• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    動(dòng)態(tài)光散射顆粒測(cè)量中相關(guān)函數(shù)最優(yōu)截?cái)帱c(diǎn)的確定

    2022-04-01 09:22:20齊甜甜劉偉THOMAS賈宏燕魏芹芹王雅靜申晉
    光子學(xué)報(bào) 2022年3期
    關(guān)鍵詞:雅靜葛蘭山東理工大學(xué)

    齊甜甜,劉偉,THOMAS J C,2,賈宏燕,魏芹芹,王雅靜,申晉

    (1 山東理工大學(xué)電氣與電子工程學(xué)院,山東淄博255049)

    (2 科學(xué)集團(tuán)有限公司,澳大利亞南澳大利亞州葛蘭許5022)

    0 Introduction

    Dynamic Light Scattering(DLS)also known as photon correlation spectroscopy,is a common method for the determination of particle size in nano-particle suspensions[1-2].Determination of the particle size distribution(PSD) from the measured intensity Autocorrelation Function(ACF) is an ill-posed inversion problem involving a Fredholm integral equation of the first kind.This is a notorious problem in which small variations in the ACF data can result in large changes in the recovered PSD.A variety of algorithms have been proposed for solving this inversion problem[3-9].Both the simulated and measured results showed that,if all ACF points were used in the inversion,the PSD results were less accurate,due to the larger noise of the ACF data as it approached the baseline.

    RUF H[10]examined the effect of normalization error on the PSD obtained from DLS data and concluded that a more accurate PSD is obtained if the number of ACF points is properly reduced,and when the first 70 points are used only,the original distribution is retrieved.RUF H and GOULD B J[11]found that omitting the last 46 points of the ACF gave the best results for the PSD of chylomicrons from human lymph.RUF H[12]looked at the effect of nonrandom errors on the results of regular inversion of DLS data and proposed that the value of ACF down to 0.001 can be used in the inversion.CLEMENTI L A[13]proposed a Bayesian inversion method for estimating the PSD of latexes from multiangle DLS.They limited the ACF to its first 30 points to ensure an acceptable signal-to-noise ratio.YUAN Xi[9]investigated the effect of the number of ACF data points and the PSD fraction on the recovered PSD results and concluded that the optimal number of PSD sampling points is limited by the ACF points used in the analysis,but the article did not mention how to select ACF points.In current practice,a fixed number of ACF points or a fixed ACF threshold is usually used to select the number of ACF points to recover the PSD.The selection of the optimal ACF data points is not only related to the size of the measured particles,but also to the accuracy of the measured ACF,the appropriate number of ACF data points helps to improve the accuracy of the inversion results.However,neither of these two methods can take account of the measured particle size and the accuracy of the measured ACF.

    In response to this problem,we propose a root-mean-square error threshold method based on that the noise in the long delay part of the ACF is larger than that in the short delay part and that the root-mean-square error of the fitted ACF has a characteristic variation with the number of ACF data points being fitted.This novel method has strong adaptability that can adaptively select the optimal number of ACF points according to the measured particle size and the accuracy of the measured ACF.This method could improve the accuracy and repeatability of the recovered results,and has high practical significance and value.

    1 Basic principles

    2 The influence of the number of ACF data points on the inversion result

    2.1 Characteristics of the ACF noise

    The samples used here are polystyrene latex spheres with certified mean diameters of 33 nm±1.4 nm(Duke 3 030A),61 nm±4 nm(Duke 3 060A),203 nm±4 nm(Duke 3200A),555 nm±4.5 nm(HM600)and 1 280 nm±10 nm(GBW12017).A 10 mM NaCl solution with conductivity of 1.16 mS/cm was prepared with deionized water from a UPT-I-10T ultrapure water system with 0.1 μm filters.All five samples were diluted with the NaCl solution,ultrasonicated and referred to as Samples 1~5,and sample 1 and sample 3 were combined into a mixed sample 6.A ratio sampling time correlator with 0.5 μs first channel delay time and 160 channels(data points)was used to measure these samples,and 60 data sets(ACFs)of 10 s duration were obtained for each sample.

    The short delay part of the ACF curve contains a lot of information of the measured particles.As the curve decays to the baseline,there is little useful information left.Therefore,ACF data in the short delay region should be kept as much as possible.Fig.1 shows the autocorrelation function of sample 3.The blue line in the figure is the normalized intensity ACF,g(2)(τ),and the red line is the electric field ACF,g(1)(τ).It can be seen from Fig.1 that the noise near the ACF baseline is much larger than that in the short delay stage,especially after converting tog(1)(τ),the noise is more significant.

