• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    2014-07-18 11:56:04ZHOUHualan周華蘭WUYajing吳雅靜ZHANGWei張偉andWANGJun王軍
    關(guān)鍵詞:雅靜王軍張偉

    ZHOU Hualan (周華蘭), WU Yajing (吳雅靜), ZHANG Wei (張偉)and WANG Jun (王軍),**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Organotemplate-free Hydrothermal Synthesis of SUZ-4 Zeolite: Influence of Synthesis Conditions*

    ZHOU Hualan (周華蘭)1, WU Yajing (吳雅靜)2, ZHANG Wei (張偉)1and WANG Jun (王軍)1,**

    1State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China

    2College of Sciences, Nanjing University of Technology, Nanjing 210009, China

    Various conditions were investigated in detail for the novel organic template-free static hydrothermal synthesis of SUZ-4 zeolite in the presence of seeds. The obtained samples were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TG (thermal gravimetric analysis), ICP (inductively coupling plasma) elemental analysis, nitrogen sorption isotherm and surface area. The results show that pure SUZ-4 zeolites with high crystallinity are obtained in a broad window of synthesis conditions: seed mass concentration 0.2%-2%, SiO2/Al2O3molar ratio 21-25, KOH/SiO2molar ratio 0.33-0.43, H2O/SiO2molar ratio 7.14-38.1, aging time 24 h, crystallization temperature 160 °C, and crystallization time 6-10 d. Also, crystallinity and size of the rod-like SUZ-4 zeolite crystals are found to alter with the conditions.

    crystal growth, microporous materials, SUZ-4 zeolite, zeolite synthesis, organic template-free

    1 INTRODUCTION

    SUZ-4 zeolite patented by British Petroleum Company in 1992 [1] has a framework topology similar to ferrierite and ZSM-57 [1-5]. Its two-dimensional pore system consists of interconnected ten- and eight-membered ring channels which are elliptical in shape; the ten-membered rings have pore openings of 0.46×0.52 nm [2] and demonstrate as the good catalyst for many processes [6-9], including the conversion of n-hexane [6], elimination of nitrogen oxides [8], and transformation of methanol to dimethylether [9]. The synthesis of SUZ-4 zeolite, however, is still not so easy, which limits its practical application.

    The synthesis of SUZ-4 zeolite is mostly reported by using a rotating hydrothermal crystallization in the presence of the organic template tetraethylammonium cation (TEA) [5, 10, 11]. The other organic templates such as quinuclidine and N,N,N,N,N,N-hexaethylpentane-diammonium bromide (Et6-diquat-5) are also used for the synthesis of SUZ-4 zeolite [1, 3]. Normally, the organic templates direct the assembly pathways of zeolite precursors and ultimately fill the pore space of a zeolite [11-14]. It has been accepted for a long time that the templating species are essential in the synthesis of zeolites, especially in the case of high-silica zeolites [15]. The use of organic templates, however, has many negative subsequences such as the environmental pollution and high energy consumption for the removal of organic templates during high-temperature calcination. Therefore, organotemplate-free method for zeolite synthesis is much desirable, for example, the organotemplate-free synthesis of ZSM-5 zeolite [16-18].

    In the past decades, many efforts have been devoted to the organotemplate-free synthesis of zeolites in the presence of the additives of methyl ethyl ketone [19], methanol/ethanol [20], acetone [21], and crystal seeds [22]. It is known that the addition of crystalline seeds into the starting aluminosilicate gels can remarkably accelerate zeolite crystallization [22-25]. Moreover, the seeded hydrothermal route has been proved to be very effective in the synthesis of zeolites without organic templates involved. With the methods, zeolites of ECR-1 [26], Beta [27, 28], ZSM-34 [29], ZSM-12 [30], FER [31] and LEV [32] have been sythesized. But the synthesis of SUZ-4 zeolite without using any organic templates has not been reported up to date. Very recently, our group [33] reported the preliminary data for an organotemplate-free hydrothermal synthesis of SUZ-4 zeolite aided by SUZ-4 crystal seeds. In this study, we investigate in detail the influences of various conditions on the organotemplate-free synthesis of SUZ-4 zeolite, aiming to obtain the optimal synthesis window of the conditions.

    2 EXPERIMENTAL

    2.1 Materials

    Potassium hydroxide (Sinopharm Chemical Reagent Co., AR); aluminum powder (99%, Sinopharm Chemical Reagent Co.); colloidal silica [40% (by mass) SiO2, Zhejiang Yuda Chem. Co., LR]; tetraethylammonium hydroxide [TEAOH, 35% (by mass) in water, AR, Jiangsu Jintan Xinan Chemical Research Institute].

    2.2 Synthesis

    The SUZ-4 zeolite that is used as the seed was prepared using the organic template TEAOH according to the conventional rotation method [7], followedwith a calcination at 550 °C for 5 h.

    In a typical synthesis of SUZ-4 zeolite by the organotemplate-free hydrothermal approach, 2.6 g of KOH was dissolved in 20.0 g of deionized water, then 0.27 g of aluminum powder was added to the KOH solution under stirring to get the homogeneous solution A. Solution B was prepared by adding 15.8 g of colloidal silica into 15.6 g of deionized water under stirring. Then, solution B was added into solution A to make a gel mixture. Afterwards, 0.5 g of the seed (1% based on the total mass of the synthesis mixture) was added to the above gel, followed with an aging at room temperature for 24 h. The molar composition of the gel was 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O (SiO2/Al2O3: 21, KOH/SiO2: 0.38, H2O/SiO2: 23.8). The synthesis gel was finally transferred into a Teflon-lined autoclave and left static in the oven at 160 °C for 6 d under the autogenous pressure. The resultant was then filtrated, recovered, washed with deionized water and dried at 100 °C for 12 h. Thus obtained SUZ-4 zeolite was used as the reference material for calculating relative crystallinity of various samples synthesized under other conditions. The relative crystallinity was calculated by comparing the intensities of the ten featured X-ray diffraction (XRD) peaks for the SUZ-4 phase (2θ=7.9°, 12.0°, 15.3°, 19.0°, 19.6°, 22.75°, 23.5°, 25.0°, 25.8° and 28.7°). The investigation on synthesis conditions was performed by varying the reaction parameters as the following: SiO2/Al2O315-30, KOH/SiO20.29-0.57, H2O/SiO27.14-42.86, seed concentration 0-4% (by mass), aging time 0-24 h, crystallization temperature 140-200 °C, and crystallization time 0-12 d.

