验| 亚洲欧美清纯卡通| 哪个播放器可以免费观看大片| 精品国内亚洲2022精品成人| 国产精品久久久久久av不卡| 蜜臀久久99精品久久宅男| 十八禁国产超污无遮挡网站| 免费观看性生交大片5| 欧美一区二区精品小视频在线| 别揉我奶头 嗯啊视频| 激情 狠狠 欧美| 日本-黄色视频高清免费观看| 国产精品蜜桃在线观看| 久久久久久久午夜电影| av福利片在线观看| 啦啦啦啦在线视频资源| 99在线人妻在线中文字幕| h日本视频在线播放| 麻豆精品久久久久久蜜桃| 国产精品人妻久久久影院| 免费看光身美女| 亚洲人与动物交配视频| 色吧在线观看| 看免费成人av毛片| 少妇人妻精品综合一区二区| 在线免费观看的www视频| 看免费成人av毛片| 欧美日本亚洲视频在线播放| 黄色欧美视频在线观看| 男女视频在线观看网站免费| 只有这里有精品99| 建设人人有责人人尽责人人享有的 | 大香蕉久久网| 国产亚洲精品久久久com| 波多野结衣高清无吗| 少妇人妻精品综合一区二区| 亚洲国产精品sss在线观看| 国产精品永久免费网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99热6这里只有精品| 亚州av有码| 免费无遮挡裸体视频| 建设人人有责人人尽责人人享有的 | 大香蕉97超碰在线| 午夜a级毛片| 国产精品人妻久久久久久| 一本一本综合久久| 亚洲成人中文字幕在线播放| 看黄色毛片网站| 国产精品熟女久久久久浪| 搡女人真爽免费视频火全软件| 欧美日韩国产亚洲二区| 人妻少妇偷人精品九色| 最近最新中文字幕免费大全7|