    Fig.1 Normalized intensity and electric field ACF for sample 3

    2.2 Root-mean-square error of fitted ACF with different data points

    By inverting Eq.(4),the fitted ACF can be obtained.The deviation between the fitted ACF and the measured ACF is related to the accuracy of the recovered PSD,and it is usually measured by the fitting error of the ACF.The Root-Mean-Square Error(RMSE)is used to describe the fitting error of the ACF,as shown in Eq.(5)

    wheremis the total number of ACF data points involved in the inversion,andg^(1)(τ)=Axis the fitted ACF.

    Fig.2 shows theERMSof the ACF shown in Fig.1 as a function of the number of ACF data points used for analysis.Fig.3 shows the fitting residual using 73 and 105 ACF data points in the analysis.It can be seen from Fig.2 that when the number of ACF data points involved in the inversion is smaller than 73,theERMSis relatively small(≤0.003 5)and constant.When the number of points is more than 73,theERMSincreases significantly.This is related to the noise distribution in the ACF data.The measured ACF data has low noise level up to ~73 points and so the value ofERMSis relatively small.There is much more noise in the data after~73 points,and the fitting error increases due to this.As shown in Fig.3,the residual values using 105 ACF data points are greater than that using 73 points.Note that the residual values at longer delay times are obviously greater than those at short delay times when 105 ACF points are used in the inversion,and this contributes to the large increase inERMS.

    Fig.2 ERMS as a function of the number of ACF data points fitted for sample 3

    Fig.3 Fitting residuals of the ACF using 105 and 73 data points

    The distribution of noise in the ACF shown above suggests that theERMScurve as a function of number of fitted ACF points can be divided into two stages.In the first stageERMSgrows smoothly and the noise level of the ACF is low;while in the second stageERMSgrows rapidly,and the noise level of the ACF is high.Measurement results from samples 1,3 and 4 at different ACF points given in Figs.4(a),4(b)and 4(c)show the same behaviour inERMS.

    2.3 The influence of the number of ACF data points on the recovered PSD

    The smaller the value ofRN,the more stable the PSD,the smaller the value ofVRSD,the smaller the fluctuation of particle size,and the better the repeatability of the inversion results[15].

    The long delay part of the ACF(close to the baseline)has more noise.Fig.5 and 6 respectively show the fitted ACFs and the recovered PSDs for the ACF in Fig.1 for different numbers of fitted ACF data points.Fig.7 and 8 show the stability and repeatability of 60 data sets of this sample for different numbers of ACF points being fitted,and Table 1 shows more inversion results of this sample for different numbers of ACF data points.If too many ACF points are used in the inversion,more noise is introduced,resulting in significant changes in the curvature of the fitted ACF.As shown in Fig.5,taking the fitted ACF within value between 0.96 and 0.92 as an example,there is an obvious difference among the fitted ACF for 105 points,73 points and 59 points.It can also be seen in Fig.6 that the PSD recovered from 105 points deviates significantly from the true PSD,and false peaks are apparent.So when there are too many data points involved,the recovered peak will be inaccurate or false peaks will appear,which will cause the recovered PSD to deviate from the true PSD.It can be seen from Figs.7 and 8 that fitting different numbers of ACF points will affect the stability and repeatability of the results.

    Fig.5 Fitted ACFs for sample 3 with different numbers of ACF data points being fitted

    Fig.6 The PSDs of sample 3 recovered with different numbers of ACF data points being fitted

    Fig.7 The RN of sample 3 as a function of the number of ACF data points being fitted

    Fig.8 The VRSD of sample 3 as a function of the number of ACF data points being fitted

    Table 1 Inversion results of 60 data sets of Sample 3 at different numbers of ACF data points

    In summary,if there are too many ACF points in the inversion,the introduced noise will reduce the accuracy of the recovered PSD and false peaks may appear.On the contrary,if too few ACF points are used,sample information may be lost and the results will be inaccurate.Therefore,the key to ensuring the accuracy and stability of the results is how to choose the position to truncate the ACF,in other words,how to determine the optimal number of ACF data points to be fitted.

    3 RMSE threshold method

    There are two commonly used methods to select the number of ACF points to be fitted.These are choosing a fixed number of ACF points or choosing a fixed ACF level threshold(FACFT).