    2.3 Characterization

    XRD patterns were collected on a Bruker D8 ADVANCE powder diffractometer using Ni-filtrated Cu Kαradiation source at 40 kV and 20 mA, from 5° to 50° with a scan rate of 2°·min?1. The morphologies of the products were taken with a QUANTA 200 (FEI) scanning electron microscope (SEM). The Brunauer-Emmett-Teller (BET) surface area was obtained by recording the N2-sorption isotherm at the temperature of liquid nitrogen using a Micromeritics ASAP2010 analyzer. Thermal gravimetric analysis (TG) was conducted on a TA Instrument (Netzsch, TG/209/F3) operated under air atmosphere. Chemical compositions of the samples were obtained by a Jarrell-Ash 1100 inductively coupling plasma (ICP) spectrometer.

    3 RESULTS AND DISCUSSION

    3.1 Influence of the seed concentration

    Figure 1 XRD patterns for SUZ-4 samples synthesized at 21 SiO2: Al2O3: 7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds (data in parentheses are comparative crystallinities)seed mass concentration: a—0; b—0.2%; c—0.5%; d—1%; e—2%; f—4% (4 d); g—4%

    The effect of seed concentration is shown in Fig. 1. It can be seen that only an amorphous product could be obtained in the unseeded system (Curve a) and low crystallinity zeolite appeared with a small amount of seed (Curve b). Curves d and e displayed a set of sharp and well resolved diffraction peaks assigned to the pure SUZ-4 phase [2], suggesting that the highly crystallized SUZ-4 zeolite can be obtained in the presence of 1%-2% (by mass) seed with a 6 d crystallization at 160 °C. When a larger mass amount of seed 4% (Curve f) was used, a highly crystallized SUZ-4 zeolite was got with a shorter hydrothermal time 4 d, whereas a 6 d hydrothermal treatment led to the detection of diffraction peaks at ca. 10° and 14° for mordenite (Curve g), a known competing zeolite phase in SUZ-4 synthesis [34].

    It has been proved that the added seed in an organotemplate-free aluminosilicate gel mixture favors crystallization started by the fast agglomeration of the small-sized particles at the seed-amorphous interface [35]. The results in Fig. 1 indicate that the seed is indispensable for organotemplate-free synthesis of SUZ-4 zeolite, and the well crystallized SUZ-4 zeolite can be obtained within the seed mass content range of 0.2%-2%.

    Figure 2 (a) shows the TG curves for selected samples. For the seed without the high-temperature calcination to remove the organic template TEAOH, the initial mass loss before 200 °C is attributed to the desorption of physically adsorbed water, and the large mass loss ranging from 200 °C to 550 °C is due to the decomposition of the charge compensating TEA+cations in the micropores of SUZ-4 zeolite [11]. In contrast, for the SUZ-4 sample synthesized by the present seed-assisted organotemplate-free hydrothermal approach, no detectable mass loss happened at 200-550 °C, confirming that the SUZ-4 product as synthesized does not bear any organic species. Fig. 2 (a) also verifies that the seed itself is actually organic template-free, which excludes the possibility that a slight of organic templates left in the seed play structure-directing roles in the present synthesis.

    Figure 2 (a) TG curves for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d, seed, and seed without the hightemperature calcination; (b) The nitrogen isotherm for SUZ-4 synthesized with 1% (by mass) seed shown in Fig. 1d a—SUZ-4 with seed in Fig. 1d; b—seed; c—seed without calcination

    Figure 3 SEM images for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, with different mass concentrations of seeds: (a) 0.2%, (b) 0.5%, (c) 1%, and (d) 2%

    Figure 2 (b) gives the N2-sorption isotherm for the SUZ-4 sample obtained from the seed-assisted organotemplate-free hydrothermal method. A steep increase appeared in the relative pressure range 10?6

    The SEM images of SUZ-4 products obtained with various amounts of seeds are presented in Fig. 3. It is observed that the amount of seeds employed in the organotemplate-free hydrothermal synthesis affected the crystallization rate, as well as the crystal size. With 0.2% (by mass) seed, amorphous particles occurred surrounding the rod-like zeolite crystals [Fig. 3 (a)], which means that the aluminosilicate gels were not converted to SUZ-4 crystals completely due to a slow crystallization rate at such a low seed concentration. At higher seed mass concentrations of 0.5%, 1% and 2%, the obtained three SUZ-4 samples exhibited a well-defined rod-like morphology with average crystal sizes of 4.8 μm×0.77 μm, 4.4 μm×0.38 μm and 2.3 μm×0.29 μm, respectively. The decreased crystal size corresponds to the increased seed-amorphous interface areas available for crystal growth [23-25, 35].

    3.2 Influence of the SiO2/Al2O3ratio

    Usually, the SiO2/Al2O3molar ratio of 21 is used for the synthesis gel mixture in the previous organic template-aided synthesis of SUZ-4 zeolite, and it is still rather difficult to synthesize SUZ-4 zeolite with a higher SiO2/Al2O3molar ratio [11, 34]. The effect of SiO2/Al2O3ratio on the crystallization of SUZ-4 zeolitewithout organic templates was investigated in this work, with the XRD patterns for the obtained SUZ-4 samples shown in Fig. 4. It can be seen that pure SUZ-4 zeolites could be obtained from the synthesis gels with SiO2/Al2O3ratios of 21 and 25. Note that the crystallization of the sample with a SiO2/Al2O3ratio of 25 took a longer time of 10 d compared with 6 d for the ordinary SiO2/Al2O3ratio of 21. The corresponding SiO2/Al2O3ratios analyzed by ICP for the final solid products were 21.4 and 23.9, respectively. The surface areas for the two samples with SiO2/Al2O3ratios of 21 and 25 were measured to be 324 and 290 m2·g?1, respectively. The decrease of the surface area at the SiO2/Al2O3ratio of 25 may be due to the lower crystallinity, as shown by Curves b and c in Fig. 4.