    For the method of a fixed number of ACF points,the same number of ACF points are used for inversion,regardless of the sample.As mentioned earlier,in order to avoid introducing noise near the ACF baseline,the number of ACF points involved in the inversion can not be too many.In this case,for small particles with fast decaying ACFs,fewer ACF points are needed for inversion,while for large particles with slow decaying ACFs,more ACF points are needed.This method can not take both large and small particles into account,so it lacks adaptability,and its inversion results are expected not be optimal.

    The FACFT method first sets a specific threshold,then truncates the ACF at the position where the ACF value is less than the threshold,and this sets the number of ACF data points to be used in the inversion.It can be seen from the electric field ACF that there is a lot of noise wheng(1)(τ)<0.1(close to the baseline),so the empirical value of 0.1 is used as the threshold in this paper.Fig.9 shows the selection of the ACF data points by the FACFT method under different noise levels for simulated 100 nm particles.The ACF data were simulated for a log normal distribution with a peak at 100 nm and different levels of random noise was added.As shown in Fig.9,the black ○mark is the position selected by the FACFT method.For the three noise levels of 0.01,0.04,and 0.08,the selected ACF points are 89,89,and 88 respectively,which are basically the same.Clearly,this method does not have the ability to respond to noise and cannot automatically adjust the optimal number of ACF points to be fitted depending on the noise level of the measured ACF data.

    Fig.9 The truncation position of the ACF for the two truncation methods at 0.01 level noise,0.04 level noise and 0.08 level noise

    In the selection of ACF points,since neither the fixed ACF points nor FACFT method can take into account both the measured particle size and ACF noise level,a different approach is required.In Section 3.2,it was observed that the variation ofERMSwith the number of ACF points fitted can be divided into two stages:in the first stageERMSgrows smoothly;while in the second stageERMSgrows rapidly.The rapid growth ofERMSindicates that the noise contained in the ACF data increases and the reliability of the ACF data decreases with increasing number of data points.The point of inflection of theERMScurve marks where the noise contribution from subsequent data points significantly increases the fitting error and produces poorer inversion results.This is an obvious truncation position,which should effectively select the optimal number of ACF points and avoid the influence of noise in the baseline on the inversion results.Fig.4 shows theERMSvariation with the number of ACF data points being fitted for the various samples.It can be seen from Figs.4(a),(b)and(c)that the position of the rapid growth of eachERMScurve is below 0.003 5.With this in mind,we propose a Root-Mean-Square Error Threshold(RMSET)method as the criterion for selecting the optimal number of ACF data points to be fitted.Furthermore,we set 0.003 5 as theERMSthreshold.

    Fig.4 ERMS as a function of the number of ACF data points fitted for Sample 1,Sample 3 and Sample 4

    It can also be seen from Fig.4 that the number of ACF points corresponding toERMS=0.003 5 increases as the particle size increases.The red ◇mark in Fig.9 is the selected position using the RMSET method,and the channel number corresponding to this varies with the ACF noise level.The data number of points selected at noise levels of 0.01,0.04,and 0.08 are 101,90,and 83 respectively.It is obvious that more ACF points are selected for an ACF with a lower noise level,while fewer ACF points are selected for one with a higher noise level.This shows that RMSET method is adaptable to noise.The RMSET method has obvious advantages than other methods.It can select the truncation position according to the particle size of the sample and the noise level of the ACF,that is,the larger the particle size to be measured,the more ACF points are used,the smaller the particle size to be measured,the fewer the ACF points,the high-precision ACF takes more ACF points,and the low-precision ACF takes fewer ACF points.

    4 Experimental data and analysis

    To verify the proposed method,the ACFs for unimodal samples 1 to 5 and bimodal sample 6 were analyzed using the RMSET and FACFT methods and the Tikhonov regularization algorithm for inversion.

    Fig.10 shows the truncation positions of the 10 ACFs of sample 3 for the two truncation methods,and Fig.11 shows the corresponding inversion results.Figs.12 and 13 respectively show the fluctuation of the PSD norms and the peak sizes from 60 data sets obtained by the two different truncation methods.The red △and black ☆in the figure mark the truncation positions and inversion results of the RMSET and FACFT methods respectively.It can be observed from Fig.10 that the truncation positions of the RMSET method change due to the fluctuation of noise in the ACFs,while the truncation positions of the FACFT method change little.The fluctuations of the norms and peak sizes of the PSDs obtained by the RMSET method are 7.2%,2.4%,and are smaller than 9.2%,4.6% obtained by FACFT method,as shown in Fig.12 and Fig.13.

    Fig.10 The truncated positions of the electric field ACFs for sample 3 by the two truncation methods

    Fig.11 The recovered PSDs of sample 3 by the two truncation methods

    Fig.12 The norms of PSDs of sample 3 from 60 data sets obtained by the two truncation methods

    Fig.13 The peak sizes of sample 3 from 60 data sets obtained by the two truncation methods

    Table 2 shows the inversion results of 60 data sets of the unimodal samples 1 to 5 obtained by the two truncation methods.It can be seen from Table 2 that for sample 1 and sample 2,theEPKvalues of the two truncation methods are similar and relatively small,and the stability and repeatability of the results of the RMSET method are slightly higher than that of the FACFT method.For samples 3 to 5,theEPK,VRSDandRNof the RMSET method are 2.1%,2.4% and 7.2%,while the FACFT method results are 3.4%,4.6% and 9.2% repectively.It can be seen from the results that for unimodal samples,the RMSET method has higher accuracy,better stability and repeatability than the FACFT method,and the advantages of the RMSET method is more obvious with increasing particle size.

    Table 2 Inversion results for different samples under two truncation methods

    For bimodal sample 6,theERMSof the 6 data sets for different numbers of ACF data points fitted is shown in Fig.14,and the PSDs recovered by the two truncation methods are shown in Fig.15.It can be seen from Fig.14 that the variation ofERMSwith the number of ACF data points fitted is consistent with the unimodal samples,and the point of inflection ofERMSis below 0.003 5.Therefore,0.003 5 is also set as the threshold,which is same as unimodal samples.The inversion results of RMSET and FACFT methods are shown in Table 3.

    Fig.14 The ERMS of the ACFs at different data points for sample 6

    Fig.15 The recovered PSDs of sample 6 by the two truncation methods

    In Table 3,Dpeak1andDpeak2are the two peaks of the inversion,EPK1andEPK2are the relative error of the corresponding peak size,VRSD1andVRSD2are the repeatability of the inversion results.According to the experimental data,theEPK1andEPK2values retrieved by the RMSET method are smaller than those of the FACFT method.Also,the values ofVRSD1andVRSD2obtained by the RMSET method are smaller than those of the FACFT method.It is notable that the RMSET method also outperforms the FACFT method in terms of inversion results.

    Table 3 Inversion results for sample 6 obtained by the two truncation methods

    To summarize,the RMSET method used to select the best truncation position for fitting of the ACF can adapt to different samples and has a certain adaptability to different ACF noise levels.Its flexibility is better than the FACFT method.Moreover,this method is not only suitable for unimodal samples but also for multimodal samples.

    5 Conclusion

    To improve the accuracy and repeatability of the inverted PSDs,we propose a method to obtain the optimal ACF truncation point by using RMSET,that is,truncate the ACF data fitting at the highest correlation channel which has an RMS error smaller than 0.003 5.The advantage of the RMSET method is that it can automatically obtain the best ACF points according to the measured particle size and ACF accuracy,and it is suitable for both unimodal and bimodal samples.For the measured particles of 203 nm,the relative error of the peak sizeEPK(ie accuracy)obtained by the RMSET method is 2.1%,and the relative standard deviation of particle sizeVRSD(ie repeatability)is 2.4%,which are both smaller than theEPKvalue 3.4% andVRSDvalue 4.6% of the fixed ACF threshold method.The results show that the RMSET method proposed in this paper can effectively improve the accuracy and repeatability of the inversion results,and has an important application value in the field of nanoparticle measurement.