    Figure 4 XRD patterns for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times (the data in parentheses are comparative crystallinities)a—SiO2/Al2O3: 15, 6 d; b—SiO2/Al2O3: 21, 6 d;c—SiO2/Al2O3: 25, 10 d; d—SiO2/Al2O3: 30, 10 d

    When the SiO2/Al2O3ratio was as low as 15, the XRD Pattern a in Fig. 4 showed a much lowered crystallinity of SUZ-4 phase, together with the diffraction peak at ca. 5.6° that is assignable to an impurity phase of perlialite. On the other hand, at the much higher SiO2/Al2O3ratio of 30, the 10 d crystallization seemed cause a comparatively high crystallinity of SUZ-4 zeolite, but with the concomitance of mordenite impurity [34].

    The SEM images for SUZ-4 products with different SiO2/Al2O3ratios are illustrated in Fig. 5. The samples with SiO2/Al2O3ratios of 21 and 25 exhibited rod-like crystalline morphologies, whereas the rods were thicker with the higher silica amount. For the two samples with the much low SiO2/Al2O3ratio of 15 and the high ratio of 30, impurities could be observed besides the rod-like SUZ-4 crystals, in agreement with the XRD results in Fig. 4.

    3.3 Influence of the aging time

    Before hydrothermal crystallization a synthesis mixture needs generally an aging treatment. Fig. 6 (a) presents the XRD patterns for the samples obtained with different aging times, and the corresponding crystallization curve is plotted in Fig. 6 (b). Though the peaks for SUZ-4 zeolite were detectable without aging, its crystallinity is at a very low level. A longer aging time is favorable to the formation of zeolite nuclei on the seed surface, accelerating the crystallization and enhancing the crystallinity [33]. It is drawn from Fig. 6 that 24 h is the optimal aging time to create a fully crystallized SUZ-4 zeolite.

    Figure 5 SEM images for SUZ-4 samples synthesized at Al2O3︰7.9 KOH: 500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different SiO2/Al2O3molar ratios and crystallization times: (a) SiO2/Al2O3: 15, 6 d, (b) SiO2/Al2O3: 21, 6 d; (c) SiO2/Al2O3: 25, 10 d; and (d) SiO2/Al2O3: 30, 10 d

    Figure 6 (a) XRD patterns and (b) crystallization curve for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 160 °C, 6 d, 1% (by mass) seed, with different aging times

    Figure 7 Crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, 160 °C and 1% (by mass) seed (Insertions are the XRD patterns)

    3.4 Influence of the crystallization time

    Figure 7 plots the crystallization curve for the samples obtained at various crystallization time with the synthesis gel composition 7.9 KOH︰Al2O3︰21 SiO2︰500 H2O, based on the inserted XRD patterns. It can be seen that crystallinity of the obtained SUZ-4 zeolites increased gradually with the prolongation of crystallization time, and when the time was beyond 4 d the crystallinity reached a level above 90%. The highest crystallinity was obtained at 6 d.

    3.5 Influence of the crystallization temperature

    The crystallization temperature was changed from 140 to 200 °C to measure its influence on the synthesis, with the XRD results shown in Fig. 8. At a low temperature of 140 °C, amorphous products were observed without any diffraction peaks if employing the standard 6 d crystallization time (XRD pattern not shown). Only with a much longer crystallization time of 12 d, SUZ-4 zeolite could be generated (Curve a). It is known that the increase of temperature can enhance the solubility of silicate species, leading to the rapid growth of zeolite crystals [34]. Therefore, 160 °C could cause the formation of well crystallized SUZ-4 zeolite (Curve b). However, at the high temperatures of 180 °C and 200 °C, SUZ-4 zeolites were produced even with a much shorter crystallization time of 2 d, but with the concomitance of mordenite impurity (Curves c and d) [34]. Consequently, 160 °C is selected as the most favorable crystallization temperature for the synthesis of SUZ-4 zeolite.

    3.6 Influence of the KOH/SiO2ratio

    Figure 8 XRD patterns for SUZ-4 samples synthesized with 21 SiO2︰Al2O3︰7.9 KOH︰500 H2O, 1% (by mass) seed, at different crystallization temperatures (the data in parentheses are comparative crystallinities)a—140 °C, 12 d; b—160 °C, 6 d; c—180 °C, 2 d; d—200 °C, 2 d

    Figure 9 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰500 H2O, 160 °C, 6 d, 1% (by mass)seed, with different KOH/SiO2molar ratios (the data in parentheses are comparative crystallinities) a—0.29; b—0.33; c—0.38; d—NaOH/SiO2: 0.38; e—0.43; f—0.48; g—0.57

    The alkalinity of starting gels is an important parameter to influence the crystallization of zeolite, thus KOH/SiO2molar ratios were varied from 0.29 to 0.57 to evaluate the influence of gel’s alkalinities. The XRD patterns in Fig. 9 indicate that SUZ-4 zeolite was obtained when the KOH/SiO2ratio was in the range 0.33-0.43. At a low alkalinity (KOH/SiO2: 0.29), a poorly crystallized SUZ-4 phase was observed because the low concentration of hydroxyl ions could not depolymerize the silica source to provide sufficient solubilized aluminosilicate species to form nuclei [36]. On the contrary, a high alkalinity (KOH/SiO2: 0.48) made the crystallinity lowered remarkably, probably due to the dissolution of the already formed zeolite nuclei in the presence of excess hydroxyl ions [36]. KOH/SiO2up to 0.57 caused the formation of pure perlialite crystals (Curve g). Moreover, NaOH was also attempted as the alkaline source in comparison with KOH. It can be seen in Curve d that mordenite was the only crystallite produced, which is in agreement with the previous result that K+is a necessity for creating the SUZ-4 phase [11]. Accordingly, the optimal KOH/SiO2ratio of 0.33-0.43 is crucial for creating the pure phase of SUZ-4 zeolite.