    猜你喜歡
    雅靜葛蘭山東理工大學(xué)
    山東理工大學(xué)
    山東理工大學(xué)
    《哈爾濱記憶 系列四》
    《郁郁高巖》
    山東理工大學(xué)
    山東理工大學(xué)
    有個(gè)男人要追我
    幸福家庭(2016年9期)2016-11-21 03:13:08
    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*
    成人午夜高清在线视频| 久久久色成人| 国产精品1区2区在线观看.| 国产精品不卡视频一区二区| 国产色婷婷99| 日本免费在线观看一区| 熟妇人妻久久中文字幕3abv| 国产亚洲精品av在线| 卡戴珊不雅视频在线播放| 99热这里只有是精品50| 一边亲一边摸免费视频| 97超视频在线观看视频| 国内精品美女久久久久久| 尾随美女入室| ponron亚洲| 永久网站在线| 国产黄色免费在线视频| 亚洲精品色激情综合| 国产黄片视频在线免费观看| 色视频www国产| 老师上课跳d突然被开到最大视频| 免费黄频网站在线观看国产| 亚洲色图av天堂| 国产亚洲5aaaaa淫片| 美女黄网站色视频| 日日干狠狠操夜夜爽| 毛片一级片免费看久久久久| 蜜桃亚洲精品一区二区三区| 色5月婷婷丁香| 1000部很黄的大片| 高清av免费在线| 丰满少妇做爰视频| 女的被弄到高潮叫床怎么办| 国产探花极品一区二区| 午夜福利高清视频| 麻豆国产97在线/欧美| 欧美zozozo另类| 天堂俺去俺来也www色官网 | 精品不卡国产一区二区三区| 蜜臀久久99精品久久宅男| 丰满人妻一区二区三区视频av| 国产成年人精品一区二区| 免费观看性生交大片5| 中文乱码字字幕精品一区二区三区 | 国产片特级美女逼逼视频| 人妻系列 视频| 日韩电影二区| 国内少妇人妻偷人精品xxx网站| 精品人妻视频免费看| 一级a做视频免费观看| 成人无遮挡网站| 91精品国产九色| 看黄色毛片网站| 寂寞人妻少妇视频99o| www.色视频.com| 超碰av人人做人人爽久久| 国产精品久久久久久精品电影小说 | 高清日韩中文字幕在线| 丝袜美腿在线中文| 午夜激情欧美在线| 亚洲欧美成人精品一区二区| 日韩一本色道免费dvd| 国产欧美另类精品又又久久亚洲欧美| 青青草视频在线视频观看| 久久久久网色| 天堂网av新在线| 色综合色国产| 成人国产麻豆网| 一区二区三区四区激情视频| 18禁动态无遮挡网站| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 久久久成人免费电影| 美女xxoo啪啪120秒动态图| 国产老妇伦熟女老妇高清| 亚洲图色成人| 久久久久久久久久久免费av| 蜜臀久久99精品久久宅男| 夫妻午夜视频| 久久久久性生活片| 99re6热这里在线精品视频| 男的添女的下面高潮视频| 亚洲av免费在线观看| 能在线免费看毛片的网站| 国产精品蜜桃在线观看| 欧美变态另类bdsm刘玥| 综合色丁香网| 人妻少妇偷人精品九色| 国产有黄有色有爽视频| 国产精品嫩草影院av在线观看| 亚洲国产精品sss在线观看| 午夜视频国产福利| 国产女主播在线喷水免费视频网站 | 最新中文字幕久久久久| 午夜福利网站1000一区二区三区| 日韩欧美精品免费久久| 91久久精品电影网| 中文字幕制服av| 日本av手机在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 日韩av免费高清视频| 国产老妇女一区| 国产久久久一区二区三区| 大话2 男鬼变身卡| 免费在线观看成人毛片| 日韩精品青青久久久久久| 精品久久久久久成人av| 一级毛片电影观看| 国产精品不卡视频一区二区| av女优亚洲男人天堂| 国产黄色免费在线视频| 免费黄频网站在线观看国产| 日韩av在线大香蕉| 免费高清在线观看视频在线观看| 国产人妻一区二区三区在| 七月丁香在线播放| 国产伦理片在线播放av一区| 一级av片app| 超碰av人人做人人爽久久| 中文字幕av在线有码专区| 亚洲精品国产成人久久av| 黄色一级大片看看| videos熟女内射| 久久精品国产亚洲网站| 两个人视频免费观看高清| 日韩亚洲欧美综合| 亚洲在线观看片| 寂寞人妻少妇视频99o| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区 | 国产精品1区2区在线观看.| 少妇被粗大猛烈的视频| 91精品伊人久久大香线蕉| 欧美成人精品欧美一级黄| 欧美人与善性xxx| 2021天堂中文幕一二区在线观| 午夜激情久久久久久久| 成人性生交大片免费视频hd| 97超碰精品成人国产| 精品人妻偷拍中文字幕| av一本久久久久| 少妇人妻精品综合一区二区| 国产亚洲精品av在线| 免费高清在线观看视频在线观看| 综合色av麻豆| 婷婷色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 嫩草影院新地址| 国产精品久久久久久久久免| 亚洲av二区三区四区| 久久久久久伊人网av| 一区二区三区乱码不卡18| 国产高清三级在线| 亚洲精品视频女| 青春草亚洲视频在线观看| 国产中年淑女户外野战色| 中国美白少妇内射xxxbb| av国产免费在线观看| 69av精品久久久久久| 日日啪夜夜爽| 2022亚洲国产成人精品| 国产成人a∨麻豆精品| 久久久久久久久久久丰满| 欧美最新免费一区二区三区| 国国产精品蜜臀av免费| 免费在线观看成人毛片| 亚洲成色77777| 国产成年人精品一区二区| 日韩 亚洲 欧美在线| 国产午夜精品论理片| 欧美bdsm另类| 插阴视频在线观看视频| 18+在线观看网站| 哪个播放器可以免费观看大片| 我要看日韩黄色一级片| 国产91av在线免费观看| 国产一级毛片七仙女欲春2| 97在线视频观看| 韩国高清视频一区二区三区| 色网站视频免费| 99久久中文字幕三级久久日本| 男女视频在线观看网站免费| 欧美97在线视频| 男女边摸边吃奶| 神马国产精品三级电影在线观看| 欧美极品一区二区三区四区| 18禁在线播放成人免费| 久久99热这里只有精品18| 国产极品天堂在线| 日韩一区二区视频免费看| 午夜激情欧美在线| av国产久精品久网站免费入址| 亚洲av不卡在线观看| 亚洲av二区三区四区| 亚洲av成人av| 亚洲精品456在线播放app| av.在线天堂| 免费看美女性在线毛片视频| 久久久a久久爽久久v久久| 久久久午夜欧美精品| 免费观看无遮挡的男女| 中文字幕av在线有码专区| 国产一区二区在线观看日韩| 成人性生交大片免费视频hd| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 国产视频内射| 欧美+日韩+精品| 欧美日韩综合久久久久久| 久久精品久久久久久久性| 日韩视频在线欧美| 国产亚洲精品av在线| 在线a可以看的网站| 午夜福利高清视频| 成人国产麻豆网| 18禁在线播放成人免费| 午夜激情欧美在线| 午夜免费观看性视频| 中文字幕av成人在线电影| 美女黄网站色视频| 国产69精品久久久久777片| 国产精品一区二区在线观看99 | 一级毛片我不卡| 黄色欧美视频在线观看| 亚洲欧洲国产日韩| 国产单亲对白刺激| 日韩av不卡免费在线播放| 日本爱情动作片www.在线观看| 又爽又黄无遮挡网站| 国产白丝娇喘喷水9色精品| 久久久精品94久久精品| 国产高清三级在线| 亚洲怡红院男人天堂| 国产麻豆成人av免费视频| 成人高潮视频无遮挡免费网站| 精品国产三级普通话版| 久99久视频精品免费| 网址你懂的国产日韩在线| 色综合站精品国产| 亚洲人成网站高清观看| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 国产色婷婷99| 97超视频在线观看视频| 国产乱来视频区| 国产男女超爽视频在线观看| 国产精品三级大全| 99热这里只有是精品50| av播播在线观看一区| 一本久久精品| 国产伦一二天堂av在线观看| 噜噜噜噜噜久久久久久91| 老女人水多毛片| 欧美日韩在线观看h| 亚洲四区av| 黄色配什么色好看| 视频中文字幕在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲精品视频女| 亚洲aⅴ乱码一区二区在线播放| 久久久久久久国产电影| av网站免费在线观看视频 | 久久久久久久大尺度免费视频| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 五月天丁香电影| 久久精品国产亚洲av涩爱| 最近最新中文字幕免费大全7| 狂野欧美白嫩少妇大欣赏| 国产熟女欧美一区二区| 午夜福利视频精品| 精品酒店卫生间| 日韩强制内射视频| 日韩一区二区视频免费看| 久久久久久伊人网av| 亚洲精品456在线播放app| 久久精品人妻少妇| 亚洲最大成人手机在线| 精品国产一区二区三区久久久樱花 | 伦精品一区二区三区| 日韩av免费高清视频| 极品少妇高潮喷水抽搐| 亚洲国产精品专区欧美| 99久久人妻综合| 国产一区二区三区av在线| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 国产亚洲91精品色在线| 国产免费又黄又爽又色| 久久久久久伊人网av| 蜜桃亚洲精品一区二区三区| 少妇人妻一区二区三区视频| 久久99热6这里只有精品| 午夜福利高清视频| 久99久视频精品免费| 插逼视频在线观看| 国产精品久久视频播放| 网址你懂的国产日韩在线| 一个人免费在线观看电影| 久久久欧美国产精品| 又粗又硬又长又爽又黄的视频| 亚洲精品中文字幕在线视频 | 亚洲婷婷狠狠爱综合网| 人人妻人人看人人澡| 国产精品一区二区三区四区久久| 一本久久精品| 你懂的网址亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 亚洲精品国产av蜜桃| 只有这里有精品99| 