    3.7 Influence of the H2O/SiO2ratio

    The water content of a synthesis system is also known as a key condition for the hydrothermal synthesis of zeolite. Fig. 10 shows the XRD patterns for the samples synthesized with various H2O/SiO2ratios of 7.14-42.86. The pure and well crystallized SUZ-4 zeolite could be obtained even from the very concentrated gel with the low H2O/SiO2ratio of 7.14. A broad window of H2O/SiO2ratios 7.14-38.1 was observed for the synthesis of SUZ-4 zeolite. However, at the much lower H2O/SiO2ratios of less than 7.14, the viscosity of the aluminosilicate gel is too large for substrates to diffuse freely to form SUZ-4 crystalline [37, 38]. Also, the much diluted gel mixture (H2O/SiO2: 42.86) could not give pure SUZ-4 zeolite, which is ascribed to the very slow nucleation rate arising for the longer distance between nutrients in this diluted solution [39].

    Figure 10 XRD patterns for SUZ-4 samples synthesized at 21 SiO2︰Al2O3︰7.9 KOH, 160 °C, 6 d, 1% (by mass) seed, with different H2O/SiO2ratios (the data in parentheses are comparative crystallinities) a—7.14; b—14.28; c—23.81; d—38.10; e—42.86

    4 CONCLUSIONS

    Pure and highly crystallized SUZ-4 zeolite can be synthesized by the organotemplate-free static hydrothermal route in the presence of the seed under following conditions: SiO2/Al2O3: 21-25 mol·mol?1, KOH/SiO2: 0.33-0.43 mol·mol?1, H2O/SiO2: 7.14-38.1 mol·mol?1, seed mass concentration=0.2%-2%, aging time = 24 h, crystallization temperature=160 °C, and crystallization time=6-10 d. The optimal condition (SiO2/Al2O321, KOH/SiO20.38, H2O/SiO223.8, seed mass concentration 1%, aging 24 h, 160 °C and 6 d) results in the SUZ-4 product with BET surface area 324 m2·g?1, micropore volume 0.13 cm3·g?1, mesopore diameter 2.26 nm and the size of rod-like crystals around 4.4 μm×0.38 μm.

    REFERENCES

    1 Barri, S.A.I., “Crystalline (metallo) silicates and germanates-SUZ-4”, US Pat. 5118483 (1992).

    2 Lawton, S.L., Bennett, J.M., Schlenker, J.L., Rubin, M.K., “Synthesis and proposed framework topology of zeolite SUZ-4”, J. Chem. Soc. Chem. Commun., (11), 894-896 (1993).

    3 Paik, W.C., Shin, C.H., Hong, S.B., “Synthesis of zeolites P1 and SUZ-4 through a synergy of organic N,N,N,N′,N′,N′-hexaethylpentanediammonium and inorganic cations”, Chem. Commun., (17), 1609-1610 (2000).

    4 Paik, W.C., Shin, C.H., Lee, J.M., Ahn, B.J., Hong, S.B., “A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media”, J. Phys. Chem. B, 105 (41), 9994-10000 (2001).

    5 Strohmaier, K.G., Afeworki, M., Dorset, D.L., “The crystal structures of polymorphic SUZ-4”, Z. Kristallogr., 221, 689-698 (2006).

    6 Lukyanov, D.B., Zholobenko, V.L., Dwyer, J., Barri, S.A. I., Smith, W.J., “On the structural, acidic and catalytic properties of zeolite SUZ-4”, J. Phys. Chem., 103 (1), 197-202 (1999).

    7 Asensi, M.A., Camblor, M.A., Martinez, A., “Zeolite SUZ-4: Reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butenes”, Micropor. Mesopor. Mater., 28, 427-436 (1999).

    8 Subbiah, A., Cho, B.K., Blint, R.J., Gujar, A.C., Price, G.L., Yie, J.E.,“NOxreduction over metal-ion exchanged novel zeolite under lean conditions: Activity and hydrothermal stability”, Appl Catal B Envir., 42, 155-178 (2003).

    9 Jiang, S., Hwang, Y.K., Jhung, S.H., Chang, J.S., Hwang, J.S., “Zeolite SUZ-4 as selective dehydration catalyst for methanol conversion to dimethyl ether”, Chem Lett., 33 (8), 1048-1049 (2004).

    10 Gujar, A.C., Moye, A.A., Coghill, P.A., Teeters, D.C., Roberts, K.P., Price, G.L., “Raman investigation of the SUZ-4 zeolite”, Micropor. Mesopor. Mater., 78, 131-137 (2005).

    11 Gujar, A.C., Price, G.L., “Synthesis of SUZ-4 in the K+/TEA+system”, Micropor. Mesopor. Mater., 54, 201-205 (2002).

    12 Barrer, R.M., Denny, P.J., “Hydrothermal chemistry of the silicates. Part IV. Nitrogenous aluminosilicates”, J. Chem. Soc., 971-982 (1961).

    13 Davis, M.E., Lobo, R.F., “Zeolite and molecular sieve synthesis”, Chem. Mater., 4, 756-768 (1992).

    14 Lawton, S.L., Rohrbaugh, W.J., “The framework topology of ZSM-18, a novel zeolite containing rings of three (Si,Al)-O species”, Science., 247, 1319-1322 (1990).

    15 Fyfe, C.A., Darton, R.J., Mowatt, H., Lin, Z.S., “Efficient, low-cost, minimal reagent syntheses of high silica zeolites using extremely dense gels below 100 °C”, Micropor. Mesopor. Mater., 144, 57-66 (2011).

    16 Li, H.X., Xiang, S.H., Wu, D.M., Liu, Y.T., Zhang, X.S., Liu, S.S.,“Study on the synthesis of zeolite ZSM-5”, Chem. J. Chin. Univ., 2 (4), 517-519 (1981).

    17 Wang, F.S., Cheng, W.C., Zhang, S., “Synthesis of inorgano-ammonium high silica zeolites of ZSM series”, Chin. J. Catal., 2 (4), 282-287 (1981).

    18 Shiralkar, V.P., Clearfield, A., “Synthesis of the molecular sieve ZSM-5 without the aid of templates”, Zeolites, 9, 363-370 (1989).

    19 Narita, E., Sato, K., Okabe, T., “A convenient method for crystallization of zeilite ZSM-5 by using seed crystals in acetone/water mixture system”, Chem. Lett., 13 (7), 1055-1058 (1984).

    20 Plank, C.J., Rosinski, E.J., Rubin, M.K., “Method for producing zeolites”, US Pat. 4175114 (1979).

    21 Narita, E., Yatabe, N., Okabe, T., “Synthesis and crystal growth of zeolite ZSM-5 from sodium aluminosilicate systems free of organic templates”, Ind. Eng. Chem. Prod. Res. Dev., 24 (4), 507-512 (1985).

    22 Edelman, R.D., Kudalkar, D.V., Ong, T., Warzywoda, J., Thompson, R.W., “Crystallization phenomena in seeded zeolite syntheses”, Zeolites, 9, 496-502 (1989).

    23 Lu, B., Tsuda, T., Oumi, Y., Itabashi, K., Sano, T., “Direct synthesis of high-silica mordenite using seed crystals”, Micropor. Mesopor. Mater., 76, 1-7 (2004).

    24 Lu, B., Yakushi, Y., Oumi, Y., Itabashi, K., Sano, T., “Control of crystal size of high-silica mordenite by quenching in the course of crystallization process”, Micropor. Mesopor. Mater., 95, 141-145 (2006).

    25 Dutta, P.K., Bronic, J., “Mechanism of zeolite formation: Seed-gel interaction”, Zeolites, 14, 250-255 (1994).

    26 Song, J.W., Dai, L., Ji, Y.Y., Xiao, F.S., “Organic template free synthesis of aluminosilicate zeolite ECR-1”, Chem. Mater., 18 (12), 2775-2777 (2006).

    27 Xie, B., Song, J., Ren, L.M., Ji, Y., Li, J., Xiao, F.S., “Organotemplate-free and fast route for synthesizing beta zeolite”, Chem. Mater., 20 (14), 4533-4535 (2008).

    28 Xie, B., Zhang, H.Y., Yang, C.G., Liu, S.Y., Ren, L.M., Zhang, L., Meng, X.J., Yilmaz, B., Muller, U., Xiao, F.S., “Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates”, Chem. Commun., 47, 3945-3947 (2011).

    29 Zhang, L., Yang, C.G., Meng, X.J., Xie, B., Wang, L., Ren, L.M., Ma, S.J., Xiao, F.S., “Organotemplate-free syntheses of ZSM-34 zeolite and Its heteroatom-substituted analogues with good catalytic performance”, Chem. Mater., 22 (10), 3099-3107 (2010).

    30 Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., Okubo, T., “Crystallization behavior of zeolite beta in OSDA-free, seed-assisted synthesis”, J. Phys. Chem. C, 115 (3), 744-750 (2011).

    31 Zhang, H.Y., Guo, Q., Ren, L.M., Yang, C.G., Zhu, L.F., Meng, X.J., Li, C., Xiao, F.S., “Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units”, J. Mater. Chem., 21, 9494-9497 (2011).

    32 Zhang, H.Y., Yang, C.G., Zhu, L.F., Meng, X.J., Yilmaz, B., Muller, U., Feyen, M., Xiao, F.S., “Organotemplate-free and seed-directed synthesis of levyne zeolite”, Micropor. Mesopor. Mater., 155, 1-7 (2012).

    33 Zhang, W., Wu, Y.J., Gu, J., Zhou, H.L., Wang, J., “Organotemplate-free route for synthesizing SUZ-4 zeolite under static hydrothermal condition”, Mater. Res. Bull., 46, 1451-1454 (2011).

    34 Worathanakula, P., Trisuwana, D., Phatrukb, A., Kongkachuichay, P.,“Effect of sol-gel synthesis parameters and Cu loading on the physicochemical properties of a new SUZ-4 zeolite”, Colloids Surf. A Physicochem. Eng. Aspects., 377, 187-194 (2011).

    35 Wu, Y.J., Ren, X.Q., Lu, Y.D., Wang, J., “Crystallization and morphology of zeolite MCM-22 influenced by various conditions in the hydrothermal synthesis”, Micropor. Mesopor. Mater., 112, 138-146 (2008).

    36 Eapen, M.J., Reddy, K.S.N., Shiralkar, V.P., “Hydrothermal crystallization of zeolite beta using tetraethylammonium bromide”, Zeolites, 14, 295-302 (1994).

    37 Kim, Y.C., Jeong, J.Y., Hwang, J.Y., Kim, S.D., Kim, W.J., “Influencing factors on rapid crystallization of high silica nano-sized zeolite Y without organic template under atmospheric pressure”, J Porous Mater., 16, 299-306 (2009).

    38 Kim, S.D., Noh, S.H., Seong, K.H., Kim, W.J., “Compositional and kinetic study on the rapid crystallization of ZSM-5 in the absence of organic template under stirring”, Micropor. Mesopor. Mater., 72, 185-192 (2004).

    39 Gu, J., Wu, Y.J., Wang, J., Lu, Y.D., Ren, X.Q., “In situ assembly of ZSM-5 nanocrystals into micro-sized single-crystal-like aggregates via acid-catalyzed hydrolysis of tetraethyl orthosilicate”, J. Mater. Sci., 44, 3777-3783 (2009).

    10.1016/S1004-9541(14)60019-7

    2012-03-22, accepted 2012-10-10.

    * Supported by the National Natural Science Foundation of China (20976084, 21101094, 21136005).