国产精品嫩草影院av在线观看| 内射极品少妇av片p| 久久人人爽人人爽人人片va| 精品一区二区三卡| av免费在线看不卡| av在线老鸭窝| 九九久久精品国产亚洲av麻豆| 麻豆av噜噜一区二区三区| 亚洲欧美一区二区三区黑人 | 精品一区二区三卡| 十八禁国产超污无遮挡网站| 床上黄色一级片| 禁无遮挡网站| 日韩一区二区视频免费看| 国产亚洲5aaaaa淫片| 午夜福利视频精品| 国产探花在线观看一区二区| 国产av在哪里看| 插阴视频在线观看视频| 天堂av国产一区二区熟女人妻| 欧美三级亚洲精品| 国产精品女同一区二区软件| 国产亚洲av片在线观看秒播厂 | 草草在线视频免费看| 午夜免费激情av| 波多野结衣巨乳人妻| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 99re6热这里在线精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最新中文字幕久久久久| 嫩草影院入口| 黄色日韩在线| 日韩av在线大香蕉| 亚洲av二区三区四区| 一个人观看的视频www高清免费观看| 小蜜桃在线观看免费完整版高清| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 国产精品一及| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 午夜久久久久精精品| 美女国产视频在线观看| 老师上课跳d突然被开到最大视频| 91午夜精品亚洲一区二区三区| 久久6这里有精品| 欧美+日韩+精品| 日韩强制内射视频| 国产伦理片在线播放av一区| 久久综合国产亚洲精品| 国内精品一区二区在线观看| 午夜福利视频精品| 老司机影院毛片| 欧美成人一区二区免费高清观看| 日韩国内少妇激情av| 免费看日本二区| 久久热精品热| 午夜激情福利司机影院| 午夜福利在线在线| 免费看日本二区| 国产精品无大码| 美女高潮的动态| 男人舔奶头视频| 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 天堂俺去俺来也www色官网 | 91精品伊人久久大香线蕉| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 天堂av国产一区二区熟女人妻| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av电影不卡..在线观看| 欧美日韩精品成人综合77777| 国产精品国产三级国产专区5o| 国产高潮美女av| 国产淫片久久久久久久久| 寂寞人妻少妇视频99o| 五月天丁香电影| 国产爱豆传媒在线观看| 国产视频内射| 美女主播在线视频| 亚洲av电影不卡..在线观看| 亚洲av.av天堂| 国产乱人偷精品视频| 亚洲美女视频黄频| 一级爰片在线观看| 色综合站精品国产| 欧美+日韩+精品| 成人午夜高清在线视频| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 国内精品一区二区在线观看| videossex国产| av.在线天堂| 久久久久精品性色| 神马国产精品三级电影在线观看| 麻豆乱淫一区二区| 日本色播在线视频| 又爽又黄a免费视频| 国产精品久久久久久精品电影| 内地一区二区视频在线| 亚洲av免费在线观看| 大又大粗又爽又黄少妇毛片口| 日韩欧美三级三区| 又爽又黄a免费视频| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 亚洲精品久久午夜乱码| 一个人看的www免费观看视频| 天美传媒精品一区二区| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 国内精品美女久久久久久| 国产黄色视频一区二区在线观看| 久久精品人妻少妇| 成人二区视频| 国产成人91sexporn| 亚洲av成人精品一区久久| 有码 亚洲区| 人人妻人人看人人澡| 视频中文字幕在线观看| 在线a可以看的网站| 日韩亚洲欧美综合| 人人妻人人澡欧美一区二区| 天堂俺去俺来也www色官网 | 免费黄色在线免费观看| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 久久精品综合一区二区三区| 日本三级黄在线观看| 久久99精品国语久久久| 午夜爱爱视频在线播放| 亚洲第一区二区三区不卡| 欧美日韩国产mv在线观看视频 | 亚洲av一区综合| 老师上课跳d突然被开到最大视频| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 成人亚洲精品一区在线观看 | 亚洲无线观看免费| 色综合站精品国产| 国产色婷婷99| 亚洲精品乱久久久久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 欧美xxxx性猛交bbbb| 