    ** To whom correspondence should be addressed. E-mail:junwang@njut.edu.cn

    猜你喜歡
    雅靜王軍張偉
    《哈爾濱記憶 系列四》
    昨天 今天
    金秋(2020年14期)2020-10-28 04:15:40
    我要好好來(lái)欣賞
    《郁郁高巖》
    可愛(ài)的小丫丫
    生態(tài)景觀在城市規(guī)劃中的應(yīng)用探索
    藝術(shù)百家:張偉 何是雯
    看得到的轉(zhuǎn)變
    中華家教(2018年9期)2018-10-19 09:30:00
    妻子的“BQ哲學(xué)”
    分憂(2018年12期)2018-01-10 01:42:28
    數(shù)學(xué)潛能知識(shí)月月賽
    国产亚洲精品av在线| 亚洲乱码一区二区免费版| 国产高清激情床上av| 18禁在线播放成人免费| 国产精品一区www在线观看 | 成人三级黄色视频| 亚洲精品国产成人久久av| 一个人观看的视频www高清免费观看| 国产美女午夜福利| 精品久久久久久久人妻蜜臀av| 永久网站在线| 美女黄网站色视频| 性色avwww在线观看| 免费看日本二区| 一本精品99久久精品77| 成人美女网站在线观看视频| 国产成人a区在线观看| 日日摸夜夜添夜夜添av毛片 | 天天躁日日操中文字幕| 久久久久九九精品影院| 中文字幕免费在线视频6| 亚洲无线观看免费| 波多野结衣高清无吗| 变态另类丝袜制服| 亚洲人与动物交配视频| 精品一区二区三区av网在线观看| 国产免费一级a男人的天堂| 丰满人妻一区二区三区视频av| 夜夜爽天天搞| 亚洲天堂国产精品一区在线| 亚洲中文字幕一区二区三区有码在线看| 久久久成人免费电影| 亚洲欧美日韩卡通动漫| 亚洲欧美精品综合久久99| 成人永久免费在线观看视频| 久久精品国产自在天天线| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 少妇熟女aⅴ在线视频| 色在线成人网| 久久久久久久精品吃奶| 亚洲国产精品久久男人天堂| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 一区二区三区免费毛片| 欧美国产日韩亚洲一区| 亚洲中文字幕日韩| 国产国拍精品亚洲av在线观看| 国产亚洲av嫩草精品影院| 老师上课跳d突然被开到最大视频| .国产精品久久| 日韩精品有码人妻一区| 性色avwww在线观看| 国产大屁股一区二区在线视频| av福利片在线观看| 欧美黑人欧美精品刺激| netflix在线观看网站| 嫩草影视91久久| 色综合站精品国产| 婷婷丁香在线五月| 白带黄色成豆腐渣| 久久中文看片网| 最后的刺客免费高清国语| 黄色丝袜av网址大全| 一个人看的www免费观看视频| 午夜福利欧美成人| 亚洲五月天丁香| 欧美高清性xxxxhd video| h日本视频在线播放| 国产精品av视频在线免费观看| 69av精品久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 天天一区二区日本电影三级| 免费av毛片视频| videossex国产| 精品人妻一区二区三区麻豆 | 国产精品一区二区性色av| 精品午夜福利在线看| 真人一进一出gif抽搐免费| 黄色欧美视频在线观看| 久久久久久九九精品二区国产| 国产一区二区激情短视频| 在线免费十八禁| 日韩一区二区视频免费看| 大型黄色视频在线免费观看| 亚洲无线在线观看| 精品午夜福利视频在线观看一区| 国产精品亚洲一级av第二区| 女生性感内裤真人,穿戴方法视频| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 嫩草影视91久久| 极品教师在线免费播放| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 哪里可以看免费的av片| 麻豆精品久久久久久蜜桃| 久久久久免费精品人妻一区二区| 国产 一区精品| 狠狠狠狠99中文字幕| 欧美日韩亚洲国产一区二区在线观看| 日本成人三级电影网站| 国产亚洲91精品色在线| 狂野欧美白嫩少妇大欣赏| 免费av观看视频| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看| 国产激情偷乱视频一区二区| 91av网一区二区| 久久久久久久精品吃奶| 99热精品在线国产| 村上凉子中文字幕在线| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 久久香蕉精品热| 亚洲国产欧洲综合997久久,| 欧美中文日本在线观看视频| 九九在线视频观看精品| 日本精品一区二区三区蜜桃| 欧美丝袜亚洲另类 | 最后的刺客免费高清国语| 成人美女网站在线观看视频| 成人国产一区最新在线观看| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 身体一侧抽搐| 女生性感内裤真人,穿戴方法视频| xxxwww97欧美| 在线a可以看的网站| 国产精品人妻久久久影院| 国产成人av教育| 欧美人与善性xxx| 日韩精品有码人妻一区| 成人性生交大片免费视频hd| 日韩,欧美,国产一区二区三区 | 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产 | 18禁裸乳无遮挡免费网站照片| 人妻丰满熟妇av一区二区三区| 此物有八面人人有两片| 成人午夜高清在线视频| 免费人成在线观看视频色| 久久久午夜欧美精品| 岛国在线免费视频观看| 免费观看精品视频网站| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 欧美高清成人免费视频www| 久久国产乱子免费精品| 久久久色成人| 老熟妇乱子伦视频在线观看| 国产一区二区亚洲精品在线观看| 免费看日本二区| 亚洲人成网站在线播放欧美日韩| 日韩强制内射视频| 天堂影院成人在线观看| 亚洲av中文av极速乱 | 国产一级毛片七仙女欲春2| 国产一区二区亚洲精品在线观看| 日韩欧美在线二视频| 悠悠久久av| 免费看美女性在线毛片视频| 国内久久婷婷六月综合欲色啪| 悠悠久久av| 天美传媒精品一区二区| 亚洲在线自拍视频| 国产精品无大码| 中国美女看黄片| 国产av麻豆久久久久久久| 无遮挡黄片免费观看| 成人无遮挡网站| 免费一级毛片在线播放高清视频| 精品国产三级普通话版| 国内精品久久久久久久电影| av.