国产免费一级a男人的天堂| 国产老妇伦熟女老妇高清| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 欧美激情国产日韩精品一区| 亚洲av电影在线观看一区二区三区 | 欧美成人一区二区免费高清观看| 国产成人一区二区在线| 淫秽高清视频在线观看| 青春草视频在线免费观看| 国产欧美另类精品又又久久亚洲欧美| 日本黄色片子视频| 免费高清在线观看视频在线观看| 久久久色成人| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 精品国产露脸久久av麻豆 | 国产日韩欧美在线精品| 日韩制服骚丝袜av| 久久国内精品自在自线图片| 国产色爽女视频免费观看| 久久久久久伊人网av| 国产在线一区二区三区精| 国产伦精品一区二区三区视频9| 麻豆乱淫一区二区| 婷婷色麻豆天堂久久| 能在线免费观看的黄片| 日本-黄色视频高清免费观看| 午夜亚洲福利在线播放| 尾随美女入室| 一级二级三级毛片免费看| 秋霞伦理黄片| 麻豆国产97在线/欧美| 久久这里有精品视频免费| 97在线视频观看| 亚洲三级黄色毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 91久久精品国产一区二区三区| 精品久久久久久成人av| 国产 亚洲一区二区三区 | 直男gayav资源| xxx大片免费视频| 欧美高清成人免费视频www| 青青草视频在线视频观看| 人体艺术视频欧美日本| 99热全是精品| 久久久成人免费电影| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 高清午夜精品一区二区三区| 狂野欧美白嫩少妇大欣赏| 欧美bdsm另类| 啦啦啦韩国在线观看视频| 免费看美女性在线毛片视频| av.在线天堂| 麻豆乱淫一区二区| www.av在线官网国产| 日本一二三区视频观看| 亚洲精品日韩在线中文字幕| 99热这里只有精品一区| 亚洲自偷自拍三级| 日本熟妇午夜| 久久韩国三级中文字幕| 91久久精品电影网| 亚洲精品456在线播放app| 五月玫瑰六月丁香| 少妇熟女aⅴ在线视频| 禁无遮挡网站| 91av网一区二区| 午夜久久久久精精品| 听说在线观看完整版免费高清| 伦精品一区二区三区| 免费观看的影片在线观看| freevideosex欧美| 亚洲天堂国产精品一区在线| 久久久久久国产a免费观看| 网址你懂的国产日韩在线| 最近2019中文字幕mv第一页| 成人国产麻豆网| 成人午夜精彩视频在线观看| 美女内射精品一级片tv| 久久久午夜欧美精品| 一级av片app| 美女主播在线视频| 亚洲av在线观看美女高潮| 亚洲国产精品专区欧美| 蜜桃久久精品国产亚洲av| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 免费观看在线日韩| 久久久久网色| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 夫妻性生交免费视频一级片| 国语对白做爰xxxⅹ性视频网站| 三级经典国产精品| 国产精品久久久久久av不卡| 老司机影院毛片| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的 | 亚洲精品成人久久久久久| 亚洲国产成人一精品久久久| 日韩制服骚丝袜av| 免费少妇av软件| 综合色av麻豆| 一个人看视频在线观看www免费| 久久久久久国产a免费观看| 天堂av国产一区二区熟女人妻| 麻豆国产97在线/欧美| 人人妻人人看人人澡| 99九九线精品视频在线观看视频| 久久久久久久久中文| 亚洲精品国产成人久久av| 久久久久免费精品人妻一区二区| 国产高清有码在线观看视频| 国产午夜福利久久久久久| 国产69精品久久久久777片| 欧美精品国产亚洲| 欧美不卡视频在线免费观看| 少妇熟女欧美另类| 久久久久久伊人网av| 99re6热这里在线精品视频| 久久久久精品性色| 亚洲怡红院男人天堂| 色5月婷婷丁香| 中文乱码字字幕精品一区二区三区 | 毛片女人毛片| 国产三级在线视频| 日韩电影二区| 国产精品久久久久久av不卡| 免费看a级黄色片| 欧美97在线视频| 啦啦啦中文免费视频观看日本| 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 日日撸夜夜添| 少妇熟女aⅴ在线视频| 国产精品久久久久久精品电影小说 | 国产成人freesex在线| 久久久久网色| 国产精品久久久久久精品电影| 日韩欧美一区视频在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 最后的刺客免费高清国语| 久久久午夜欧美精品| 亚洲人成网站高清观看| 丝袜美腿在线中文| 22中文网久久字幕| 国产 一区 欧美 日韩| 国精品久久久久久国模美| 日韩一本色道免费dvd| 男女那种视频在线观看| 观看美女的网站|