在线天堂| 国产精品爽爽va在线观看网站| 亚洲久久久久久中文字幕| 午夜福利在线观看免费完整高清在 | 国产精品不卡视频一区二区| 美女黄网站色视频| 极品教师在线视频| 91午夜精品亚洲一区二区三区 | 亚洲第一区二区三区不卡| 中文字幕熟女人妻在线| 亚洲精品乱码久久久v下载方式| 12—13女人毛片做爰片一| 少妇裸体淫交视频免费看高清| 色尼玛亚洲综合影院| 不卡一级毛片| 男女视频在线观看网站免费| 免费av观看视频| 久久久成人免费电影| 亚洲av免费在线观看| 俄罗斯特黄特色一大片| 久久久久久久亚洲中文字幕| 精品久久久久久久久亚洲 | 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 观看免费一级毛片| 亚洲成人中文字幕在线播放| 好男人在线观看高清免费视频| 色5月婷婷丁香| 日日撸夜夜添| 成熟少妇高潮喷水视频| 成人毛片a级毛片在线播放| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看 | 嫩草影院入口| 人人妻人人看人人澡| 精品国产三级普通话版| 久久精品国产99精品国产亚洲性色| 成人永久免费在线观看视频| 久久精品国产自在天天线| 99在线视频只有这里精品首页| 日韩欧美国产在线观看| 悠悠久久av| 69av精品久久久久久| 天堂av国产一区二区熟女人妻| 久久精品国产自在天天线| 国产精品一区www在线观看 | 亚洲欧美激情综合另类| 国产高潮美女av| 99久久无色码亚洲精品果冻| av在线亚洲专区| 免费不卡的大黄色大毛片视频在线观看 | 干丝袜人妻中文字幕| 国产熟女欧美一区二区| 亚洲av熟女| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9| 亚洲成人久久爱视频| 麻豆成人av在线观看| 中文字幕熟女人妻在线| 成人综合一区亚洲| 99久久精品热视频| 亚洲欧美精品综合久久99| 国产爱豆传媒在线观看| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 18禁在线播放成人免费| 真人做人爱边吃奶动态| 日本精品一区二区三区蜜桃| 国产在视频线在精品| 此物有八面人人有两片| 成人性生交大片免费视频hd| 999久久久精品免费观看国产| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 18禁黄网站禁片免费观看直播| 麻豆成人午夜福利视频| 日本-黄色视频高清免费观看| 狠狠狠狠99中文字幕| 亚洲av中文字字幕乱码综合| 哪里可以看免费的av片| 亚洲av成人精品一区久久| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 国产女主播在线喷水免费视频网站 | 最后的刺客免费高清国语| 熟妇人妻久久中文字幕3abv| 嫩草影院精品99| 精品久久久久久久久久免费视频| 亚洲精品成人久久久久久| 亚洲人与动物交配视频| 在线天堂最新版资源| 成人午夜高清在线视频| 国产免费男女视频| 18禁在线播放成人免费| 成人精品一区二区免费| 亚州av有码| 欧美高清性xxxxhd video| 2021天堂中文幕一二区在线观| 一本一本综合久久| 中文亚洲av片在线观看爽| 超碰av人人做人人爽久久| av专区在线播放| 丰满的人妻完整版| 蜜桃久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 在现免费观看毛片| 国产精品久久久久久久电影| 久久午夜福利片| 久久久久久久久久成人| 露出奶头的视频| 天堂网av新在线| 久久这里只有精品中国| 亚洲久久久久久中文字幕| 自拍偷自拍亚洲精品老妇| 在线免费十八禁| 国产熟女欧美一区二区| 日韩高清综合在线| 99视频精品全部免费 在线| 99国产精品一区二区蜜桃av| 人妻制服诱惑在线中文字幕| 免费观看人在逋| 国产伦精品一区二区三区四那| 美女黄网站色视频| 观看免费一级毛片| 热99在线观看视频| 亚洲国产精品久久男人天堂| 热99在线观看视频| 日韩欧美在线二视频| 97人妻精品一区二区三区麻豆| bbb黄色大片| 亚洲中文字幕一区二区三区有码在线看| 最近最新免费中文字幕在线| 欧美不卡视频在线免费观看| 超碰av人人做人人爽久久| 看黄色毛片网站| 国产精品免费一区二区三区在线| 国产又黄又爽又无遮挡在线| 国产精品国产三级国产av玫瑰| 日韩欧美在线二视频| 精华霜和精华液先用哪个| 一级黄片播放器| 91久久精品电影网| 在线免费十八禁| 国产一级毛片七仙女欲春2| www.www免费av| 白带黄色成豆腐渣| 天天躁日日操中文字幕| 免费av不卡在线播放| av视频在线观看入口| 国产伦在线观看视频一区| 狂野欧美激情性xxxx在线观看| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 免费观看精品视频网站| 床上黄色一级片| 99热这里只有是精品50| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 免费av毛片视频| 日本在线视频免费播放| 男女做爰动态图高潮gif福利片| 91精品国产九色| 午夜福利18| 免费在线观看成人毛片| 2021天堂中文幕一二区在线观| 99热6这里只有精品| 成人毛片a级毛片在线播放| 亚洲欧美日韩高清专用| 国产免费一级a男人的天堂| 毛片女人毛片| 国产一区二区三区视频了| 久久午夜福利片| 国产精品98久久久久久宅男小说| 在线观看午夜福利视频| 日本黄色视频三级网站网址| 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 1024手机看黄色片| 一进一出抽搐gif免费好疼| 成年人黄色毛片网站| 日韩中文字幕欧美一区二区| 在现免费观看毛片| 99热网站在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产免费av片在线观看野外av| 内地一区二区视频在线| 草草在线视频免费看| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 成年免费大片在线观看| 成人三级黄色视频| 蜜桃久久精品国产亚洲av| 国产主播在线观看一区二区| 又爽又黄a免费视频| www.色视频.com| 直男gayav资源| 国产精品久久久久久精品电影| 国产久久久一区二区三区| 亚洲美女视频黄频| 中文字幕免费在线视频6| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 99久久精品热视频| 国产在线精品亚洲第一网站| 有码 亚洲区| 美女被艹到高潮喷水动态| 国产成人福利小说| 亚洲中文日韩欧美视频| 亚洲av一区综合| 免费看光身美女| 欧美激情在线99| 国产白丝娇喘喷水9色精品| 日本 欧美在线| 欧美日韩综合久久久久久 | 免费看光身美女| 欧美激情在线99| 国语自产精品视频在线第100页| 99久久无色码亚洲精品果冻| 熟女电影av网| 欧美色视频一区免费| 两个人的视频大全免费| 无人区码免费观看不卡| 国产一区二区三区av在线 | 午夜激情福利司机影院| 亚洲成人精品中文字幕电影| 免费黄网站久久成人精品| 草草在线视频免费看| 中文字幕人妻熟人妻熟丝袜美| 亚洲一级一片aⅴ在线观看| 欧美一级a爱片免费观看看| 国产av不卡久久| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清| 日韩,欧美,国产一区二区三区 | 麻豆久久精品国产亚洲av| 别揉我奶头~嗯~啊~动态视频| 91午夜精品亚洲一区二区三区 | 精品一区二区免费观看| 十八禁国产超污无遮挡网站| 成年女人永久免费观看视频| 欧美日韩国产亚洲二区| 男女视频在线观看网站免费| 国产极品精品免费视频能看的| 欧美色视频一区免费| 嫩草影视91久久| 欧美丝袜亚洲另类 | 国产成人a区在线观看| 麻豆国产97在线/欧美| 欧美日本视频| 91久久精品国产一区二区成人| 欧美日韩综合久久久久久 | av天堂中文字幕网| 亚洲欧美日韩高清专用| 亚洲真实伦在线观看| 蜜桃亚洲精品一区二区三区| 久久久久久伊人网av| 国产精品一区二区免费欧美| 亚洲国产欧美人成| 久久精品国产亚洲av涩爱 | 久久久国产成人精品二区| 亚洲自拍偷在线| 99热这里只有精品一区| 久久精品国产亚洲av香蕉五月| 久久人妻av系列| 精品久久国产蜜桃| 亚洲无线观看免费| 91久久精品国产一区二区成人| 99视频精品全部免费 在线| 国产淫片久久久久久久久| 国产高清视频在线播放一区| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品sss在线观看| 欧洲精品卡2卡3卡4卡5卡区| 97超视频在线观看视频| 窝窝影院91人妻| 偷拍熟女少妇极品色| 成年版毛片免费区| 春色校园在线视频观看| 在线观看av片永久免费下载| 两人在一起打扑克的视频| 久久精品久久久久久噜噜老黄 | 琪琪午夜伦伦电影理论片6080| 亚洲国产日韩欧美精品在线观看| 岛国在线免费视频观看| 久久香蕉精品热| 久99久视频精品免费| 国产三级在线视频| 内地一区二区视频在线| 亚洲18禁久久av| 18+在线观看网站| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 三级毛片av免费| 婷婷色综合大香蕉| 亚洲天堂国产精品一区在线| 有码 亚洲区| 搞女人的毛片| 成人无遮挡网站| 日本免费一区二区三区高清不卡| 久久99热6这里只有精品| 一区福利在线观看| 午夜精品一区二区三区免费看| 最近视频中文字幕2019在线8| 少妇熟女aⅴ在线视频| 嫁个100分男人电影在线观看| 在线观看av片永久免费下载| 中出人妻视频一区二区| 高清日韩中文字幕在线| 日韩一区二区视频免费看| 国产伦人伦偷精品视频| 麻豆成人av在线观看| 国产精品美女特级片免费视频播放器| 成人三级黄色视频| 最近最新中文字幕大全电影3| 色哟哟·www| 久久久久久久久久成人| 18禁裸乳无遮挡免费网站照片| 亚洲专区中文字幕在线| 精品日产1卡2卡| 亚洲18禁久久av| 国产精品亚洲美女久久久| 中国美女看黄片| 日本黄大片高清| 午夜精品在线福利| 国产精品一区二区性色av| 婷婷六月久久综合丁香| x7x7x7水蜜桃| 亚洲自拍偷在线| 如何舔出高潮| av国产免费在线观看| 欧美极品一区二区三区四区| 少妇丰满av| 精品日产1卡2卡| 男女下面进入的视频免费午夜| 日韩欧美在线二视频| 九九久久精品国产亚洲av麻豆| 亚洲久久久久久中文字幕| 日韩欧美一区二区三区在线观看| 中文字幕免费在线视频6| 久久婷婷人人爽人人干人人爱| 欧美国产日韩亚洲一区| 久久久久久伊人网av| 乱码一卡2卡4卡精品| 国产精品免费一区二区三区在线| 国产久久久一区二区三区| 精品国产三级普通话版| 亚洲一区高清亚洲精品| av中文乱码字幕在线| 无人区码免费观看不卡| 亚洲av中文av极速乱 | 黄色日韩在线| 免费搜索国产男女视频| 欧美绝顶高潮抽搐喷水| 一个人免费在线观看电影| 欧美激情国产日韩精品一区| 免费大片18禁| 亚洲,欧美,日韩| 我要搜黄色片| 国产精品乱码一区二三区的特点| 免费观看人在逋| 一边摸一边抽搐一进一小说| 欧美区成人在线视频| 嫁个100分男人电影在线观看| 日本黄色视频三级网站网址| 1024手机看黄色片| 日本五十路高清| 亚洲第一电影网av| 日韩强制内射视频| 国产老妇女一区| 久久99热6这里只有精品| 丰满人妻一区二区三区视频av| 国产午夜精品论理片| 最后的刺客免费高清国语| 人人妻人人澡欧美一区二区| 国产高清三级在线| 我要搜黄色片| 人妻夜夜爽99麻豆av| 成熟少妇高潮喷水视频| 男女边吃奶边做爰视频| h日本视频在线播放| 亚洲人成伊人成综合网2020| 一进一出好大好爽视频| 欧美日韩国产亚洲二区| 在现免费观看毛片| 久久精品国产自在天天线| 免费一级毛片在线播放高清视频| 毛片一级片免费看久久久久 | 一本久久中文字幕| 亚洲国产精品sss在线观看| 免费在线观看日本一区| 日本爱情动作片www.在线观看 | 丰满人妻一区二区三区视频av| 精品国内亚洲2022精品成人| 最近视频中文字幕2019在线8| 国产精品久久久久久久电影| 性欧美人与动物交配| 久久亚洲精品不卡| 内地一区二区视频在线| 一区福利在线观看| av在线老鸭窝| 欧美精品国产亚洲| 不卡视频在线观看欧美| 成人性生交大片免费视频hd| 精品一区二区免费观看| 伦精品一区二区三区| 亚洲欧美日韩高清专用| 精品国产三级普通话版| 中文资源天堂在线| 1024手机看黄色片| 婷婷六月久久综合丁香| 欧美日韩国产亚洲二区| 亚洲国产色片| 丰满的人妻完整版| 久久精品国产亚洲av涩爱 | 春色校园在线视频观看| 五月伊人婷婷丁香| 中文字幕av在线有码专区| 国产精华一区二区三区| 色噜噜av男人的天堂激情| 18+在线观看网站| 亚洲av免费高清在线观看| 少妇丰满av| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看 | 成人二区视频| 亚洲国产欧美人成| 国产精品久久久久久久电影| 成人亚洲精品av一区二区| 舔av片在线| 人妻夜夜爽99麻豆av| 久久久久精品国产欧美久久久| 精品免费久久久久久久清纯| 97碰自拍视频|